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Gene function prediction based on combining gene
ontology hierarchy with multi-instance multi-label
learning
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Gene function annotation is the main challenge in the post genome era, which is an important part of the
genome annotation. The sequencing of the human genome project produces a whole genome data,
providing abundant biological information for the study of gene function annotation. However, to obtain
useful knowledge from a large amount of data, a potential strategy is to apply machine learning methods
to mine these data and predict gene function. In this study, we improved multi-instance hierarchical
clustering by using gene ontology hierarchy to annotate gene function, which combines gene ontology
hierarchy with multi-instance multi-label learning frame structure. Then, we used multi-label support
vector machine (MLSVM) and multi-label k-nearest neighbor (MLKNN) algorithm to predict the function
of gene. Finally, we verified our method in four yeast expression datasets. The performance of the
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Introduction

In post-genomic era, predicting the functions of genes is one of
the biggest challenges of genome function annotation. With the
rapid advancements in high-throughput bio-based technolo-
gies, such as microarray expression profiles, a large number of
biological data have been produced.” These data provide
valuable information for predicting gene functions. Recently,
time-series gene expression profile datasets have been widely
used to predict gene function, in which genes with similar
expression patterns may have similar functions.®* Many efforts
have been made to settle this task based on this assumption.
Zhao et al.* presented a new technique, namely, Annotating
Genes with Positive Samples (AGPS), for defining negative
samples in gene function prediction. Barutcuoglu et al.® devel-
oped a Bayesian framework for combining multiple classifiers
based on the functional taxonomy constraints. Experiments
show that over 105 nodes sub-hierarchy of the gene ontology
(GO) the Bayesian framework improves predictions for 93
nodes. Vinayagam et al.® developed a large-scale annotation
system and annotations were provided through GO terms by
applying multiple SVMs for the classification of correct and
false predictions. Pei et al.” proposed a novel method for the
function annotation of new biological sequences by using the
variable-precision rough set theory. Doniger et al® proposed
a tool called MAPPFinder, which created a global gene-
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simulated experiments proved that our method is efficient.

expression profile across all areas of biology by integrating the
annotations of the GO project. Huang et al.® discussed various
sorts and varieties of gene annotation enrichment analysis
tools. Approximately 68 gene annotation enrichment tools that
are currently available in the community were collected in this
survey. These tools are uniquely categorized into three major
classes, according to their underlying enrichment algorithms.
Zhang et al.'® have created a web-based tool for data analysis
and data visualization for sets of genes called GOTree Machine
(GOTM). Although this tool was originally intended to analyze
sets of co-regulated genes identified from microarray analysis, it
is adaptable for use with other gene sets from other high-
throughput analyses. Draghici et al.'* developed Onto-Express
as a novel tool capable of automatically translating differen-
tially regulated genes into functional profiles that characterize
the impact of the condition studied. Despite the good perfor-
mance of the machine learning techniques, there are still two
characteristics of the function-prediction task that are different
from common machine learning tasks: (1) a single gene may
have multiple functions; and (2) the functions are organized in
a hierarchy, i.e., a gene that is related to some functions is
automatically related to all its ancestral functions (this is called
the hierarchy constraint)."” Therefore, we combined multi-label
learning frame with gene ontology hierarchy" to settle this task.

In this study, we improved multi-instance hierarchical clus-
tering (MIHC)* with gene ontology hierarchy. Then, MLSVM
and MLKNN classifiers were used to predict the function of
genes in time-course gene expression profile.* There are
numerous classification methods that have been used in bio-
informatics.’>® In the section of Materials and methods, we
will introduce the predicting task, MLSVM and MLKNN
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algorithms. And, the MIHC method will be introduced. In the
section of Experiment and results, we describe the application
of MIHC method to the real data in GO database to examine its
effectiveness. Numerical results show that the proposed
method has better precision, recall-rate and harmonic mean
value.

Materials and methods
Gene function prediction task

The goal of gene function annotation task is to find the function
of un-annotation genes. The general calculation approach is to
calculate the relationship between the genes and the various
functions by a variety of biological models to predict the un-
annotation genes."

From the correspondence between genes and its functions,
a gene can be transcribed and translated into various proteins
and can execute many different functions.**” Similarly, the in
vivo biological process is not borne by a single gene, but by
multiple genes working together.” Therefore, the relationship
formed between the genes and its corresponding function is N
to N mapping. Among the learning frameworks, the multi-
instance multi-label learning framework is perfectly suited
for N to N mapping. There is a certain degree of correlation
between genes and genes and between gene functions and gene
functions. However, the degradation processing in multi-
instance multi-label learning framework destroys these corre-
lations. Therefore, it is necessary to maintain the relevance
when multi-instance multi-label learning framework is
implemented.

Gene ontology hierarchy

GO database is a standard model with a hierarchical tree
structure, designed to standardize biological knowledge of
genes and their products. Overall, GO database is a directed
acyclic graph (DAG), covering three branches: Biological Process
(BP), Molecular Function (MF) and Cellular Components (CC).
Also, there is no intersection between any two of the three
branches. Moreover, GO database contains gene annotations of
most of the microorganisms, plants and animal species, and
GO terms can be used in multiple databases, maintaining the
consistency of each gene described in different databases.

GO database was constructed by DAG, which treats GO terms
as nodes of DAG and the relationship of GO terms as edges of
DAG. The GO DAG also describes its terms by referring terms of
the tree structure, such as tree root node, parent nodes, child
nodes, leaf nodes and levels. This makes GO DAG easier to be
understood. In GO DAG, the parent node closer to the root is
described as rougher, while child nodes further from the root
are described as finer. Therefore, genes annotated with the GO
terms have the highest possible level of details, which corre-
sponds to the lowest level of abstraction.?®

There are three semantic relations between GO terms,
namely, is_a, part_of and regulates. Among the three relation-
ships, is_a and part_of relationships are transitive, while regu-
lates relationships can be classified as the regulation of
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Fig. 1 Part of the gene ontology hierarchy relationships.

relations and under the control of the relationship. We simply
describe these three relationships as follows. (1) The is_a rela-
tionship shows a relationship comprising a single included
relationship. It also has the transitive. In other words, A is_a B
represents A is subset of B. Moreover, the relationship can be
inferred from A is_a C and C is_a B. We formulated these
derivation relationships as is_a x is_a — is_a. (2) The part_of
relationships are similar to is_a relationships. A part_of B
indicates that if A is present, then A is a subset of B, but A does
not necessarily occur. Similar to is_a relationship, part_of
relationship also has the transitive. Therefore, we can also
formulate the derivation relationships of part of as part _of x
part_of — part_of. (3) In comparison with the previous two
relationships, the regulates relationship is slightly different. In
GO semantics, if A can directly affect B, this affection, called A to
B, has a regulatory role, i.e., A regulates B. The expressions of
the three relationships in the GO database are shown in the
Fig. 1. In Fig. 1, the alphabet “I” represents is_a relationship,
“P” represents part_of relationship and “R” represents regulates
relationship.

sample /

sample

gene

.

1Y

gene

&>

(a) single instance single label learning

“\
EENN

/

(c) Multi-instance learning

(b)Multi-label learning

{d) Multi-instance learning

Fig. 2 Four types of machine learning frames.

This journal is © The Royal Society of Chemistry 2018


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra05122d

Open Access Article. Published on 10 August 2018. Downloaded on 10/22/2025 12:53:17 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

Paper

Table1 The MLSVM algorithm

View Article Online

RSC Advances

Input: S-the training set, T-the test samples
Output: Yi-the set of predicted labels of T

O 0 N O U W

Table 2 MLKNN algorithm

For training set S = {(x;Y})|{ = 1,2,...,N}, calculate the kernel matrix
For each label y € Y, Y ={Y|i = 1,2,...,N}

Produce a sub-training set S, = {(x;,¥(x;))|i = 1,2,...,N}

Train a SVM model M, = svmtrain(S,)

For a test sample t; € T

Its labels are obtained by Y,; = {y|M,(t;) = 0}

End

End

Yr= {Yti|i = 1’2y~~~yN}

Input: S-the training set, T-the test samples
Output: Yi-the set of predicted labels of T

1 For a test sample t;e T

2 Calculate S,; € KNN(¢,) which are the k-nearest neighbors of ¢; among the S

3 The candidate classes of ¢; are obtained by Y,. = {y|y € Y and y(S,,Y) = 1}

4 For each label y € Y,

5 Calculate simScore(t;,s;) which is the similarity score of s; to ¢;

6 Calculate the likelihood score of ¢; to y by Score(#;,y) = . simScore(#;,s;)¥/(si,»)
$i€Sh

7 t; is labeled by Y;; = {y|Score(t;y) = 0}

8 End

9 End

10 Yy = {Yui = 1,2,...,N}

MIML learning framework

The multi-instance multi-label learning (MIML) framework was
proposed by Zhou et al.*®* Formally, MIML can be defined as
follows:

Let x = {xy,%,,...,%,} represent set of instances and y =
{1Y25---yujdenote  set of labels. Given the dataset
{(X1,Y1),(X2,Y2),...,(X;,Ye)}, the goal of the learning task is the
mapping of f: 2* — 2%, where X; C x is a bag-of-instances while
Y; C y is a subset of labels.

In this study, we solved the MIML task by degeneration
approach. First, MIML task was degenerated into multi-
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l
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Calculate the average Merge GO terms, N
distance between each | | |generate new sample
sample packet by pack
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Fig. 3 MIHC+ algorithm flowchart.
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instance learning (MLL) or multi-label learning (MIL). Then,
MLL or MIL was continually degenerated into single instance
single label learning (SISL). The relationships of these learning
frameworks are shown in Fig. 2. As shown in the subgraph (b),
a gene is annotated by multiple GO terms. Fig. 2(c) shows that
a GO term is a set of genes. The relationship shown in (b) is
called multi-label,® and that shown in (c) is called multi-
instance.* We used (b) or (c) as a bridge to degenerate (d) into
(a). In this study, we used MLL algorithm to predict the anno-
tation of novel genes. The pseudo code of MLL algorithms,
which are MLSVM?*** and MLKNN,?**%* are shown in Tables 1
and 2.

Input: D-the yeast expression dataset
G-the annotated gene set
L-the GO terms set of G
UG-un-annotated gene set

Data process

learning system

=0
£

§
25
=
27
=
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|
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annotation set of
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Fig. 4 The flow chart of gene function prediction.
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Fig. 5 The result obtained from each learning system by MLSVM in
cdc28.

MIHC+ algorithm

Despite the MIHC algorithm making many efforts on gene
annotation task, there are some limitations. MIHC does not
consider the GO DAG when it clusters GO terms. In this study,
we improved on this issue with GO hierarchy when GO terms
were clustered.

Hierarchical Clustering®® is a widely used machine learning
technology. General hierarchical clustering algorithm can be
described as follows:

Step 1: determine all objects’ dissimilarities by calculating
the distance between each pair of objects, like Euclidean
distance.

Step 2: collect two closest objects or clusters and merge them
into one class.

Step 3: recalculate all dissimilarities between new clusters or
objects.

Step 4: return to Step 2 until certain conditions are satisfied
or certain number of clusters generated.
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Fig. 6 The result obtained from each learning system by MLSVM in
cdcl5.
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alph.

The result obtained from each learning system by MLSVM in

However, it is absurd that all objects are clustered into the
same class. Hence, when certain conditions are satisfied, the
algorithm is stopped. The end condition of MIHC algorithm is
that no new cluster is generated. We still used formulae in
MIHC to calculate the distance between bag-of-instances.

Corr(G;) = ) _|corr(gene;,gene;)|, where gene;gene; € G; (1)
D(GO,’, GO/) = Corr(G;U Gj) (2)

The flowchart of MIHC+ algorithm is shown in the Fig. 3. In
the algorithm, the merger condition is the most important. We
also defined the merger calculate condition as D(GO;GO;) =
max(D(GO;),D(GOy)), but MIHC+ algorithm needs another
condition to merge two GO terms. Following the GO hierarchy,
we up-propagated the two GO terms; if one of them owns
a common ancestor in the GO database, we merge them. If there
are no more new GO terms needed to be merged, the algorithm
comes to an end. In other words, MIHC+ algorithm completely
obeys the knowledge of GO hierarchy.
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Fig. 8 The result obtained from each learning system by MLSVM in
elution.
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Table 3 The results of cdc28 dataset by MLSVM
n%
Method 10 20 30 40 50 60 70 80 90
GNC A=10 0.559 0.606 0.631 0.644 0.656 0.671 0.670 0.679 0.703
A=20 0.569 0.603 0.607 0.625 0.638 0.646 0.650 0.650 0.661
A=230 0.571 0.583 0.599 0.612 0.618 0.629 0.628 0.632 0.646
A =40 0.529 0.543 0.552 0.567 0.577 0.574 0.578 0.589 0.602
A=50 0.532 0.535 0.558 0.569 0.572 0.579 0.588 0.592 0.596
GOLC =1 0.594 0.617 0.634 0.635 0.648 0.643 0.641 0.651 0.653
L=2 0.609 0.623 0.624 0.631 0.624 0.632 0.635 0.640 0.643
=3 0.601 0.644 0.657 0.658 0.654 0.661 0.656 0.643 0.668
L=4 0.601 0.638 0.647 0.651 0.654 0.663 0.658 0.656 0.662
MIHC 0.621 0.666 0.727 0.767 0.800 0.794 0.817 0.828 0.838
MIHC" 0.644 0.665 0.735 0.740 0.796 0.811 0.822 0.831 0.840

Experiment and results
Experiment

Time-series expression datasets in the experiment were ob-
tained from ref. 37, and can be downloaded from ref. 38. These
four datasets are yeast cell cycle expression data with different
time points and circumstances. Gene annotation data can be
obtained from GO database, which can be downloaded from ref.
39. We used the method in ref. 40 to preprocess the raw data
and always make the first value 0. Then, the average trans-
formation ¢; = (¢; + ¢;_1)/2 was used to smooth out spikes. After
the data process, we used the method in ref. 14 to select genes
that are significantly correlated with each other in the same
function. Then, the non-noise system of expression data and
annotation are represented as S = {(G,GO))|i = 1,...,M}
Subsequently, the MIHC+ algorithm was used to the construct

Table 4 Some GO terms and its genes in alph dataset

learning system. Finally, MLSVM and MLKNN classifiers were
used to verify the performance of the learning system. The flow
chart of the gene function prediction is shown in Fig. 4.

Leave-one-out and leave-a-percent-out cross validation*
approaches were used for evaluating the performance of the
function prediction algorithm. We selected the latter method to
evaluate the MIHC+ method. To accurately measure the
performance, the receiver operating characteristic (ROC) curve
and area under the ROC curve (AUC) were introduced to
quantify the results. The classifications were often based on
continuous random variables. The probability of belonging in
a class varies with different threshold parameters. In other
words, the values of true and false positive rates (TPR and FPR,
respectively) vary with different threshold parameters. The ROC
curve parametrically plots TPR versus FPR with varying param-
eters. TPR and FPR were calculated by eqn (3) and (4).

Environment Alph

Genes YBR189W YGL189C YGR214W YJR123W YOL121C
YERO025W YGR094W YGR285C YNL178W
YGL123W YGR118W YHR064C YNL209W

GO terms GO0:0008152 GO0O:0009987 GO0O:0044237 GO0O:0044238 GO0:0071704

Table 5 Some GO terms and its genes in cdcl5 datasets

Environment cdel5

Genes YBR048W YGLO30W YKLOO6W YLR333C YOL120C
YDL061C YGL103W YKRO57W YLR367W YOL127W
YDL083C YGRO034W YKR094C YLR388W YOR063W
YDR064W YGR214W YLRO75W YMLO073C YOR167C
YDR418W YHR203C YLR167W YML091C YPL131W
YER102W YIL069C YLR185W YNL209W
YFRO031C-A YIL133C YLR264W YOL040C

GO terms G0:0000462 GO0O:0006396 G0:0016072 GO0:0042274 G0:0071704
G0:0000469 GO0:0006725 G0:0022613 G0:0043170 G0:0071840
GO0:0000478 GO:0006807 GO0:0030490 GO0:0044085 GO0:0090304
G0:0000479 GO0:0008152 G0:0034470 G0:0044237 G0:0090305
G0:0000480 GO0:0009987 GO0:0034641 G0:0044238 G0:0090501
GO0:0006139 G0:0010467 G0:0034660 G0:0044260 GO0:0090502
GO0O:0006364 G0:0016070 GO0:0042254 G0O:0046483 G0O:1901360

This journal is © The Royal Society of Chemistry 2018
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Table 6 Some GO terms and its genes in cdc28 datasets
Environment cdc28
Genes YBLO27W YDL191W YJR145C YLR367W YOR312C
YBLO087C YDRO25W YKL180W YNL162W YPL143W
YBR048W YDR064W YKRO57W YNL302C YPL198W
YBRO084C-A YDR447C YKR094C YOL120C YPR132W
YBR181C YHLOO1W YLR185W YOL121C
YDLO75W YJL189W YLR287C-A YOR234C
GO terms GO0:0009987 GO0:0044699 G0:0044763
Table 7 Some GO terms and its genes in cdc28 datasets
Environment Elution
Genes YBL047C YEL048C YJL154C YLR361C YNL192W
YBLO99W YER096W YJR017C YLR371W YOR273C
YBRO38W YFL038C YJRO32W YLR417W YOR332W
YBR127C YFR026C YJR121W YMLO34W YPR156C
YCRO69W YGR106C YKLO02W YMLO78W YPR165W
YDL0O8OW YGR138C YKLO8OW YMRO54W
YDR304C YHLO006C YKL203C YMRO089C
YDR519W YHR079C YLR106C YNLO26W
GO terms G0:0009987
TPR = TP/(TP + FN) (3) out at the cellular level, but not necessarily restricted to a single
cell”. For example, cell communication occurs among more than
FPR = FP/(FP + TN) (4)  one cell, but at the cellular level.

where TP, FP, TN and FN represent the number of true positive,
false positive, true negative and false negative predictions,
respectively. Therefore, TPR and FPR can reflect the sensitivity
and specificity of prediction. AUC was calculated to quantify the
content of the ROC curves. A reliable and valid AUC estimate
can be interpreted as the probability that the classifier will
assign a higher score to a randomly chosen positive sample
rather than to a randomly chosen negative sample.

Results

The four yeast time-course expression datasets are alpha, cdc15,
cdc28 and elution, which record mRNA level of 18, 24, 17 and 14
time points in whole cell cycle under different circumstances,
respectively. For each expression dataset, MIHC+ and other three
methods (GNC, GOLC and MIHC) in ref. 14 were used to construct
learning system. Then, all learning systems were tested by MLSVM
and MLKNN classifiers. In the classification task, the multi-label
learning task is decomposed into a series of binary classification
tasks. The experimental settings are the same as that in ref. 14. For
each expression dataset, the average results obtained from each
learning system by MLSVM classifier are shown in Fig. 5-8. The
data in these figures indicate that the MIHC+ learning system has
a similar performance with MIHC. The results from cdc28 dataset
are shown in Table 3. However, MIHC+ method can give more
biological information. From MIHC+ learning system, we found
that the GO term named ‘GO: 0009987’ appears in all of these
datasets and only 7 genes, which own ‘GO: 0009987’, appear in
cdc28 and cdc15 dataset. From the GO, we find that ‘GO: 0009987’
named “cellular process” is defined as “any process that is carried

28508 | RSC Adv., 2018, 8, 28503-28509

The results of the experiments in four datasets proved that
genes involved in the same biological processes may vary with
external environment. Moreover, the ref. 37 also points towards
this view because yeast cells automatically turn on or turn off
certain genes' expression in order to adapt to the external
environment when cells are in different growth environments.
We present some GO terms and its genes for four different
datasets in Table 4-7. As summarized in these tables, all of
genes in the unit of “Genes” have the corresponding GO terms
in the unit of “GO terms”.

Conclusion

In this study, we improve the MIHC method with gene ontology
hierarchy (MIHC+ method) to construct a learning system. Our
method was verified on four yeast gene expression datasets. The
MIHC+ method treats gene ontology hierarchy as the relation-
ship between gene annotations and then, Hierarchical Clus-
tering follows the GO hierarchy to cluster them. Compared with
other learning systems employed in this study, the MIHC+
method obtained more biological knowledge from the time-
series expression dataset. It also has a similar performance
with MIHC method. In future research, we will combine gene
annotation information with other biological information (e.g.,
single nucleotide polymorphism,*>** and miRNA***) to diag-
nose complex diseases more accurately.
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