
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
A

ug
us

t 2
01

8.
 D

ow
nl

oa
de

d 
on

 5
/8

/2
02

4 
6:

01
:5

1 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
EEG characterist
aSchool of Mechanic Engineering, Northeas

China. E-mail: wangfuwangfeixue@

wangfuwangbaiyang@126.com; Tel: +86-43
bCollege of Electrical Engineering, Yanshan
cTechnology and Engineering Center for

Sciences, Beijing 100094, China. E-mail: gb

Cite this: RSC Adv., 2018, 8, 29745

Received 6th June 2018
Accepted 6th August 2018

DOI: 10.1039/c8ra04846k

rsc.li/rsc-advances

This journal is © The Royal Society of C
ic analysis of coach bus drivers
based on brain connectivity as revealed via a graph
theoretical network

Fuwang Wang, *a Xiaolei Zhang,a Rongrong Fub and Guangbin Sun c

This study describes the detection of driving fatigue using the characteristics of brain networks in a real

driving environment. First, the q, b and 36–44 Hz rhythm from the EEG signals of drivers were extracted

using wavelet packet decomposition (WPD). The correlation between EEG channels was calculated using

a Pearson correlation coefficient and subsequently, the brain networks were built. Furthermore, the

clustering coefficient (C) and global efficiency (G) of the complex brain networks were calculated to

analyze the functional differences in the brains of drivers over time. Combined with the relative power

spectrum ratio (b/q) of EEG signals and the mean value from questionnaires, the correlation of data

characteristics between brain networks and subjective and objective data was analyzed. The results show

that changes in the fatigue state of drivers can be effectively detected by calculating the data

characteristics of brain networks in a real driving environment.
1 Introduction

Research shows that driver fatigue has become one of the major
causes of fatal road accidents.1,2 Therefore, it is particularly
important to accurately and rapidly detect the mental state of
drivers when he/she is driving a vehicle for a long time.
Researchers mainly study this problem from subjective and
objective aspects. The subjective aspect mainly determines the
fatigue state of a driver mainly according to the drivers' and
researchers' subjective judgment.3,4 The objective aspect is
mainly based on the characteristics of human physiological
signals to analyze driver fatigue. These physiological signals of
the human body include those derived from electroencephalo-
gram (EEG),5–9 electromyogram (EMG),10 electrocardiogram
(ECG),11,12 electrocardiogram (EOG)13 and facial movement.14

However, subjective detection results are mainly affected by the
subjective judgments of drivers and researchers; thus, it was
commonly used only as an auxiliary method. Currently,
researchers mainly focus on the objective aspects of fatigue.
EEG has been considered to be the most reliable indicator of
fatigue state in humans.15,16

Several methods are used to analyze the characteristics of
EEG signals. These quantications involve the analysis of
features such as energy17,18 and entropy19 in different bands of
t Electric Power University, Jilin 132012,

163.com; 20152622@neepu.edu.cn;

2-64807382

University, Qinhuangdao 066004, China

Space Utilization, Chinese Academy of

sun@csu.ac.cn

hemistry 2018
EEG signal. The most commonly used method to quantify EEG
signal is based on power spectral analysis. This type of analysis
generally involves several EEG frequency components, which
are d (0–4 Hz), q (4–8 Hz), a (8–13 Hz), and b (13–35 Hz). The
frequency band 36–44 Hz of EEG signals mainly reects human
vision and cognitive activities.20 In recent years, many studies
have used complex brain networks to analyze brain functional
characteristics. Haitao et al. used the features of functional
brain networks to analyze cranial nerve diseases.21,22 Mental
fatigue characteristics of the human brain were studied by
using complex brain networks.23–26 In addition, research based
on brain networks in the eld of human brain cognition has
also been carried out.27–29

Researches have shown that the methods using the main
brain region enable the study the characteristics of brain
function have been gradually adopted in research. Yu Haitao
et al. used 16-channel signals of EEG to analyze the character-
istics of Alzheimer's disease.21 Schindler et al. used 18-channel
signals of EEG to evaluate the therapeutic effect of epilepsy.30

Kar et al. used 16-channel signals of EEG to study driver fatigue
during simulated driving with long driving times.31 Ahmadlou
et al. used 16-channel signals of EEG to analyze cognition as
well as the pathology of brain disorders.32 In these studies,
relatively few EEG electrodes, which only involved major brain
regions, were used; however, the results of these studies were
satisfactory. In our study, we attempted to use Emotiv equip-
ment with 14 conductive poles to analyze driver fatigue char-
acteristics in a real driving environment.

It is worth mentioning that research studies on driver fatigue
generally use simulated driving environments, which are
different from real driving environments (such as driving on
RSC Adv., 2018, 8, 29745–29755 | 29745
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highways). This research usually utilizes features of several
typical channels of EEG signals to analyze driver fatigue, which
may ignore some important information contained in other
channels. In this study, EEG data from 14 channels were
collected from coach bus drivers in a real driving environment.
Furthermore, we used the clustering coefficient and global
efficiency of complex brain networks to analyze the functional
differences in the brains of the drivers over time, followed by an
analysis of the characteristics of driver fatigue.
2 Experiments and data
preprocessing
2.1 Subjects

A total of 10 healthy subjects [8 males and 2 females; aged 32 �
1.6 (S.D)] were chosen for the experiment. All subjects were re-
ported to have no sleep-related disorders. They were free of
medication during the experiment. They were also asked to
refrain from consuming any type of stimulants such as alcohol,
tea or coffee during the experiment. They have no history of
neurological diseases.
2.2 Procedure and EEG recording

This experiment utilized a real driving environment. Drivers
drove along the highway from Shenyang to Dandong, China.
Fig. 1 shows the course where A is the starting place (Shenyang)
and B is the destination (Dandong). All participants continu-
ously drove a coach bus for two hours (13:00–15:00) and nine
sets of data were collected for each participant. Data acquisition
was divided into nine stages: stage 1, 13:00; stage 2, 13:15; stage
3, 13:30; stage 4, 13:45; stage 5, 14:00; stage 6, 14:15; stage 7,
14:30; stage 8, 14:45; and stage 9, 15:00. Each data acquisition
took three minutes. We collected EEG data using EEG acquisi-
tion equipment called Emotiv, whose sampling frequency was
128 Hz in this experiment. Electrodes (Ag/AgCl) were attached to
the scalp according to the international 10–20 system (14
channels: AF3, AF4, F3, F4, FC5, FC6, F7, F8, T7, T8, P7, P8, O1
and O2). The EEG data recording for each stage lasted 3
minutes. Nine sets of data were collected for every participant.
Recordings were performed with mastoids (right and le) used
as the common reference. Fig. 1 shows the experimental set-up.

Emotiv is a portable EEG acquisition device with a sampling
rate of 128 Hz; it provides wireless Bluetooth communication
via a USB dongle. In addition, the sensors of the Emotiv EPOC
are 16 moist felt-tipped electrodes (including reference and
ground) that are attached to the scalp with a simple spring-like
design and are very convenient for use in actual driving condi-
tions. In addition, its electrodes press against the scalp
according to the international 10–20 system (14 channels: AF3,
AF4, F3, F4, FC5, FC6, F7, F8, T7, T8, P7, P8, O1 and O2), which
can detect the brain activity features reected in the frontal,
central and posterior regions of the human brain.

All subjects were informed about the research background
and the study protocol. Additionally, they were free to choose to
participate in the experiment or give up. Moreover, all partici-
pants gave their written informed consent to be included in the
29746 | RSC Adv., 2018, 8, 29745–29755
study. The Ethics Committee at the Northeast Electric Power
University Hospital endorsed the study protocol according to
The Code of Ethics of the World Medical Association (Declara-
tion of Helsinki).
3 Methods

The processing method involves decomposition into different
bands by wavelet packet decomposition (WPD), network
formation using correlation coefficient, computation of
network parameters and other characteristics of EEG using the
classical methods. The detailed methodology is explained in the
following sections.
3.1 Data preprocessing

EEG recordings from drivers in a real driving environment are
considerably inuenced by artifacts and noise than recordings
performed in the laboratory; thus, elimination of noise was
initially performed. In this study, we used WPD to eliminate
noise.

WPD can provide a more sophisticated analysis of the
signals. It can also choose the appropriate band to match with
the signal spectrum according to the characteristics of signal
analysis, which can reect the essential characteristics of the
signals. These advantages are not possessed by the wavelet
decomposition (WD). Therefore, we used WPD to decompose
the EEG signals in our study. We used 4 layer decomposition to
extract q (4–8 Hz), b (12–32 Hz) and 36–44 Hz rhythms. The
formula of WPD is shown as follows:

f(t) represents the source signals. We obtained 2i sub-bands
in the i points class aer wavelet packet decomposition. The
source signal f(t) can be expressed as:

f ðtÞ ¼
X2i�1

j¼0

fi;j
�
tj
� ¼ fi;0ðt0Þ þ fi;1ðt1Þ þ.þ fi;2i�1ðt2i�1Þ (1)

where j¼ 0,1,2,.,2i� 1, fi,j(tj) is the reconstruction of signals in
the i layer node (i,j) when we use wavelet packet decomposition.
According to the Parseval theorem and formula (1), we can
calculate and obtain the energy spectrum of the signal f(t) aer
wavelet packet decomposition as

Ei;j

�
tj
� ¼

ð
G

�� fi;j�tj���2dt ¼ Xm
k¼1

|xj;k |
2 (2)

where Ei,j(tj) is band energy where f(t) was decomposed to node
(i,j) by using WPD. xj,k (j ¼ 0,1,2,.,2i � 1; k ¼ 1,2,.,m) is the
discrete points amplitude of the reconstructed signal, fi,j(tj). m
represents the signal sampling points. In this study, we ob-
tained a low frequency sub-band of the EEG signals by decom-
posing the EEG signals to the fourth layer aer resampling.

The q wave (4–8 Hz) was obtained by reconstructing the sub-
band s(4,1). The b wave (12–32 Hz) was obtained by recon-
structing the sub-bands s(4,3), s(4,4), s(4,5), s(4,6) and s(4,7).
The 36–44 Hz rhythm was obtained by reconstructing the sub-
bands s(4,9) and s(4,10) using WPD.
This journal is © The Royal Society of Chemistry 2018
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Fig. 1 Real driving in highway. EEG signals were collected by portable EEG acquisition equipment Emotiv. Drivers drove along the highway from
Shenyang to Dandong, China. And the route was obtained through Google maps.
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3.2 Correlation coefficient and formation of the network

In this study, we used the Pearson correlation coefficient to
analyze the relationship between any two channels of the EEG
signals. The Pearson correlation coefficient is dened as
follows:

rXY ¼ E
�ðX � EðXÞÞðY � EðY ÞÞ�

sXsY

¼ EðXYÞ � EðXÞEðYÞ
sXsY

(3)

where E($) is the expected value operator and sX and sY are the
standard values of deviation. In the present situation, we have
to analyze a series comprising n samples of data. Accordingly,
the correlation coefficient was computed by the following
equation:

rXY ¼ 1

n� 1

Xn

i¼1

�
xi � x

sX

��
yi � y

sY

�
¼

Pn
i¼1

xiyi � nxy

ðn� 1ÞsXsY

(4)

where �x and �y are series means and sX and sY are the standard
values of deviation.

The correlation coefficient between electrodes was stored in
a 14 � 14 symmetric matrix. This matrix was converted into an
unweighted graph with an edge between two nodes when the
corresponding correlation coefficient was greater than the
threshold value. The matrix containing this connectivity infor-
mation is known as the ‘adjacency’ matrix. The threshold
selection depends on the application area.33
3.3 The complex brain networks

Nodes and edges are the two important elements of a gure.
The method based on graph theory takes every region of the
brain as a “node” and the connection between brain regions as
an “edge”, so as to build the brain networks. The area of graph
theory is an established mathematical eld. Moreover, this type
of brain connectivity analysis has been proven as a very effective
and informative way to explore brain function and mental
This journal is © The Royal Society of Chemistry 2018
state.34–36 In this study, we used the clustering coefficient and
global efficiency of the complex brain networks to analyze the
brain functional differences of the drivers.

3.3.1 Clustering coefficient. The connectivity degree of
a node, which can be represented as the number of edges
connected to the node, can indicate the importance of the node
in a network. C is a parameter of the complex network. For
a node i, C is expressed as the ratio of the number of existing
edges and the number of maximum possible edges between
neighbors of i17,37 and is represented as follows:

Ci ¼ Ei

DiðDi � 1Þ=2 (5)

where Ei is the number of existing edges between
neighbors of node i and Di is the degree of connectivity of that
node. Di(Di � 1)/2 is the number of maximum possible edges
between neighbors of node i.17

3.3.2 Global efficiency. G is a parameter of complex
network connection; the larger the G value, the faster would be
the information transfer. Li,j is the path length between two
nodes i and j, and denotes the minimum number of edges
needed to connect. Li,j is mathematically dened as eqn (6):17,37

L ¼ 1

NeðNe � 1Þ
XNe

i;j¼1;isj

Dij (6)

where Dij is the minimum path length L (the smallest number of
intervening edges) between nodes i and j. Ne is the number of
nodes within the graph. In addition, the nodal efficiency is the
inverse ratio of the path length of the connections between
a particular node i and the rest of the nodes in the network, and
is expressed as follows:

EnodalðiÞ ¼ 1

N � 1

X
j˛G

1

Li;j

(7)

where Li,j is the minimum path length (the smallest number of
intervening edges) between nodes i and j andN is the number of
RSC Adv., 2018, 8, 29745–29755 | 29747
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Fig. 2 Relative position of the electrode, (a) electrode division of Emotiv, (b) electrode coordinates in a two-dimensional coordinate system.
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nodes within the graph, G. The average value of the nodal effi-
ciencies of each node can be used to estimate the global effi-
ciency. Thus, the global efficiency of the nodes can be dened as
follows:

G ¼ Eglobal ¼ 1

NðN � 1Þ
X
isj˛G

1

Li;j

(8)

From eqn (8), we can conclude that networks with a highly
integrated organization that are characterized by a short
minimum path length between any pair of regional nodes will
have high global efficiency.38,39 Combining with eqn (6), we can
conclude that the smaller the value of Li,j, the faster is the
information transmission speed of a node with others.

In this study, a two-dimensional coordinate system for
electrodes was established in order to conveniently calculate the
global efficiency of brain network nodes. The relative positions
of the electrodes of the EEG acquisition device (Emotiv) are
shown in Fig. 2a.

Fig. 2b shows the coordinate values of the electrodes in
a two-dimensional coordinate system. In this study, the rela-
tionship between pairs of 14 channel (14 channels: F7, F3, F4,
Fig. 3 Steps of brain network construction, (a) EEG data, (b) adjacent m

29748 | RSC Adv., 2018, 8, 29745–29755
F8, FT7, FT8, C3, C4, TP7, TP8, P3, P4, O1 and O2) signals were
calculated using eqn (4). In our study, the steps of brain network
construction were as follows.

First, the EEG data, as shown in Fig. 3a, was collected using
the acquisition device (Emotiv). The sub-band (36–44 Hz) was
extracted from the EEG signals. Then, the adjacent matrix,
displayed in Fig. 3b, was computed using eqn (4). It was
determined that there is an edge connection between node i
and node j if the corresponding correlation coefficient is
greater than the xed threshold value T, otherwise no edge
exists between i and j. Finally, the networks were formed using
the adjacent matrix and a threshold value.
3.4 The relative power spectrum

The four EEG frequency components, namely, d (0–4 Hz), q (4–8
Hz), a (8–13 Hz), and b (13–35 Hz), were widely applied in the
analysis of driver fatigue. Their power spectrum ratios have
different combinations, such as q/b, q/a + b, q + a/b, q + a/a +
b and b/a, all of which show different characteristics of driver
fatigue over time.17,40,41 In this study, we used the ratio q/b of the
relative power spectrum of the channels O1, O2, FC5 and FC6 to
analyze the fatigue of drivers over time. Combined with the
atrix, (c) brain network.

This journal is © The Royal Society of Chemistry 2018
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Fig. 4 Correlation coefficient (mean of all subjects) between all electrodes at all stages.
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relevant data of brain networks, the ratio q/b was changed to b/q
for ease of comparison.

3.5 Subjective questionnaire

In this study, we used a questionnaire to obtain the nal
fatigue assessments of the drivers. All participants were
required to complete a battery of psychological question-
naires: lack of energy, physical exertion, physical discomfort,
lack of motivation and sleepiness.42 These questionnaires
This journal is © The Royal Society of Chemistry 2018
were used to assess their personality, mood-state, anxiety and
lifestyle. We set scores of 0–10 for the ve indicators in the
psychological questionnaires, where 0 indicates no feeling
and 10 indicates feeling serious. All these questionnaires
have been shown to be reliable and have acceptable validity.
Participants completed the subjective questionnaires before
they completed the monotonous driving task and they also
completed their self-report outcome questionnaires.
RSC Adv., 2018, 8, 29745–29755 | 29749
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4 Results
4.1 Network analysis

The analysis was performed on 3 min-EEG records (during
driving) of 20 subjects at 9 stages (stages 1–9). The temporal
values of the correlation coefficient between a pair of electrodes
were evaluated for the 36–44 Hz band. The time-averaged
correlation coefficient values were used to construct the corre-
lation coefficient matrix. The mean correlation coefficient
matrices of all subjects at all stages, which are graphically
represented as color blocks, are shown in Fig. 4.

Fig. 4 indicates that the color block corresponding to the
driving time of the drivers gradually deepens, which indicates
that the EEG correlation values between the 14 channels are
gradually getting larger over time (stages 1–9).

4.1.1 Choice threshold T. For each subject, two special
driving phases were selected: stage 1 and the highest score stage
of the subjective questionnaire, that is, stage X. To compare the
C of brain networks at the two stages, the brain networks were
formed at all the thresholds, 0.05 < T < 0.75, with increments of
0.05 and the full calculation for each value of T was repeated. In
general, the choice of threshold should depend on the research
question and falls in the regime of educated guesses.43 Table 1
shows the comparation of the C value of brain networks at the
two stages for each subject.

For each subject, we selected the ve thresholds with the
largest difference between the C values of the brain network
parameters in these two stages, which are shown in bold font
form in Table 1. The mean value of the thresholds
Table 1 The C of the brain networka

Threshold values

0.05 0.10 0.15 0.20 0.25 0.30

Subject 1 Stage 1 0.95 0.90 0.88 0.82 0.73 0.59
Stage X 0.97 0.94 0.91 0.89 0.85 0.78

Subject 2 Stage 1 0.90 0.88 0.87 0.80 0.62 0.55
Stage X 0.98 0.93 0.92 0.88 0.88 0.76

Subject 3 Stage 1 0.94 0.85 0.79 0.75 0.67 0.56
Stage X 0.98 0.96 0.92 0.82 0.81 0.77

Subject 4 Stage 1 0.86 0.85 0.83 0.77 0.66 0.55
Stage X 0.95 0.94 0.90 0.86 0.78 0.76

Subject 5 Stage 1 0.90 0.89 0.87 0.75 0.69 0.57
Stage X 0.98 0.97 0.90 0.83 0.82 0.77

Subject 6 Stage 1 0.88 0.86 0.86 0.77 0.64 0.58
Stage X 0.94 0.90 0.90 0.85 0.81 0.77

Subject 7 Stage 1 0.95 0.93 0.89 0.82 0.77 0.65
Stage X 0.96 0.94 0.90 0.85 0.81 0.75

Subject 8 Stage 1 0.92 0.91 0.89 0.85 0.70 0.63
Stage X 0.97 0.95 0.95 0.89 0.80 0.75

Subject 9 Stage 1 0.96 0.90 0.88 0.73 0.65 0.57
Stage X 0.97 0.96 0.95 0.88 0.78 0.73

Subject 10 Stage 1 0.94 0.90 0.87 0.83 0.75 0.58
Stage X 0.96 0.93 0.90 0.87 0.82 0.79

a Stage 1: driver's initial driving experiment stage.; stage X: the driving s
questionnaire.

29750 | RSC Adv., 2018, 8, 29745–29755
corresponding to the bold font data was calculated. The average
threshold value is 0.41. According to the same abovementioned
method, the threshold value corresponding to G was calculated.
The average threshold value was found to be 0.29. We calculate
the average value of the thresholds corresponding to G and C.
Finally, the average threshold value was 0.35. In our study, the
mean value of the threshold (T ¼ 0.35) was chosen as the xed
threshold. With the xed threshold, the network parameters C
and G for all subjects at different stages were computed.

4.1.2 C and G. We calculated the correlation coefficient r
for any two nodes of the fourteen brain electrode nodes using
eqn (4). We determined whether there was a connection edge
between two nodes using the mean correlation coefficient value
of all the stages as the threshold (threshold¼ 0.35). Fig. 5 shows
the brain network for the subjects at 9 stages (stages 1–9).

Fig. 5 shows that the density of the brain network connec-
tivity is sparse in the initial driving stage. The degree of
connection of the brain networks gradually increases with time.
The brain network parameters C and G can be calculated using
eqn (5) and (7), respectively. The change tendency of the mean
value of the two parameters is shown in Fig. 6.

From Fig. 6, we can clearly see that these two brain network
parameters (C and G) increase with driving time. Previous
studies on brain networks showed that upward changes of the
two parameters (C and G) of the brain networks indicated
a lack of alertness.44,45 Therefore, the increase in values of the
two parameters (C and G) over time can demonstrate that there
is an increase in driver fatigue at successive stages in our
experiment.
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0.54 0.47 0.42 0.41 0.35 0.30 0.25 0.22 0.13
0.73 0.69 0.65 0.62 0.55 0.41 0.30 0.27 0.22
0.54 0.48 0.45 0.43 0.36 0.35 0.28 0.22 0.19
0.65 0.61 0.55 0.52 0.45 0.39 0.33 0.29 0.22
0.56 0.43 0.40 0.40 0.35 0.30 0.24 0.23 0.17
0.71 0.63 0.61 0.53 0.47 0.39 0.33 0.28 0.23
0.57 0.53 0.49 0.43 0.39 0.23 0.20 0.17 0.13
0.71 0.66 0.64 0.59 0.48 0.47 0.35 0.29 0.21
0.51 0.45 0.43 0.40 0.38 0.35 0.28 0.24 0.19
0.71 0.65 0.63 0.59 0.57 0.49 0.40 0.34 0.27
0.56 0.47 0.46 0.42 0.37 0.31 0.27 0.22 0.16
0.73 0.70 0.68 0.55 0.47 0.38 0.34 0.31 0.24

tages corresponding to the ve highest scores of the driver's subjective
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Fig. 5 The networks of subjects at all stages (1–9).
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4.2 The relative power spectrum ratio

Research shows that it is a very common method to analyze
driver fatigue using the relative power spectrum ratio method of
EEG signals. In our experiment, the variation tendency of the
relative power spectrum ratio (b/q) over time is shown in Fig. 7.

Fig. 7 shows that the ratio (b/q) of the relative power spec-
trum presents a downward tendency over time. This indicates
that brain activity is reduced with time. The degree of fatigue
of the subjects deepens gradually. In addition, the brain
topography shown in Fig. 7 can indicate the nerve activity of
the drivers. For brain topography, low activity is indicated by
This journal is © The Royal Society of Chemistry 2018
the blue-shaded areas, while high activity is indicated by the
red-shaded areas. Hence, we can draw the conclusion that the
degree of brain nerve activity gradually decreased in the brain
regions (C3, C4, P3, and P4) in driving stages 1 to 9.
4.3 Subjective questionnaire

Research has shown that the subjective questionnaire is
a common way to detect human fatigue.46,47 In this paper, Fig. 8
shows the variation tendency of the average score of question-
naires for 20 subjects at the 9 stages.
RSC Adv., 2018, 8, 29745–29755 | 29751
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Fig. 6 Variation tendency of the cluster coefficient (C) and the global efficiency (G) at 9 driving stages, (a) cluster coefficient of the brain
networks, (b) global efficiency of the brain networks.

Fig. 7 The ratio (b/q) of the relative power spectrum.

Fig. 8 Scores (mean � s.d.) of the subjective questionnaire for the 9
stages of driving.

Table 2 Correlation coefficient

C G Score b/q

C 1.0000 0.9480 0.9723 �0.9498
G 0.9480 1.0000 0.8977 �0.9287
Score 0.9723 0.8977 1.0000 �0.8921
b/q �0.9498 �0.9287 �0.8921 1.0000
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As clearly shown in Fig. 8, the average scores of the ques-
tionnaires for the subjects present an increasing trend, which
indicates that the degree of subjective fatigue degrees of subjects
increases gradually with the progress of the experiment.
29752 | RSC Adv., 2018, 8, 29745–29755
4.4 Correlation coefficient

The correlation coefficient between C, G, score and b/q can be
calculated using the eqn (4). The results are shown in Table 2.

Table 2 shows that the value of the correlation coefficients
between variables C, G, score and b/q is greater than 0.85, which
indicates that these variables have a high correlation. Thus, it is
concluded that the analysis based on the characteristics of
complex brain networks is as effective at detecting driver fatigue
as the relative power spectrum and the subjective questionnaire
methods.

5 Discussion

Research shows that driver fatigue can lead to traffic acci-
dents.2,5,6,12–14 Considerable research has been carried out on
driver fatigue.5–14 The changes in EEG characteristics, which are
sensitive to neural activity,48,49 are recognized as the most reli-
able indicators of driver fatigue.50,51 In this study, we used the
characteristics of complex brain networks to evaluate driver
fatigue.

5.1 Previous studies

Research shows that great progress has been made in evalu-
ating driver fatigue by using physiological signals such as EEG
and EOG. In addition, the subjective questionnaire is recog-
nized as an effective method for analyzing driver fatigue.46,47

However, EEG acquisition devices are relatively expensive and
inconvenient to carry, which could limit the future populariza-
tion and applications in real driving conditions. Additionally,
This journal is © The Royal Society of Chemistry 2018
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the subjective questionnaire method may be inconvenient for
real-time detection of driver fatigue in actual driving.

In previous studies, structural, functional and effective
connectivity were the three most commonly used types of
connectivity in the eld of nerve connection research. Guo
et al. investigated the effective connectivity of neuronal
circuits activated by manual acupuncture.52 In the study of
nerve activity, the synchronization algorithms for network
reconstruction were effectively used.53,54 In our study, the
activities of the neuronal clusters suppressed when a driver
was in a state of mental fatigue. At this time, their activities
were relatively consistent. Therefore, the signal correlation
between different brain regions is relatively strong, which can
be easily expressed by the simple algorithm: the Pearson
correlation coefficient. In addition, we found that excess EEG
data selected in each channel can result in false connections to
the brain network. On the contrary, the change in driver
fatigue characteristics is evident if we select 16–32 data points
in the data set per second for each channel.

5.2 Novel ndings of this study

In this study, the brain network was used to investigate driver
fatigue. The results show that the brain network connections of
drivers become increasingly dense with the increase in driver
fatigue at successive stages. This indicates that the neuron
clusters in major regions of the brain, when a driver is in a state
of non-mental fatigue, are in a relatively independent active
state. At this time, their activities are not consistent. Therefore,
the signal correlation between different brain regions is poor,
which leads to a sparse brain network connection. However, the
activities of the neuronal clusters are suppressed when a driver
is in a state of mental fatigue. At this time, their activities show
relative consistency. Therefore, the signal correlation between
different brain regions is relatively strong, which leads to
a relatively dense network connection. Furthermore, this
method could identify driver fatigue as effectively as the
conventional methods (the relative power spectrum ratio and
subjective questionnaire). Based on the discovery of the above
features, we think that this method can be used to detect diver
fatigue. Additionally, the acquisition equipment (Emotiv),
which has a lower price than the traditional EEG equipment, is
convenient and practical for use in actual driving. Moreover, the
EEG data can be collected and analyzed online, which is of great
signicance for future practical application.

In addition, in these studies, the relatively few EEG elec-
trodes, which only involved major brain regions, were used.
However, the results of these studies were satisfactory. In our
study, we used the Emotiv equipment with 14 conductive poles
to analyze the driving fatigue characteristics in a real driving
environment. The result showed that the characteristics of
brain networks in our study show some regular changes with
the increase in driving time.

5.3 Limitations and future research lines

In this study, we used scalp-level connectivity to study driver
fatigue characteristics. However, this method has some
This journal is © The Royal Society of Chemistry 2018
limitations. For example, dandruff and other scalp attachments
can affect the connection of the acquisition electrodes. In order
to reduce the inuence of such factors on the experimental
results, we asked each subject to wash their hair one hour
before the experiment. In addition, the signal from the scalp-
level is relatively weak and is easily interfered by electromag-
netic signals. Thus, we avoided a strong electromagnetic envi-
ronment in the experiment. In future research, portable
equipment that can accurately detect driver fatigue and alleviate
fatigue with time will be developed and popularized.
6 Conclusion

The EEG signals of coach bus drivers were collected using
portable acquisition equipment (Emotiv) in a real driving
environment. We used the clustering coefficient (C) and the
global efficiency (G) of the complex brain networks to analyze
the brain functional differences of drivers over time combined
with the relative power spectrum ratio of EEG signals and the
subjective questionnaire of the drivers. Then, we analyzed the
characteristics of driver fatigue. The results show that changes
in driver fatigue can be effectively detected by calculating the
data characteristics of brain networks in a real driving
environment.
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S. Romero, A. Catena, L. J. Fuentes and L. L. di Stasi,
Monitoring driver fatigue using a single-channel
electroencephalographic device: A validation study by gaze-
based, driving performance, and subjective data, Accid.
Anal. Prev., 2017, 109, 62–69.

6 A. Vakulin, A. D'Rozario, J. W. Kim, B. Watson, N. Cross,
D. Wang, A. Coeytaux, D. Bartlett, K. Wong and
R. Grunstein, Quantitative sleep EEG and
polysomnographic predictors of driving simulator
performance in obstructive sleep apnea, Clin.
Neurophysiol., 2016, 127, 1428–1435.

7 R. Chai, S. H. Ling, P. P. San, G. R. Naik, T. N. Nguyen,
Y. Tran, A. Craig and H. T. Nguyen, Improving EEG-Based
Driver Fatigue Classication Using Sparse-Deep Belief
Networks, Front. Neurosci., 2017, 11, 103.

8 R. Chai, G. R. Naik, T. N. Nguyen, S. H. Ling, Y. Tran, A. Craig
and H. T. Nguyen, Driver Fatigue Classication with
Independent Component by Entropy Rate Bound
Minimization Analysis in an EEG-Based System, IEEE J.
Biomed. Health Inform., 2017, 21, 715–724.

9 C. S. Wei, Y. T. Wang, C. T. Lin and T. P. Jung, Toward
Drowsiness Detection Using Non-Hair-Bearing EEG-Based
Brain-Computer Interfaces, IEEE Trans. Neural Syst.
Rehabil. Eng., 2018, 26, 400–406.

10 R. N. Khushaba, S. Kodagoda, D. Liu and G. Dissanayake,
Muscle computer interfaces for driver distraction
reduction, Comput. Methods Programs Biomed., 2013, 110,
137–149.

11 C. Zhao, M. Zhao, J. Liu and C. Zheng,
Electroencephalogram and electrocardiograph assessment
of mental fatigue in a driving simulator, Accid. Anal. Prev.,
2012, 45, 83–90.

12 Z. Piotrowski and M. Szypulska, Classication of falling
asleep states using HRV analysis, Biocybern. Biomed. Eng.,
2017, 37, 290–301.

13 S. Benedetto, M. Pedrotti, L. Minin, T. Baccino, A. Re and
R. Montanari, Driver workload and eye blink duration,
Transp. Res. Part F Traffic Psychol. Behav., 2011, 14, 199–208.

14 X. Fan, Y. Sun, B. Yin, et al., Gabor-based dynamic
representation for human fatigue monitoring in facial
image sequences, Pattern Recognit. Lett., 2010, 31(3), 234–
243.

15 S. K. L. Lal and A. Craig, A critical review of the
psychophysiology of driver fatigue, Biol. Psychol., 2001,
55(3), 173–194.

16 P. Artaud, S. Planque and C. Lavergne, et al., An on-board
system for detecting lapses of alertness in car driving,
Proceedings Of The Fourteenth International Technical
Conference On Enhanced Safety Of Vehicles, 1995, (94-S2-O-
08).

17 B. T. Jap, S. Lal, P. Fischer, et al., Using EEG spectral
components to assess algorithms for detecting fatigue,
Expert Syst. Appl., 2009, 36(2), 2352–2359.

18 V. Siemionow, Y. Fang, L. Calabrese, et al., Altered central
nervous system signal during motor performance in
29754 | RSC Adv., 2018, 8, 29745–29755
chronic fatigue syndrome, Clin. Neurophysiol., 2004,
115(10), 2372–2381.

19 C. Papadelis, C. Kourtidou-Papadeli and P. D. Bamidis, et al.,
Indicators of sleepiness in an ambulatory EEG study of night
driving, Engineering in Medicine and Biology Society, 2006,
EMBS'06. 28th Annual International Conference of the IEEE,
IEEE, 2006, pp. 6201–6204.

20 A. W. Keizer, R. S. Verment and B. Hommel, Enhancing
cognitive control through neurofeedback: A role of gamma-
band activity in managing episodic retrieval, NeuroImage,
2010, 49(4), 3404–3413.

21 Y. Haitao, et al., Functional brain connectivity in Alzheimer's
disease: An EEG study based on permutation disalignment
index, Phys. A, 2018, 506, 1093–1103.

22 J. Wang, et al., Functional brain networks in Alzheimer's
disease: EEG analysis based on limited penetrable visibility
graph and phase space method, Phys. A, 2016, 460, 174–187.

23 G. Zhong-Ke, et al., Wavelet multiresolution complex
network for decoding brain fatigued behavior from P300
signals, Phys. A, 2018, 506, 221–228.

24 S. Kar, A. Routray and B. P. Nayak, Functional network
changes associated with sleep deprivation and fatigue
during simulated driving: Validation using blood
biomarkers, Clin. Neurophysiol., 2011, 122(5), 966–974.

25 S. Charbonnier, R. N. Roy, S. Bonnet, et al., EEG index for
control operators' mental fatigue monitoring using
interactions between brain regions, Expert Syst. Appl., 2016,
52(C), 91–98.

26 J. P. Hampson, et al., Altered resting brain connectivity in
persistent cancer related fatigue, Neuroimage Clin., 2015, 8,
305–313.

27 H. Yu, et al., Modulation of Spectral Power and Functional
Connectivity in Human Brain by Acupuncture Stimulation,
IEEE Trans. Neural Syst. Rehabil. Eng., 2018, 26(5), 977–986.

28 N. X. Kodama, et al., Anti-correlated cortical networks arise
from spontaneous neuronal dynamics at slow timescales,
Sci. Rep., 2018, 8(1), 666.

29 H. Yu, et al., Functional brain networks in healthy subjects
under acupuncture stimulation: An EEG study based on
nonlinear synchronization likelihood analysis, Phys. A,
2017, 468, 566–577.

30 K. Schindler, C. E. Elger and K. Lehnertz, Changes of EEG
synchronization during low-frequency electric stimulation
of the seizure onset zone, Epilepsy Res., 2007, 77(2–3), 108–
119.

31 S. Kar, A. Routray and B. Prasad Nayak, Functional network
changes associated with sleep deprivation and fatigue
during simulated driving: validation using blood
biomarkers, Clin. Neurophysiol., 2011, 122(5), 966–974.

32 M. Ahmadlou and H. Adeli, Functional community analysis
of brain: A new approach for EEG-based investigation of the
brain pathology, NeuroImage, 2011, 58(2), 401–408.

33 C. J. Stam and J. C. Reijneveld, Graph theoretical analysis of
complex networks in the brain, Nonlinear Biomed. Phys.,
2007, 1(1), 3.
This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra04846k


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
A

ug
us

t 2
01

8.
 D

ow
nl

oa
de

d 
on

 5
/8

/2
02

4 
6:

01
:5

1 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
34 E. T. Bullmore and D. S. Bassett, Brain graphs: graphical
models of the human brain connectome, Annu. Rev. Clin.
Psychol., 2011, 7, 113–140.

35 E. Bullmore and O. Sporns, Complex brain networks: graph
theoretical analysis of structural and functional systems,
Nat. Rev. Neurosci., 2009, 10(3), 186–198.

36 M. Rubinov and O. Sporns, Complex network measures of
brain connectivity: uses and interpretations, NeuroImage,
2010, 52(3), 1059–1069.

37 S. Kar, A. Routray and B. P. Nayak, Functional network
changes associated with sleep deprivation and fatigue
during simulated driving: validation using blood
biomarkers, Clin. Neurophysiol., 2011, 122(5), 966–974.
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