Open Access Article. Published on 02 October 2018. Downloaded on 2/7/2026 11:43:33 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

ROYAL SOCIETY
OF CHEMISTRY

View Article Online

View Journal | View Issue,

i ") Check for updates ‘

Cite this: RSC Adv., 2018, 8, 33947

A highly sensitive and selective chemosensor for
Pb?* based on quinoline—coumarint

Xianjiao Meng,? Duanlin Cao,? Zhiyong Hu,?® Xinghua Han,?® Zhichun Li®

and Wenbing Ma (& *aP

In this study, a highly sensitive and selective fluorescent chemosensor, ethyl(E)-2-((2-((2-(7-(diethylamino)-
2-0x0-2H-chromene-3-carbonyl)hydrazono)methyl)quinolin-8-yl)oxy)acetate (1), was synthesized and
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characterized by *H NMR, *C NMR and ESI-MS. Sensor 1 showed an “on—off" fluorescence response to

Pb2* with a 1: 1 binding stoichiometry in CHsCN/HEPES buffer medium (9 : 1 v/v). The detection limit of
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rsc.li/rsc-advances to 8.

Introduction

The highly sensitive and selective fluorescent chemosensors for
“naked eye” detection of heavy transition metal ions have
received considerable attention in recent years.* Pb** as an
important transition element plays an essential role in various
fields.* The maximum contaminant level of Pb** ions in drinking
water is set to 10 ug L™",® and exposure to excessive lead can
cause mental retardation, muscle paralysis, and memory loss,
particularly in children. For this reason, much effort has been
made to develop effective methods for Pb>* detection, including
ICP-OES (inductively coupled plasma optical emission spec-
trometry),” ICP-MS(inductively coupled plasma mass spectrom-
etry),® AFS (atomic fluorescent spectrometry)® and AAS (atomic
absorption spectrometry),' and are capable of the multiple and
quantitative determination of Pb>* ion, however, the application
of these conventional instrument-based detection methods can
be hampered by the need for sophisticated instruments, and
complex sampling designs and data analysis; whereas fluores-
cent chemosensors™'* appear to be more effective at Pb*"
detection due to their high selectivity and sensitivity.

Although many fluorescence chemosensors have been
shown to be capable of identifying Pb>*/Ag",' Pb>*/Fe®"/Hg>" ¢
and Pb**/Hg**/Cd**,"” they may show poor binding selectivity
for Pb** over other heavy transition metal ions, which would
decrease the accuracy of Pb>" detection in practical applica-
tions.*® Thus, there is a practical need to develop highly sensi-
tive and selective fluorescent chemosensors for naked eye
detection of Pb**.19-23
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sensor 1 to Pb?* was determined to be 0.5 uM, and the stable pH range for Pb?* detection was from 4

8-Hydroxyquinoline-based derivatives have been widely used
as fluorescent chemosensors due to their strong coordination
ability with metal ions.**** However, these fluorescent chemo-
sensors often exhibit enhanced fluorescence signals in the
detection of metal ions due to their weaker fluorescence.
Attempts have been made to introduce coumarin-based deriv-
atives as strong fluorescent groups in order to expand the
application of 8-hydroxyquinoline.>”">*

In this study, we reported a novel, highly sensitive and
selective fluorescent chemosensor 1 with coumarin as the
fluorescence group and C=N bond and quinoline as the iden-
tification group for the detection of Pb>*. The introduction of
hydroxyl into the flexible chain resulted in an improvement of
the stability and the selectivity of metal ions. The results
showed that sensor 1 showed higher selectivity and sensitivity
toward Pb>" over many other metal ions in CH;CN/HEPES
buffer medium (9 : 1 v/v, pH = 7.4).

Experimental
Materials and methods

Other solvents and starting materials were purchased from
Aladdin and Energy Chemical Reagents Ltd., (Shanghai, China).
Ultrapure water was used in all experiments. The melting points
of intermediate and sensor 1 were measured on a WRS-C1
digital melting-point apparatus (Shanghai, China). The pH of
all solutions was adjusted on a PHS-3C pH meter (Shanghai,
China). The "H NMR (400 MHz) and "*C NMR (100 MHz) spectra
were recorded on a Bruker AVANCE III spectrometer (Switzer-
land) in CDCl; solution. The SEI-MS spectra of intermediate
and sensor 1 were recorded on a Bruker Solarix XR Fourier
transform-ion cyclotron resonance (FT-ICR) mass spectrometer.
The UV-spectra were recorded on a UV-2602 spectrophotometer
(Shanghai, China), and the fluorescence spectra were recorded
on a HITACHIF-2500 spectrophotometer (Japan).
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Synthesis

Preparation of 2 and 3. As described in a previous study,* 8-
hydroxyquinaldine (1.6 g, 10.05 mmol), ethyl bromoacetate (1.6 g,
9.58 mmol) and K,CO; (5 g, 36.18 mmol) were dissolved in
acetone (20 mL), and then the mixture was heated to reflux for
24 h. After that, the mixture was cooled to room temperature and
filtered, and the solvent was removed under reduced pressure.
The crude product obtained was purified by column chroma-
tography on silica gel (10% ethyl acetate in petroleum ether), and
1.96 g of white solid 2 was obtained with a 78.5% yield.

Solid 2 (1.5 g, 6 mmol) was dissolved in 1, 4-dioxane (20 mL),
and SeO, (0.75 g, 6.8 mmol) was added at 65 °C. The mixture
was stirred at 80 °C for 2 h and then cooled to room tempera-
ture. The solvent was removed under reduced pressure, and
1.31 g of white crystalline solid 3 was obtained by recrystalli-
zation from ethyl acetate/hexane (10 mL, 1 : 1, v/v) with a 87%
yield and a melting point of 137.3-137.6 °C.

Preparation of 4 and 5. As described in a previous study,** 4-
diethylaminosalicylaldehyde (1.93 g, 0.01 mol), diethylmalonate
(1.92 g, 0.01 mol), glacial acetic acid (0.1 mL) and piperidine (0.1
mL) were dissolved in absolute ethanol (40 mL) and refluxed for
4 h. The mixture was cooled to room temperature and filtered,
and the solvent was removed under reduced pressure. A yellow
crystalline solid 4 was obtained by recrystallization from
ethanol with a 69% yield and a melting point of 85.9 °C.

Solid 4 (2.02 g, 7 mmol) and hydrazine monohydrate (1.4 mL,
28 mmol) were dissolved in ethanol (20 mL) under argon. The
mixture was stirred at reflux temperature for 25 min, and then
cooled to yield a large amount of precipitate. The precipitate
was filtered, washed thoroughly with cold ethanol to obtain
yellow product 5 with a 67.2% yield and a melting point of
171.7-172.5 °C.

Preparation of 1. Under argon, solid 5 (121.14 mg, 0.44
mmol) and solid 3 (111.9 mg, 0.43 mmol) were dissolved in
ethanol (6 mL) and refluxed for 8 h. Then, the mixture was
cooled to room temperature, filtered, washed with cold ethanol,
and dried naturally. The crude product obtained was purified by
column chromatography on silica gel (2% methanol in
dichloromethane) to obtain orange solid 1 with a 98.6% yield
and a melting point of 209.5-209.8 °C. The NMR spectra of
sensor 1 were shown in Fig. S1 and S2.T HRMS (ESI): m/z caled
for CygH,0N,O06 [(M + H)']: 517.2082, found 517.2083 (Fig. S37).

General procedure for recording fluorescence spectra

All fluorescence spectra were recorded on a HITACHIF 2500
fluorescence spectrometer after the addition of metal ions and
anions in CH;CN/HEPES (9 : 1, v/v) buffer (pH = 7.4), and then
the excitation wavelength was determined as 440 nm. Metal
ions were prepared from chlorine salts of Fe**, AI>*, Cu**, Pb*",
Zn>*, Hg*", Ca®*, Ba>*, Mg”", Ag”, Cs*, Li*, K" and Na".

Results and discussion
Effect of pH

Fig. 1 showed the variation of fluorescence intensity of sensor 1
with pH in the absence and presence of Pb** ions in CH;CN/
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Fig. 1 Variation of fluorescence intensity of sensor 1 (10 uM) in
CHsCN/HEPES buffer medium (9 : 1 v/v, pH = 7.4) with and without
Pb®* ions (10 equiv.) with pH at room temperature.

HEPES buffer medium (9 : 1 v/v). The pH was adjusted with
1 N HCI or 1 N NaOH aqueous solution. At pH 3-8, free 1
showed a strong fluorescence, and 1 + Pb*>* showed a weak
fluorescence; while at pH > 8, free 1 showed a weak fluores-
cence, because the coumarin lactone ring was converted into
hydroxycarboxylate under alkaline conditions. Thus, the stable
pH range for Pb>* detection was from 4 to 8, at which free 1
showed stable and strong fluorescence, and fluorescence
quenching reached the minimum with the addition of Pb>".

UV-vis spectral response of sensor 1 to Pb**

The absorption behavior of probe 1 was investigated by UV-vis
spectroscopy in the presence of various metal ions, including
Fe**, A", Cu®, Pb**, zn**, Hg>", Ca>*, Ba®", Mg”", Ag", Cs", Li", K"
and Na', in CH;CN/HEPES buffer medium (9 : 1 v/v, pH = 7.4).
All absorption spectra showed no remarkable change except that
the addition of Pb>* resulted in a red shift of 440 nm to 465 nm
and a color change from bright yellow to orange (Fig. 2).

As shown in Fig. 3, the absorption intensity at 440 nm
decreased dramatically with the gradual addition of Pb>" up to
20 equiv. into 10 uM sensor 1 in CH;CN/HEPES buffer medium
(9 : 1 v/v, pH = 7.4); whereas that at 465 nm increased gradually
with the addition of Pb**, indicating the formation of 1-Pb**
complex. In addition, isosbestic points at 451 nm could be
clearly observed, thus confirming that probe 1 and 1-Pb**
complex existed in equilibrium.

Fluorescence responses of sensor 1 to Pb**

The sensing ability of sensor 1 was investigated by fluorescence
experiments in the presence of various metal ions (10 equiv.),
including Fe**, AI**, cu®**, Pb**, zn**, Hg*', Ca**, Ba®>*, Mg*",
Ag', Cs', Li", K" and Na', in CH;CN/HEPES buffer medium (9 : 1
v/v, pH = 7.4). The fluorescence spectra were observed at
485 nm (A, 440 nm). Sensor 1 showed a marked fluorescence
quenching toward Pb*>* compared with other metal ions,
resulting in a clear color change from bright yellow to orange. It

This journal is © The Royal Society of Chemistry 2018
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Fig. 2 (a) UV-vis spectra of 1 (10 pM) with the addition of different
metal ions (10 equiv.) in CHzCN/HEPES buffer medium (9 : 1 v/v, pH =
7.4). Inset: the color changed of probe 1 (10 uM) in the absence and
presence of Pb2* (20 equiv.).
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Fig. 3 UV-vis spectra of sensor 1 (10 uM) with the addition of various
concentrations [0, 1,2, 3,4, 5,6, 7, 8,9, 10, 15 and 20 equiv.] of Pb?* in
CH3CN/HEPES buffer medium (9 : 1 v/v, pH = 7.4).

also showed a high selectivity for Pb** and a remarkable fluo-
rescence “turn-off” response (Fig. 4).

Pb**-selective sensing experiments were performed with 10
uM of sensor 1 in the presence of various metal ions, including
Fe**, AI**, cu®*, Zn*", Hg?*", Ca®", Ba®>", Mg*", Ag", Cs', Li", K"
and Na' (10 equiv.), as shown in Fig. 5. Upon the addition of 10
equiv. of Pb>" ions, the solution still showed a distinct fluo-
rescence quenching. All these results suggested that sensor 1
could be used as a chemosensor for selective detection of Pb>*
over a wide range of metal ions.

In order to gain further insight into the sensing behavior of
sensor 1 to Pb>", fluorescence titration experiments were per-
formed. Fig. 6 showed that the fluorescence intensity decreased
gradually with the increasing concentration of Pb>". A dramatic
fluorescence quenching was observed, and the quenching

This journal is © The Royal Society of Chemistry 2018
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Fig.4 (a) Fluorescence spectra of sensor 1 (10 uM) with the addition of
different metal ions (10 equiv.) in CH3CN/HEPES buffer medium (9 : 1
v/v, pH = 7.4) with an excitation at 440 nm. Inset: the fluorescence
changed of probe 1 (10 uM) in the absence and presence of Pb>* (20
equiv.) under UV light at 365 nm.
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Fig. 5 Fluorescent intensity of sensor 1 (10 uM) with selected cations
(10 equiv.) in the absence (red bars) or presence (black bars) of Pb?* (10
equiv.).

efficiency reached a maximum of 99% [(I, — I)/I, x 100%] with
the addition of 10 equiv. of Pb>*. The Job plots with fluorescence
titrations showed a minimum at about 0.5 mol fractions, indi-
cating that sensor 1 formed a 1 : 1 complex with Pb>* (Scheme 1).

The binding constant K, was determined to be 2041 M~ " (R*
= 0.9973, Fig. 7). The detection limit was determined to be 0.5
uM according to the formula LOD = 3¢/m, where m was the
slope of the linear equation Y = aX + b between fluorescence
intensity and concentration (Fig. 8).

The possible mechanism of sensor 1with Pb>*

The fluorescence quenching efficiency reached a maximum of
99% [(Io — I)/I, x 100%)] with the addition of 10 equiv. of Pb*",
and no shift of the emission spectra with increasing Pb**
concentration was observed. This was in good agreement with

RSC Adv., 2018, 8, 33947-33951 | 33949
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Fig. 6 Fluorescence spectra of sensor 1 (1 pM) with the addition of
various concentrations [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0,
2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 and 10 equiv.] of Pb?* in CHsCN/
HEPES buffer medium (9:1 v/v, pH = 7.4) with an excitation at
440 nm. Inset: the Job plots with fluorescence titrations showed an
intersection point at about 0.5 mol fractions, indicating that sensor 1
formed a 1: 1 complex with Pb?*.
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Fig. 7 The Benesi—Hildebrand plot of sensor 1 with Pb?". Linear
equation: Y =5.09 x 107° x X + 1.04 x 107>, R? = 0.9973, K, = 2043
M
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Scheme 2 The possible mechanism of sensor 1 with Pb2*.

the PET mechanism. In addition, the Job's plots indicated that
sensors 1 chelated Pb>" with 1 : 1 stoichiometry, as illustrated in
Scheme 2, the addition of Pb*" ion caused obvious fluorescence
quenching and a color change from bright yellow to orange.

Conclusions

In this study, we have successfully prepared a fluorescence
chemosensor 1 with coumarin as the fluorescence group and
C=N bond and quinoline as the identification group. The pH
test showed that the optimal pH range was from 4 to 8, indi-
cating that sensor 1 could be used under acid and neutral
conditions and in vivo cell tests. The absorption spectra showed
no remarkable changes upon the addition of 10 equiv. of
different metal ions, except that the addition of Pb** resulted in
a red shift of 440 nm to 465 nm and a color change from bright
yellow to orange. The fluorescence spectra showed an obvious
quenching response to Pb*>" with a quenching efficiency of 99%.
The Job plots showed that sensor 1 formed a 1:1 binding
stoichiometry to Pb>", and the detection limit was 1.9 x 10~ °M,
indicating high sensitivity of sensor 1 for Pb*". In addition,
sensor 1 can be used for naked eye detection of Pb>", which can
greatly broaden its applications.
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