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1. Introduction

Sulfur-containing molecules such as thioethers are commonly
found in chemical biology, organic synthesis, and materials
chemistry.' The development of mild and general methods for
C-S bond formation has received significant attention; among
them, the transition metals have been applied in this field, and
the palladium-catalyzed coupling of thiols with aryl halides is
one of the most important methods in the synthesis of thio-
ethers.”> Other metals have also been used for the same
purpose.® Despite the phenomenal growth in diverse synthetic
methodologies, the synthesis of C-S bonds is generally limited
to the condensation reaction between a metal thiolate and an
organic halide.* Organohalides have potential environmental
and human health effects, and their wastes require costly
remediation, particularly on an industrial scale.

Recently, transition metal-catalyzed decarboxylative allylation
reactions are a powerful method for the allylation of a wide variety
of nucleophiles under neutral conditions.® In particular, as one of
the most efficient ways to capture the ketone enolates, palladium-
catalyzed decarboxylative allylation of B-ketoesters® has attracted
considerable attention since the early discoveries reported by
Tsuji’ and Saegusa.® In contrast with C-H bond activation reac-
tions, decarboxylative cross-coupling reactions through loss of CO,
generally do not need expensive organometallic reagents, while
maintaining the advantage of regioselectivity offered by traditional
cross-coupling reactions. Compared with a great wealth of studies
on the decarboxylative allylation of C-C and C-N bond-forming
transformations,’ the corresponding C-S bond-forming reactions
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excellent yields under mild conditions and features a broad substrate scope, wide group tolerance and in
particular, no need to use halocarbon precursors.

were much less investigated and more challenging, mainly due to
catalyst poisoning by the mercapto group. In 2009, Duan and co-
workers reported the first decarboxylative coupling of ortho-
substituted aryl carboxylic acids with thiols as an unprecedented
synthetic entry to aryl sulfides (Scheme 1a)."* In a follow-up study,
Ranjit and co-workers developed a versatile protocol, in which
a Cul catalyst was used to initiate the decarboxylation of arylpro-
piolic acids, for the synthesis of vinyl sulfides (Scheme 1b)** by the
cross-coupling of the arylpropiolic acids with thiols. In 2018,
Ichiishi*” and Ishitobi* reported the decarbonylative C-S coupling
of thioesters into thioethers respectively.

We reasoned that the direct decarboxylative C-S coupling of
carbonothioate, if possible, would provide an alternative access
to aryl sulfides without the need for halocarbon precursors
(Scheme 1c). Herein, we describe the integration of these
concepts into the transition-metal-catalyzed synthesis of
a broad range of aryl sulfides.

To test our hypothesis and also to identify an effective cata-
lyst system, the decarboxylative allylation of O-allyl S-(p-tolyl)
carbonothioate was selected as a model reaction and performed
under different conditions (Table 1). To begin, we compared
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Scheme 1 Synthesis of thioethers through the decarboxylative
coupling reaction.
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Table 1 Optimization of reaction conditions®
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Table 2 Reaction scope of unsubstituted allyl carbonothioates®

QSTOA catalyst /@/S\/\
(0]

1a 2a
Entry  Catalyst/mol% Solvent  T/°C T/h  Yield” (%)
1 Ni(acac),(10)/PPh;(10) DCE 50 24 nr
2 Fe(acac);(10)/PPh;(10) DCE 50 24 nr
3 Ph;PAuCI(5)/NaBArF,(10) DCE 50 24 nr
4 Pd(PPh;),(5) DCE 50 2 92
5 Cp*RuCl(PPh;),(3) DCE 50 1 96
6 RuCl;(3) DCE 50 24 nr
7 Ru(PPh;);Cl,(3) DCE 50 5 <5
8 Cp*RuCl(PPh;),(3) DCE It 12 56
9 Cp*RuCl(PPh;),(3) THF 50 1 87
10 Cp*RuCl(PPh;),(3) CH,CN 50 1 88
11 Cp*RuCl(PPh;),(3) Toluene 50 1 82

“ Reactions run in vials; [1a] = 0.05 M. ? Estimated by 'H NMR using
diethyl phthalate as an internal reference.

a variety of catalysts for their ability to effect the decarboxylative
allylation of carbonothioate. Among them, nearly qualitative
rate of decarboxylative allylation catalyzed by Pd and Ru cata-
lysts (Table 1, entries 4-5), and that Fe, Ni and Au catalysts did
not work with the reaction (entries 1-3). Different Ru catalysts
was screened and the results showed that Cp*RuCl(PPh;), is the
best catalyst (entries 5-7). A low yield was also resulted when the
reaction was run at room temperature (entry 8). A series of
solvents were examined (Table 1, entries 5, 9-11) and the
desired product 2a was observed in 96% yield when DCE was
utilized, whereas all the other solvents investigated afforded
lower yields.

With the optimal reaction conditions in hand (Table 1, entry
5), the scope of the reaction was then examined. As summarized
in Table 2, a variety of carbonothioate undergo decarboxylative
allylation in high yield. In particular, the reaction is effective for
nearly any substitution pattern about the carbonothioate; even
sterically demanding ortho-substituted carbonothioates
undergo allylation, albeit at a reduced rate (entries 3 and 5).
Gratifyingly, halogen atoms (Cl and Br) could be tolerated well
(entries 4-6), which have the potential to interfere with the
analogous palladium-catalyzed reactions. Notably, a 4-NO,
group led to a significant decrease in the yield (entry 9).
Replacing the phenyl group of 1 with a naphthyl (entry 2),
a benzyl (entry 7), a butyl (entry 8), a pyridyl (entry 10), or
a benzothiazolyl (entry 11) were all readily allowed and the
corresponding products were isolated in good yields.

Next, the regioselectivity of the substituted allyl carbon-
othioates was investigated (Table 3). In all cases, the cinnamyl
carbonothioates preferentially formed the linear allylic ethers in
good yield (entries 3-5). As can be seen, cinnamyl carbon-
othioate substrates provided the linear product exclusively as
judged by "H NMR spectroscopy. Thus, the reaction with aryl-
substituted allylic carbonothioates is regioselective. Next, we
investigated the coupling of crotyl alcohol, which provided the
branched and linear allylation product with the ratio nearly of
1:1 and high yield (entry 6-7). The isomeric branched
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“ Reactions run in vials; [1] = 0.05 M. ? Isolated yields are reported.

carbonothioate also produced the branched and linear allyla-
tion product with the ratio nearly of 1: 1 (entry 8). While the
regiochemical outcome slightly depends on the regiochemistry
of the starting allyl ester, the reaction is not strongly regiospe-
cific. In general, ruthenium catalyst favors the branched prod-
ucts in allylic substitution,** the higher reaction temperature
maybe the main reason for the more stable linear product was
obtained in our study.

In conclusion, a ruthenium-catalyzed decarboxylative allyla-
tion of carbonothioates was developed. The yields of the reac-
tion are generally high and the Ru catalyst often provides
chemo- and regioselectivities that complement those of more
standard palladium catalysts. This method is important not
only for expanding our understanding of the decarboxylative
reaction but also for providing a convenient synthetic pathway

This journal is © The Royal Society of Chemistry 2018
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Table 3 Reaction scope of substituted allyl carbonothioates®
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“ Reactions run in vials; [3] = 0.05 M. ? Isolated yields are reported.
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