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Two complementary pathways for the preparation of N-substituted 3-(5-amino-1H-1,2,4-triazol-3-yl)
propanamides (5) were proposed and successfully realized in the synthesis of 20 representative examples.
These methods use the same types of starting materials viz. succinic anhydride, aminoguanidine
hydrochloride, and a variety of amines. The choice of the pathway and sequence of the introduction of
reagents to the reaction depended on the amine nucleophilicity. The first pathway started with the
preparation of N-guanidinosuccinimide, which then reacted with amines under microwave irradiation to
afford 5. The desired products were successfully obtained in the reaction with aliphatic amines (primary and
secondary) via a nucleophilic opening of the succinimide ring and the subsequent recyclization of the 1,2,4-

Received 29th May 2018 triazole ring. This approach however failed when less nucleophilic aromatic amines were used. Therefore, an
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alternative pathway, with the initial preparation of N-arylsuccinimides and their subsequent reaction with
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aminoguanidine hydrochloride under microwave irradiation, was applied. The annular prototropic

rsc.li/rsc-advances tautomerism in the prepared 1,2,4-triazoles 5 was studied using NMR spectroscopy and X-ray crystallography.
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Introduction

1,2,4-Triazoles attract considerable attention in organic and
medicinal chemistry due to their wide spectrum of pharmacolog-
ical activities.* They have been reported to possess antiviral,” anti-
bacterial,® antifungal,* anticancer,” and anticonvulsant® properties.
Among the 1,2 4-triazoles, 3(5)-amino-1,2,4-triazoles were recently
reported to be potent inhibitors of kinases,” lysine-specific deme-
thylase 1,* and acidic mammalian chitinase.® Additionally, 3(5)-
amino-1,2,4-triazoles are also known as important building blocks
for the construction of bioactive triazole-fused heterocycles.*

Due to practical significance of 3(5)-amino-1,2,4-triazoles,
there is an ongoing demand for new efficient methods of their
synthesis. The most common synthetic methods for the prepa-
ration of 3(5)-amino-1,2,4-triazoles involve intramolecular cyclo-
condensation of amidoguanidines,"* thermal condensation of N-
cyanoimidates with hydrazine,” and 1,3-dipolar cycloaddition of
hydrazonoyl derivatives and carbodiimides.”® However, the
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existing approaches suffer from several drawbacks, including
multi-step preparation process, harsh reaction conditions, poor
selectivity of reactions and tedious purification procedures.

Over the past decade, there has been a substantial increase
in the application of microwave irradiation in organic synthesis.
It is a valuable tool used for improving the outcome of reac-
tions, often resulting in higher yield and product purity.*
Utilization of microwave irradiation for the synthesis of 1,2,4-
triazoles has shown to provide practical and economical
advantages."“"* Herein, we report the development of efficient
microwave-assisted methods for the preparation of 3-(5-amino-
1H-1,2,4-triazol-3-yl)propanamides (5).

Annular prototropic tautomerism is an interesting phenom-
enon often observed in compounds possessing a 1,2,4-triazole
ring in their structure. The tautomeric preferences and factors
affecting equilibrium between tautomers have been studied
theoretically and experimentally, thermodynamically and kineti-
cally due to their importance in determining chemical and bio-
logical properties of compounds.*® We applied NMR spectroscopy
to explore tautomerism in the prepared compounds and report
here our findings. X-ray crystallography was used to determine
a position of the triazole ring hydrogen in the solid state.

Results & discussion

Synthesis of 3-(5-amino-1H-1,2,4-triazol-3-yl)propanamides (5)
from N-guanidinosuccinimide (2)

Our initial synthesis design involved the preparation of 3-(5-
amino-1H-1,2,4-triazol-3-yl)propanamides ~ (5) from  N-
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Scheme 1 Two pathways to the synthesis of N-substituted 3-(5-amino-1H-1,2,4-triazol-3-yl)propanamides (5).

Table 1 Optimization of conditions for the synthesis of N-morpho-
lino-substituted 3-(5-amino-1H-1,2,4-triazol-3-yl)propanamide (5a)“

N + W o e HN-N
HZNYH\I / HZN/Q\NW
NH,
2 5a
Entry Solvent Temperature (°C) Time (min) Isolated yield (%)
1 EtOH 180 25 27
2 H,0 180 25 28
3 AcOEt 180 25 64
4 MeCN 180 25 75
5 MeCN 170 25 79
6 MeCN 160 25 65
7 MeCN 170 30 73
8 MeCN 170 20 73
9? MeCN 170 25 68
10¢ MeCN 170 25 66

“The reaction was performed using Discover SP CEM microwave
synthesizer with 1 mmol of 2 and 2 mmol of morpholine in 1 mL of
the specified solvent. 1 mmol of 2 and 3 mmol of morpholine were
used for the reaction. 1 mmol of 2 and 1.5 mmol of morpholine
were used for the reaction.

guanidinosuccinimide (2) using nucleophilic ring opening of
the latter with amines followed by the cyclocondensation of
intermediates 3 and closure of the 1,2,4-triazole ring (Scheme 1,
Pathway A). We also proposed that performing the process
under high temperature using microwave irradiation would be
efficient to have a tandem of these reactions happened in the
one-pot fashion.

In the model reaction, N-guanidinosuccinimide (2),
prepared from succinic anhydride (1) according to the reported
method," was treated with morpholine under microwave irra-
diation to give 3-(5-amino-1H-1,2,4-triazol-3-yl)propanamide 5a
(Table 1). The optimization of conditions for the synthesis of 5a
started with an attempt to perform the reaction of 2 with mor-
pholine in ethanol under microwave irradiation at 180 °C for
25 min (Table 1, Entry 1). To our satisfaction, we successfully
obtained the desired product 5a in high purity after simple

22352 | RSC Adv., 2018, 8, 22351-22360

filtration; however the yield was rather low (27%). The screening
of solvents revealed that conducting the reaction in acetonitrile
led to a better yield (Entry 4). Further optimising of the reaction
conditions, we found that decreasing the reaction temperature
to 170 °C led to yield improvements (Entry 5). Therefore, the
satisfactory results were achieved when the synthesis of N-
morpholino-substituted 3-(5-amino-1H-1,2,4-triazol-3-yl)
propanamide (5a) was performed using reaction of 2 with
morpholine in acetonitrile at 170 °C for 25 minutes.

The optimized conditions for the preparation of 5a were
successfully applied for the synthesis of 5b-i allowing the
preparation of a diverse library of substituted amides of 3-(5-
amino-1H-1,2,4-triazol-3-yl)propanoic acid (5a-i) in the 1 mmol
scale (Table 2). Using these optimized conditions, we attempted
to scale up the reaction from 1 mmol to 10 mmol. The synthesis
of some products (5a, 5b, 5d, and 5i) was performed in the
10 mmol scale with similar results.

However, when we attempted to further extend the reaction
scope and involve aniline in the reaction with N-guanidino-
succinimide (2) under the optimized conditions, only starting
material 2 was isolated. The analysis of the reaction mixture in
the attempt to prepare 5j from 2 revealed the presence of aniline
and unreacted 2 only. We propose that the nucleophilicity of
aniline was not sufficient to initiate the ring opening of the
cyclic imide and undergo the cascade of transformations.

Synthesis of 3-(5-amino-1H-1,2,4-triazol-3-yl)propanamides (5)
via N-arylsuccinimides (4)
To overcome this problem limiting the method scope, we designed
an alternative pathway for the preparation of N-phenyl-substituted
3-(5-amino-1H-1,2,4-triazol-3-yl)propanamide (5]) via the reaction
of N-phenylsuccinimide (4a) with aminoguanidine hydrochloride
(Scheme 1, Pathway B). Aminoguanidine, being more nucleophilic,
should be able to initiate the imide ring opening. Moreover, the
guanidinium ion also might act as an acid catalyst increasing
electrophilicity of the imide carbonyl group in this reaction. The
neutralisation of the guanidinium ion on the intermediate in the
second step supposed to facilitate the 1,2,4-triazole ring formation.
We attempted to carry out both steps in a one-pot fashion
under microwave irradiation. First, N-phenylsuccinimide (4a) was
heated with aminoguanidine hydrochloride in ethanol at 170 °C

This journal is © The Royal Society of Chemistry 2018
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Microwave-assisted synthesis of substituted amides of 3-(5-amino-1H-1,2,4-triazol-3-yl)propanoic acid (5a—j)*

uW, 170 °C, 25 min HN-N NR'R?
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HZN\fN o HZN/L\N)\/\\SD
NH,
2 5
(3 ()
H
HN—-N N HN—N N HN—-N N HN—-N N
\ \ \ \\

Han Ha )\/\\g Han )\/\\g i, )\/\\g

5a, 79%; 88%" 5b, 81%; 73%"

5¢c, 85% 5d, 78%; 84%"

OMe F F
HN-N N HN-N H\) H\/ "
- - HN-N
) AN \
NS N
HaN"TSy )y HoN N)\/\\SJ HZN/Q\N)\/\«O
5e, 81% 5f, 76% 59, 48%

. S >\CF3
HN-N N
HN/Q\>\/\\<
NTON

(0]

5h, 58%

5i, 81%; 82%"

H
HN-N N@
\
HzN/k\N)\/\%

5j, 0%

% The reactions were performed using a Discover SP CEM microwave synthesizer at 170 °C for 25 min with 1 mmol of N-guanidinosuccinimide (2)
and 2 mmol of amine in 1 mL of acetonitrile. ” The reactions were scaled up to 10 mmol of N-guanidinosuccinimide (2) and 20 mmol of amine in

10 mL of acetonitrile.

for 50 min. After cooling, an aqueous solution of potassium
hydroxide was added to the reaction mixture and heating was
continued at 180 °C for 15 min. We found that using non-aqueous
solution of the same base dramatically increased the yield, while
altering the solvent of the reaction had minimal effect on the
outcome of the reaction (Table 3, Entries 2-5). Continuing opti-
mization of the process using ethanol as the solvent, we observed
that altering the reaction time before and after the addition of the
base did not improve the outcome of the reaction (Entries 6-8).
Unfortunately, further manipulations with the reaction tempera-
ture, time, type of base, or ratio of the reagents did not lead to any
improvement in yields (e.g. Entries 9-11). These conditions were
the most efficient for the preparation of 3-(5-amino-1H-1,2,4-
triazol-3-yl)propananilide (5j), which was obtained using this one-
pot process in 58% yield (Entry 3).

To explore the scope of this new method for the synthesis of
other arylamides of 3-(5-amino-1H-1,2,4-triazol-3-yl)propanoic
acid, we prepared a library of N-arylsuccinimides (4) from suc-
cinic anhydride (1) and anilines adopting the approach reported
by Benjamin et al. (Scheme 2)."” However, this method failed
when applied to ortho- and meta-substituted anilines and
therefore imides 4c, 4d, 4f, and 4i were synthesized via inter-
mediate N-arylsuccinamic acids (6).'® The N-arylsuccinimides
(4) were then used as substrates in the reaction with amino-
guanidine hydrochloride to prepare N-arylamides of 3-(5-amino-

This journal is © The Royal Society of Chemistry 2018

1H-1,2 4-triazol-3-yl)propanoic acid (5j-t) using the optimised
conditions (Table 4). A wide range of substituents in various
positions of the benzene ring of 4 were equally well tolerated in
the reaction with aminoguanidine hydrochloride. In all cases,
N-arylamides of 3-(5-amino-1H-1,2,4-triazol-3-yl)propanoic acid
(5j-t) were isolated in high purity via simple filtration. The
reaction was effectively performed in both 1 and 10 mmol scales
with similar outcomes.

Annular prototropic tautomerisation of 3-(5-amino-1H-1,2,4-
triazol-3-yl)propanamides (5) in solution

Due to annular prototropic tautomerism, the prepared 5(3)-
amino-1,2,4-triazoles may exist in three forms: 5-amino-1H-
1,2,4-triazoles 5, 3-amino-1H-1,2,4-triazoles 5, and 5-amino-4H-
1,2,4-triazoles 5” (Scheme 3). We attempted to analyse tauto-
meric equilibria in the prepared triazoles using NMR
spectroscopy.

In the >C NMR spectra of the prepared compounds, the
triazole ring signals appeared as two broad signals confirming
its involvement in tautomerism. However, the tautomeric
transformations were probably too fast to be detected by the **C
NMR spectroscopy under the experimental conditions and
therefore tautomers were indistinguishable.

For majority of the N-alkyl-3-(5(3)-amino-1,2,4-triazol-3(5)-yl)
propanamides (5a-5f and 5i), the separate signals of individual

RSC Adv., 2018, 8, 22351-22360 | 22353
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Table 3 Optimization of conditions for the synthesis of 3-(5-amino-1H-1,2,4-triazol-3-yl)propananilide (5j)*
- NH o
A, j“\t‘z o) Cr o i i HN-N NHPh
SN +  HaN( 2N — | HN" N NHPh | —— PS¢
) N" " NH, N HNTS
Ph H o
4a 5j
Conditions

Entry () (i) Isolated yield (%)
1 170 °C, 50 min, EtOH 180 °C, 15 min, KOH in H,0 23

2 170 °C, 50 min, MeOH 180 °C, 15 min, KOH in MeOH 54

3 170 °C, 50 min, EtOH 180 °C, 15 min, KOH in EtOH 58

4 170 °C, 50 min, iPrOH 180 °C, 15 min, KOH in iPrOH 51

5 170 °C, 50 min, MeCN 180 °C, 15 min, KOH in EtOH 44

6 170 °C, 40 min, EtOH 180 °C, 15 min, KOH in EtOH 56

7 170 °C, 60 min, EtOH 180 °C, 15 min, KOH in EtOH 57

8 170 °C, 50 min, EtOH 180 °C, 20 min, KOH in EtOH 51

9 170 °C, 50 min, EtOH 170 °C, 30 min, KOH in EtOH 48

10 170 °C, 50 min, EtOH 180 °C, 15 min, NaOH in EtOH 55

11° 170 °C, 50 min, EtOH 180 °C, 15 min, KOH in EtOH 55

“ The reactions were performed using a Discover SP CEM microwave synthesizer with 1 mmol of 4a and 1 mmol of aminoguanidine hydrochloride
in 1 mL of the specified solvent in the first step and addition of 1.2 mmol of the base in the second step. ” 1.2 mmol of aminoguanidine

hydrochloride and 1.4 mmol of KOH were used in the reaction.

& W, 180 °C, 15 min
0FNg 0 + Ar—NH, —————

1 DIPEA Ar . 4biAr=4-FCgH,
4 4c: Ar = 2-CICgH, (from 6a)
4d: Ar = 3-CICgH4 (from 6b)
4e: Ar = 4-CICgH,
4f: Ar = 3-MeCgH, (from 6¢)
4g: Ar = 4-MeCgH,4
6a: Ar = 2-CICgH, o 4h: Ar = 4-/PrCgHy

4i: Ar = 3-OMeCgH, (from 6d)

6b: Ar = 3-CICgH, HON
NHAr 4j: Ar = 4-OMeCeH,

6c: Ar = 3-MeCgH,
6d: Ar = 3-OMeCgH4 (0] 6 4k: Ar = 4-NHCOMeCgHy4

A A0, 1h
CH3CO0,K

A, PhMe, 2.5 h

Scheme 2 Synthesis of N-arylsuccinimides (4).

tautomers were not identifiable in their '"H NMR spectra.
Nevertheless, "H NMR spectra of some products gave two sets of
signals for the primary amino group and the triazole proton.
Using literature data,"“'® these signals were attributed to
tautomers 5 and 5'. The indicated signals were resolved in the
spectra of compounds possessing at the amide group N-
substituent with relatively higher electronegativity, i.e. anilides
5j-5t and two N-benzylamides with 3,4-difluoro- (5g) and 3-tri-
fluoromethyl (5h) substituents. For these compounds (5g, 5h,
5j-5t), equilibrium constant (Ky) and corresponding Gibbs free
energy (AGsoo) values were estimated (Table 5). In the equilibria
for these compounds, 5-amino-1H-1,2,4-triazoles 5, were found
to be the predominant tautomers. Similarly to the earlier re-
ported data,*** the higher the electron-withdrawing proper-
ties of a substituent at the carbon atom the triazole ring, the
more equilibria were shifted towards 5-amino-1H-tautomers 5.

X-ray crystallography

The tautomerizable 1,2,4-triazoles with a primary amino on
a carbon atom typically crystallize as 5-amino-forms with an
annular hydrogen atom located at the side of the amino group.*

22354 | RSC Adv., 2018, 8, 22351-22360

An example of two tautomers (5-amino- and 3-amino-forms) of
1H-1,2,4-triazoles appearing together in one crystal was also
reported.”® To explore tautomeric preferences in the prepared
compounds in solid state, the crystal and molecular structures
of a representative compound 5j were determined by X-ray
crystallography; the molecular structure is shown in Fig. 1.
The key point of interest in the structure determination is the
assignment of the tautomeric form for the triazole ring. The
crystallographic analysis indicates the ring-H atom to be located
on the N1 atom of the 5-amino-form (see Experimental). This
assignment, ie. 5-amino-1H-1,2,4-triazole, is confirmed in the
distribution of bond lengths within the ring and in the nature of
the supramolecular association in the crystal of 5j (see below).
Thus, the C5-N1 bond length of 1.3359(15) A is considerably
longer than the C3-N2 bond of 1.3164(15) A; the N1-N2 bond
length is 1.3837(14) A. Further, the C3-N4 and C5-N4 bond
lengths vary systematically, ie. 1.3681(15) A is longer than
1.3351(15) A. These observations are consistent with local-
isation of m-electron density in the C3-N2 and C5-N4 bonds.
Overall, the molecule has the shape of the letter L as seen in the
values of the dihedral angles formed between the central amide
residue (r.m.s. deviation of the 08, N8, C7 and C8 atoms from
the least-squares plane = 0.0084 A) and the five- and six-
membered rings of 79.54(4)° and 24.78(6)°, respectively, indi-
cating, to a first approximation, a co-planar relationship
between the amide and phenyl groups with the triazole ring
lying perpendicular to this; the dihedral angle between the five-
and six-membered rings is 86.65(4)°.

As mentioned above, the molecular packing in the crystal of
5j confirms the assignment of the tautomeric form of the five-
membered ring. The crucial hydrogen bonding involving the

This journal is © The Royal Society of Chemistry 2018
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Table 4 Microwave-assisted synthesis of N-arylamides of 3-(5-amino-1H-1,2,4-triazol-3-yl)propanoic acid (5j—t)“
- NH o)
NHa o W, 170 °C, 50 mi cr.? . i
! cr mw, , 50 min s N puW, 180 °C, 15 min HN-N NHAr
Oﬂo + HQN\ ')\\j —_— H N’ \N’ NNHA \
N N NH, EtOH 2 H ' KOH, EtOH H2N/<\ o=
Ar H o N o
4 5j-t
Compound Structure Scale (mmol) Yield (%) Melting point (°C)

H
] HN-N N
3 HZN/Q\N»\/\\S) \©

H
HN—N N
sk o~ O~

o}
cl
51 HN-N

" ci
5m HN-N N@
H,N \N)\/\\g
HN-N N
5n s »\/\\( Cl
HaNTy Y
50 o
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HN" Sy Y

H
N
5
p HZN,J§N)L\J/\WQ
N
>4 i \x:::>‘vPr
2 (o]

5r HN-N

H
HN-N N
5s Ay e { \©\OM9
2! N o)
H 3\\
\ Me
5t HzN’k\N )\/\\g N

1 58
10 56 245-246"
1 56

10 61 218-220°
1 42

10 60 179-181¢
1 64

10 74 209-2107
1 64

10 67 219-220°
1 46

10 47 202-203¢
1 48

10 43 221°¢

1 59

10 68 187-188¢
1 26

10 31 174-175%
1 50

10 46 221-222°
1 38

10 44 267-269"

¢ The reaction was performed using a Discover SP CEM microwave synthesizer at 170 °C for 50 min in EtOH followed by the addition of KOH in
EtOH and heating at 180 °C for 15 min. ? Recrystallisation solvent: H,O. ¢ Recrystallisation solvent: MeOH. ¢ Recrystallisation solvent: MeCN.

HN-N NR'R? N—NH NR'R?
NS S~ HnL P~
2N o} 2NN o}
5 \ / 5
N NR'R?
\

N_
U
HZN/(H o)

5"

Scheme 3 Theoretically possible annular tautomerism in 3-(5(3)-
amino-1,2,4-triazol-3(5)-yl)propanamides.

This journal is © The Royal Society of Chemistry 2018

triazole ring sees the formation of donor triazole-N1-H---O8
(carbonyl) and acceptor amine-N5-H---N2 (triazole) hydrogen
bonds confirming protonation at the triazole-N1 atom at the
amino group side. The second amine-N5-H atom forms
a comparatively weaker hydrogen bond to the carbonyl-O8 atom
to close a seven-membered {NH---O---HNH---N} supramolec-
ular synthon; geometric details of the hydrogen bonding are
given in the caption to ESI Fig. S1.1 As shown in Fig. 2, three
molecules are involved in the aforementioned hydrogen
bonding scheme so that the seven-membered synthon is
flanked on either side by 11-membered {NH:---OC,N---HNC}
synthons. Connections between the aforementioned aggregates

RSC Adv., 2018, 8, 22351-22360 | 22355
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Table 5 Tautomeric composition of 3-(5(3)-amino-1H-1,2,4-triazol-
3(5)-yl)propanamides”

HN-N NR'R? N—NH NR'R?
N Y N7
5 5'

Signals of tautomers in "H

NMR spectra (ppm)

NH, NH (triazole)
Compounds 5 5/ 5 5/ Ky —AGs00 (K] mol™)
5g 5.76 5.07 11.58 12.30 3.0 2.7
5h 5.74 511 11.60 12.30 3.0 2.7
5j 5.77 5.04 11.57 1232 3.2 2.9
5k 5.77 5.00 11.57 1233 3.2 29
51 5.81 5.00 11.60 12.34 3.3 3.0
5m 5.78 499 1156 1233 3.5 3.2
5n 5.78 4.98 11.56 1232 3.3 3.0
50 5.77 498 11.56 1232 3.2 29
5p 5.77 5.03 11.56 1231 3.0 2.7
5q 5.78 498 11.56 1232 3.2 29
5r 5.76 5.07 11.58 12.30 3.3 3.0
5s 5.77 498 11.55 1231 3.0 2.7
5t 5.77 4.97 11.55 1232 3.2 2.9

% The NMR spectroscopy was performed at 27 °C (300 K) using DMSO-d
as a solvent.

Fig. 1 Molecular structure of 5j showing atom labelling scheme and
70% anisotropic displacement parameters.

Fig.2 Hydrogen bonding between four molecules in the crystal of 5j.
The N-H---O and N-H---N hydrogen bonding (see ESI Fig. S17), are
shown as orange and blue dashed lines, respectively. Non-partici-
pating hydrogen atoms have been omitted.

22356 | RSC Adv., 2018, 8, 22351-22360
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are of the type amide-N8-H---N4 (triazole) which generate
centrosymmetric, 14-membered {---NC,NH}, synthons. The
hydrogen scheme just described extends laterally to form
a supramolecular layer parallel to (1 0 1), see ESI Fig. S1a.t The
most obvious directional points of contact between layers to
consolidate the three-dimensional molecular packing are of the
type methylene-C7-H---t(C9-C14); a view of the unit cell
contents is shown in ESI Fig. S1b.}

Conclusion

In conclusion, we developed two complementing each other
pathways for the synthesis of 3-(5-amino-1H-1,2,4-triazol-3-yl)
propanamides (5) under microwave irradiation. Our methods
were successfully applied for the preparation of a diverse library
of twenty N-substituted 3-(5-amino-1H-1,2,4-triazol-3-yl)
propanamides (5) in 1 and 10 mmol scales. Their tautomeric
preferences were analysed using NMR spectroscopy and X-ray
crystallography.

Experimental section
General information

Melting points (uncorrected) were determined on a Stuart™
SMP40 automatic melting point apparatus. 'H and *C NMR
spectra were recorded on a Bruker Fourier 300 spectrometer
(300 MHz), using DMSO-d, as a solvent and TMS as an internal
reference. IR spectra were recorded on a Varian 640-IR FT-IR
spectrometer using KBr mode. Microwave-assisted reactions
were performed in closed vessel focused single mode using
a CEM Discover SP microwave synthesizer (CEM, USA). The
reaction temperatures were measured by an equipped IR
sensor.

General method for the microwave-assisted synthesis of 3-(5-
amino-1H-1,2,4-triazol-3-yl)propanamides (5a-b, and 5d-i)

A mixture of N-guanidinosuccinimide (2) (156 mg, 1 mmol) and
specified amine (2 mmol) in acetonitrile (1 mL) were irradiated
in 10 mL seamless pressure vial using microwave system oper-
ating at maximal microwave power up to 300 W at 170 °C for
25 min. After cooling, the precipitated product was filtered,
washed with acetonitrile and recrystalised from a suitable
solvent. The reaction was also replicated in an increase scale of
N-guanidinosuccinimide (2) (1.56 g, 10 mmol) and specified
amine (20 mmol) in acetonitrile (10 mL).

3-(5-Amino-1H-1,2,4-triazol-3-yl)-1-morpholinopropan-1-one
(5a). Yellowish solid, yield (1 mmol/10 mmol scale): 178 mg
(79%)/1.97 g (88%), mp 166-167 °C (MeCN). "H NMR (300 MHz,
DMSO-dg): 6 2.65 (4H, br s, (CH,),C=O0), 3.41-3.44 (2H, m,
(CH,)N), 3.53-3.54 (2H, m, (CH,)O), 5.58 (2H, br s, NH,), 11.79
(1H, br s, NH). ®*C NMR (75 MHz, DMSO-dg): 6 23.1
(CH,CH,C=0), 30.1 (CH,CH,C=0), 41.4 (CH,N), 45.2 (CH,N),
65.98 ((CH,),0), 158.2-158.6 (C-3 and C-5), 170.0 (C=0). IR
(KBr) » 3331 (N-H), 3192 (N-H), 1619 (C=0), 1542, 1476, 1255,
1115, 1064, 1013 cm ™. Anal. caled for CoH;5N50,: C, 47.99; H,
6.71; N, 31.09. Found: C, 47.85; H, 6.77; N, 30.97.
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3-(5-Amino-1H-1,2,4-triazol-3-yl)-1-(piperidin-1-yl)propan-1-one
(5b). White solid, yield (1 mmol/10 mmol scale): 180 mg (81%)/
1.62 g (73%), mp 165-167 °C (MeCN). "H NMR (300 MHz, DMSO-
de): 6 1.42-1.60 (6H, m, (CH,);), 2.62 (4H, s, (CH,),C=0), 3.36-
3.42 (4H, m, (CH,),N), 5.53 (2H, br s, NH,), 11.69 (1H, br s, NH).
3C NMR (75 MHz, DMSO-d): 6 23.2 (CH,CH,C=0), 24.0 (CH,),
25.2 (CHyp), 25.9 (CH,), 30.4 (CH,CH,C=O0), 41.9 (CH,N), 45.7
(CH,N), 158.5 (C-3 and C-5), 169.2 (C=0). IR (KBr) » 3305 (N-H),
3138 (N-H), 1617 (C=0), 1479, 1405, 1287, 1135, 1098,
1067 cm ™. Anal. caled for C;,H;,N5O: C, 53.79; H, 7.67; N, 31.37.
Found: C, 53.67; H, 7.72; N, 31.24.
3-(5-Amino-1H-1,2,4-triazol-3-yl}-N-(4-benzyl)propanamide (5d).
White solid, yield (1 mmol/10 mmol scale): 191 mg (78%)/2.05 g
(84%), mp 208-210 °C (EtOH). '"H NMR (300 MHz, DMSO-d):
0 2.45-2.49 (2H, m, CH,CH,C=O0), 2.67 (2H, t, ] = 7.7 Hz,
CH,CH,C=0), 4.26 (2H, d, *J = 5.9 Hz, CH,NH), 5.61 (2H, br s,
NH,), 7.21-7.33 (5H, m, H-2', H-3/, H-4, H-5'and H-¢'), 8.35 (1H, br
t, 3] = 5.6 Hz, NHC=0), 11.67 (1H, br s, NH). *C NMR (75 MHz,
DMSO-dg): 6 23.6 (CH,CH,C=O0), 33.4 (CH,CH,C=O0), 41.9
(CH,NH), 126.5 (C-4'), 127.0 (C-2’ and C-6'), 128.1 (C-3' and C-5'),
139.5 (C-1'), 158.3 (C-3 and C-5), 171.2 (C=O0). IR (KBr) » 3414 (N-
H), 3324 (N-H), 3247 (N-H), 1638 (C=0), 1546, 1482, 1225, 1081,
1058, 1003 cm ™ *. Anal. caled for C;,H,5N5O: C, 58.76; H, 6.16; N,
28.55. Found: C, 58.61; H, 6.30; N, 28.47.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(4-methoxybenzyl)prop-
anamide (5e). White solid, yield: 224 mg (84%), mp 218-
220 °C (EtOH). "H NMR (300 MHz, DMSO-d): 6 2.38-2.48 (2H,
m, CH,CH,C=0), 2.65 (2H, t, >] = 7.7 Hz, CH,CH,C=0), 3.72
(3H, s, OCHj;), 4.19 (2H, d, *J = 5.9 Hz, CH,NH), 5.62 (2H, br s,
NH,), 6.87 (2H, d, ] = 8.7 Hz, H-3' and H-5'), 7.15 (2H, d, *] =
8.7 Hz, H-2' and H-6'), 8.27 (1H, br t, > = 5.7 Hz, NHC=0),
11.64 (1H, br s, NH). "*C NMR (75 MHz, DMSO-d¢): 6 23.6
(CH,CH,C=0), 33.4 (CH,CH,C=0), 41.3 (CH,NH), 54.9
(OCH3), 113.6 (C-3’ and C-5'), 128.3 (C-2' and C-6'), 131.4 (C-1),
158.0 (C-4'), 159.5 (C-3 and C-5), 171.0 (C=0). IR (KBr) » 3413
(N-H), 3324 (N-H), 3246 (N-H), 1637 (C=0), 1547, 1482, 1257,
1106, 1058, 1032 cm ™ *. Anal. caled for C,3H;,N50,: C, 56.71;
H, 6.22; N, 25.44. Found: C, 56.58; H, 6.31; N, 25.32.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(4-fluorobenzyl)prop-
anamide (5f). White solid, yield: 199 mg (76%), mp 218-219 °C
(EtOH). "H NMR (300 MHz, DMSO-de): ¢ 2.41-2.51 (2H, m,
CH,CH,C=0), 2.67 (2H, t, *] = 7.6 Hz, CH,CH,C=0), 4.24 (2H,
d,*/ = 5.9 Hz, CH,NH), 5.61 (2H, br s, NH,), 7.12 (2H, dd, *Jy =
8.9 Hz, *Jyr = 8.9 Hz, H-3' and H-5'), 7.25 (2H, dd, *J;;p = 5.7 Hz,
3Ju = 8.8 Hz, H-2' and H-6'), 8.36 (1H, br t, >/ = 5.8 Hz, NHC=
0), 11.69 (1H, br s, NH). ">C NMR (75 MHz, DMSO-ds): 6 23.6
(CH,CH,C=0), 33.4 (CH,CH,C=0), 41.2 (CH,NH), 114.8 (d,
%Jor = 21.6 Hz, C-3' and C-5'), 128.9 (d, *Jcr = 8.20 Hz, C-2’ and
C-6'), 135.7 (d, ¥Jcr = 3.0 Hz, C-1'), 157.4 (C-3 and C-5), 161.0 (d,
Yer = 242.0 Hz, C-4'), 171.2 (C=0). IR (KBr) » 3415 (N-H), 3325
(N-H), 3248 (N-H), 1639 (C=0), 1547, 1482, 1225, 1094, 1059,
1005 cm ™ '. Anal. caled for C,,H,,FNsO: C, 54.75; H, 5.36; N,
26.60. Found: 54.68; H, 5.40; N, 26.54.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(3,4-difluorobenzyl)prop-
anamide (5g). White solid, yield: 136 mg (48%), mp 173-175 °C
(EtOH). "H NMR (300 MHz, DMSO-dg): ¢ 2.47-2.68 (4H, m,
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CH,CH,C=0), 4.25 (2H, d, *] = 5.9 Hz, CH,NH), 5.07-5.76 (2H,
br s, NH,), 7.05-7.09 (1H, m, H-2'), 7.23-7.40 (2H, m, H-5' and
H-6'), 8.42 (1H, br t, >J = 5.6 Hz, NHC=0), 11.58-12.30 (1H, br s,
NH). *C NMR (75 MHz, DMSO-d,): 6 24.0 (CH,CH,C=0), 33.3
(CH,CH,C=0), 41.0 (CH,NH), 115.9 (d, ¥/cr = 17.4 Hz, C-2),
117.1 (d, ¥Jcp = 17.0 Hz, C-5'), 123.6 (dd, *Jcp = 3.1 Hz, 3Jcp =
7.0 Hz, C-6), 137.5 (dd, *Jcr = 3.8 Hz, *Jcp = 5.5 Hz, C-1'), 148.2
(dd, *Jcr = 12.5 Hz, YJcr = 243.8 Hz, C-4'), 149.1 (dd, *Jcr =
12.7 Hz, YJcp = 245.1 Hz, C-3'), 156.7 and 159.8 (C-3 and C-5),
171.4 (C=0). IR (KBr) » 3417 (N-H), 3322 (N-H), 3246 (N-H),
1636 (C=0), 1554, 1433, 1226, 1115, 1061, 1014 cm '. Anal.
caled for C;,H3F,N50: C, 51.24; H, 4.66; N, 24.90. Found: C,
51.09; H, 4.72; N, 24.78.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(3-trifluoromethylbenzyl)
propanamide (5h). White solid, yield: 181 mg (58%), mp 157-
158 °C (EtOH). "H NMR (300 MHz, DMSO-d): 6 2.48-2.71 (4H,
m, CH,CH,C=0), 4.36 (2H, d, *] = 5.9 Hz, CH,NH), 5.11-5.74
(2H, br s, NH,), 7.54-7.59 (4H, m, H-2, H-3/, H-5' and H-6'), 8.49
(1H, br t, *] = 5.5 Hz, NHC=0), 11.60-12.30 (1H, br s, NH). °C
NMR (75 MHz, DMSO-dg): 6 23.9 (CH,CH,C=O0), 33.4
(CH,CH,C=0), 41.5 (CH,NH), 123.3 (q, *Jcs = 3.7 Hz, C-4'),
123.5 (q, ¥Jor = 3.8 Hz, C-2'), 124.2 (q, Jer = 272.2 Hz, CF5),
128.9 (q, *Jcr = 31.4 Hz, C-3'), 129.3 (C-5'), 131.2 (C-6'), 141.1 (C-
1), 156.8 and 159.8 (C-3 and C-5), 171.5 (C=0). IR (KBr) » 3410
(N-H), 3321 (N-H), 3232 (N-H), 1641 (C=0), 1553, 1480, 1260,
1167, 1115, 1071 cm ™', Anal. caled for C;3H,,F;N50: C, 49.84;
H, 4.50; N, 22.36. Found: C, 49.79; H, 4.53; N, 22.29.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(phenethyl)propanamide
(5i). White solid, yield (1 mmol/10 mmol scale): 211 mg (81%)/
2.13 g (82%), mp 188-190 °C (EtOH). "H NMR (300 MHz, DMSO-
de): 6 2.37 (2H, t, °] = 7.9 Hz, CH,CH,C=0), 2.60 (2H, t, ] =
7.8 Hz, CH,CH,C=0), 2.69 (2H, t, ] = 7.4 Hz, CH,CH,NH), 3.25
(2H, q, *J = 6.8 Hz, CH,CH,NH), 5.59 (2H, br s, NH,), 7.17-7.31
(5H, m, H-2/, H-3/, H-4', H-5'and H-6), 7.94 (1H, br t, *] = 5.4 Hz,
NHC=0), 11.68 (1H, br s, NH). >C NMR (75 MHz, DMSO-d,):
6 23.6 (CH,CH,C=0), 33.4 (CH,CH,C=0), 35.1 (CH,CH,NH),
40.1 (CH,CH,NH), 125.9 (C-4), 128.2 (C-2’ and C-6), 128.5 (C-3’
and C-5'), 139.4 (C-1'), 158.5 (C-3 and C-5), 171.0 (C=0). IR
(KBr) » 3417 (N-H), 3325 (N-H), 3241 (N-H), 1640 (C=0), 1553,
1479, 1227, 1085, 1063, 1018 cm ™ *. Anal. caled for C;,H;,N50:
C, 60.21; H, 6.61; N, 27.01. Found: C, 60.08; H, 6.70; N, 26.88.

Microwave-assisted synthesis of 3-(5-amino-1H-1,2,4-triazol-3-
yD)-1-(pyrrolidin-1-yl)propan-1-one (5c)

A mixture of N-guanidinosuccinimide (2) (156 mg, 1 mmol) and
pyrrolidine (165 pL, 2 mmol) in acetonitrile (1 mL) were irra-
diated in 10 mL seamless pressure vial using microwave system
operating at maximal microwave power up to 300 W at 170 °C
for 25 min. After cooling, the solvent was evaporated under
vacuum and the residue was triturated with ethyl acetate. The
precipitate formed, was filtered, washed with ethyl acetate and
recrystalised from ethanol to give desired product 5c. White
solid; yield: 178 mg (85%); mp 189-191 °C (EtOH); "H NMR (300
MHz, DMSO-d,): 6 1.75 (2H, m, *] = 6.6 Hz, CH,), 1.86 (2H, m, %]
= 6.7 Hz, CH,), 2.53-2.64 (4H, m, (CH,),C=0), 3.27 (2H, t, }] =
6.8 Hz, CH,N), 3.39 (2H, t, ’] = 6.7 Hz, CH,N), 5.62 (2H, br s,
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NH,), 11.59 (1H, br s, NH); "*C NMR (75 MHz, DMSO-d): 6 22.8
(CH,CH,C=0), 23.9 (CH,), 25.5 (CH,), 31.8 (CH,CH,C=0),
45.2 (CH,N), 45.7 (CH,N), 159.4 (C-3 and C-5), 169.4 (C=0). IR
(KBr) » 3358 (N-H), 3204 (N-H), 1622 (C=0), 1568, 1467, 1397,
1341, 1228, 1062 cm ™. Anal. caled for CoH;5N50: C, 51.66; H,
7.23; N, 33.47. Found: C, 51.58; H, 7.25; N, 33.42.

General method for the microwave-assisted synthesis of 3-(5-
amino-1H-1,2,4-triazol-3-yl)propanamides (5j-t)

A mixture of the corresponding N-arylsuccnimide (4a-k) (1
mmol) and aminoguanidine hydrochloride (111 mg, 1 mmol) in
ethanol (1 mL) was irradiated in the 10 mL seamless pressure
vial using microwave system operating at maximal microwave
power up to 300 W at 170 °C for 50 min. After cooling to the
ambient temperature, 480 uL of KOH solution in ethanol (2.5
M) was added to the vial and the reaction mixture was irradiated
again at 180 °C for 15 min. After cooling to the ambient
temperature, the reaction mixture was diluted with 15 mL of
water. The precipitated solid was filtered, washed with cold
water and recrystalised from a suitable solvent to give desired
products 5j-t. The reaction was also replicated in an increase
scale of N-arylsuccnimide (4a-k) (10 mmol) and amino-
guanidine hydrochloride (1.11 g, 10 mmol) in ethanol (10 mL).
3-(5-Amino-1H-1,2,4-triazol-3-yl)}-N-(phenyl)propanamide  (5j).
Pale brownish solid, yield (1 mmol/10 mmol scale): 135 mg (58%)/
1.30 g (56%), mp 245-246 °C (H,0). "H NMR (300 MHz, DMSO-d,):
6 2.65-2.71 (4H, m, (CH,),C=0), 5.04-5.77 (2H, br s, NH,), 7.01
(1H, t, ’] = 7.4 Hz, H-4"), 7.28 (2H, t, *] = 7.9 Hz, H-3' and H-5),
7.59 (2H, d, *] = 7.6 Hz, H-2' and H-6'), 9.95 (1H, s, NHC=0),
11.57-12.32 (1H, br s, NH). *C NMR (75 MHz, DMSO-dg): 6 23.8
(CH,CH,C=0), 34.3 (CH,CH,C=0), 118.9 (C-2’ and C-6'), 122.8
(C-4'), 128.5 (C-3' and C-5'), 139.3 (C-1'), 156.7-159.8 (C-3 and C-5),
170.3 (C=0). IR (KBr) » 3464 (N-H), 3298 (N-H), 3164 (N-H), 1649
(C=0), 1596, 1498, 1317, 1258, 1166, 1095 cm*. Anal. caled for
C1,H13N50: C, 57.13; H, 5.67; N, 30.28. Found: C, 57.05; H, 5.82; N,
30.21.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(4-fluorophenyl)prop-
anamide (5k). White solid, yield (1 mmol/10 mmol scale):
139 mg (56%)/1.51 g (61%), mp 218-220 °C (MeOH). "H NMR
(300 MHz, DMSO-dj): 6 2.64-2.70 (4H, m, (CH,),C=0), 5.00-
5.77 (2H, br s, NH,), 7.12 (2H, dd, */gr = 8.9 Hz, *Jyy =
8.9 Hz, H-3’and H-5'), 7.61 (2H, dd, *Jyr = 5.1 Hz, *Juy =
9.1 Hz, H-2' and H-6'), 10.00 (1H, s, NHC=O0), 11.57-12.33
(1H, br s, NH). *C NMR (75 MHz, DMSO-ds): 6 23.7
(CH,CH,C=0), 34.2 (CH,CH,C=0), 115.1 (d, *Jcp =
21.6 Hz, C-2’ and C-6'), 120.6 (d, *Jcp = 7.5 Hz, C-2’ and C-6'),
135.7 (d, *Jcp = 2.2 Hz, C-1'), 157.7 (d, Ycr = 239.2 Hz, C-1'),
156.7 and 159.8 (C-3 and C-5), 170.2 (C=0). IR (KBr) v 3417
(N-H), 3325 (N-H), 3256 (N-H), 1660 (C=0), 1624, 1546,
1404, 1223, 1098, 1068 cm ™ *. Anal. caled for C,;H;,FN;O: C,
53.01; H, 4.85; N, 28.10. Found: C, 52.88; H, 4.96; N, 27.92.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(2-chlorophenyl)prop-
anamide (51). Yellowish solid, yield (1 mmol/10 mmol scale):
112 mg (42%)/1.59 g (60%), mp 179-181 °C (MeCN). 'H NMR
(300 MHz, DMSO-d): 6 2.71 (4H, m, (CH,),C=0), 5.00-5.81
(2H, br s, NH,), 7.16 (1H, dt, *J = 1.4 Hz, ’] = 7.7 Hz, H-4'),
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7.31 (1H, dt, *J = 1.4 Hz, *] = 7.7 Hz, H-5), 7.47 (1H, dd, Y] =
1.4 Hz, *J = 8.0 Hz, H-6'), 7.74 (1H, d, ] = 7.7 Hz, H-3'), 9.52
(1H, s, NHC=O0), 11.60-12.34 (1H, br s, NH). "*C NMR (75
MHz, DMSO-d): 6 24.0 (CH,CH,C=0), 34.0 (CH,CH,C=0),
125.9 (C-4' and C-6), 126.1 (C-5'), 127.2 (C-3'), 129.3 (C-2’),
135.0 (C-1), 156.7 and 159.7 (C-3 and C-5), 170.9 (C=0). IR
(KBr) » 3409 (N-H), 3337 (N-H), 3223 (N-H), 1653 (C=0),
1606, 1539, 1450, 1290, 1101, 1077 cm™'. Anal. caled for
C11H1,CIN;O: C, 49.73; H, 4.55; N, 26.36. Found: C, 49.67; H,
4.66; N, 26.22.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(3-chlorophenyl)prop-
anamide (5m). White solid, yield (1 mmol/10 mmol scale):
169 mg (64%)/1.97 g (74%), mp 209-210 °C (MeCN). "H NMR
(300 MHz, DMSO-d,): 6 2.68 (4H, m, (CH,),C=0), 4.99-5.78
(2H, br s, NH,), 7.07 (1H, ddd, %] = 1.0 Hz, *J = 2.1 Hz, *] =
7.9 Hz, H-4'),7.31 (1H, t, °] = 8.1 Hz, H-5'), 7.43 (1H, ddd, ] =
1.0 Hz, %] = 1.9 Hz, ’] = 8.3 Hz, H-6/), 7.82 (1H, dd, ¥ =
2.0 Hz, %] = 2.0 Hz, H-3"), 10.15 (1H, 5, NHC=0), 11.56-12.33
(1H, br s, NH). *C NMR (75 MHz, DMSO-ds): 6 23.6
(CH,CH,C=0), 34.3 (CH,CH,C=0), 117.2 (C-6'), 118.3 (C-
2'), 122.5 (C-4"), 130.2 (C-5'), 132.9 (C-3'), 140.7 (C-1), 156.8
and 159.9 (C-3 and C-5), 170.8 (C=0). IR (KBr) » 3417 (N-H),
3323 (N-H), 3243 (N-H), 1659 (C=0), 1625, 1597, 1481, 1286,
1097, 1068 cm ™ *. Anal. caled for C,;H;,CIN;O: C, 49.73; H,
4.55; N, 26.36. Found: C, 49.62; H, 4.63; N, 26.28.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(4-chlorophenyl)prop-
anamide (5n). White solid, yield (1 mmol/10 mmol scale):
171 mg (64%)/1.77 g (67%), mp 219-220 °C (MeOH). "H NMR
(300 MHz, DMSO-d,): 6 2.67 (4H, m, (CH,),C=0), 4.98-5.78
(2H, br s, NH,), 7.33 (2H, d, *J = 8.9 Hz, H-3' and H-5'), 7.62
(2H, d, *] = 8.9 Hz, H-2' and H-6'), 10.10 (1H, s, NHC=0),
11.56-12.32 (1H, br s, NH). "*C NMR (75 MHz, DMSO-d):
4 23.7 (CH,CH,C=0), 34.3 (CH,CH,C=0), 120.4 (C-2' and C-
6'), 126.3 (C-4'), 128.4 (C-3’ and C-5'), 138.2 (C-1'), 156.8 and
159.8 (C-3 and C-5), 170.6 (C=0). IR (KBr) » 3416 (N-H), 3323
(N-H), 3244 (N-H), 1656 (C=0), 1625, 1542, 1480, 1240,
1098, 1068 cm™'. Anal. caled for C;;H;,CINsO: C, 49.73; H,
4.55; N, 26.36. Found: C, 49.66; H, 4.61; N, 26.27.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(3-methylphenyl)prop-
anamide (50). Yellowish solid, yield (1 mmol/10 mmol scale):
113 mg (46%)/1.16 g (47%), mp 202-203 °C (MeCN). '"H NMR
(300 MHz, DMSO-de): ¢ 2.26 (3H, s, CH;), 2.65 (4H, m,
(CH,),C=0), 4.98-5.77 (2H, br s, NH,), 6.83 (1H, d, %] =
7.5 Hz, H-4), 7.15 (1H, t, > = 7.8 Hz, H-5"), 7.36 (1H, d, *] =
8.1 Hz, H-6'), 7.44 (1H, s, H-2'), 9.86 (1H, s, NHC=O0), 11.56~
12.32 (1H, br s, NH). "*C NMR (75 MHz, DMSO-dg): 6 21.1
(CH3), 23.8 (CH,CH,C=0), 34.3 (CH,CH,C=0), 116.1 (C-6'),
119.4 (C-2), 123.5 (C-4'), 128.4 (C-5), 137.7 (C-3'), 138.2 (C-
1'), 156.7 and 159.8 (C-3 and C-5), 170.3 (C=0). IR (KBr) v
3417 (N-H), 3323 (N-H), 3250 (N-H), 1660 (C=0), 1623,
1547, 1480, 1210, 1096, 1067 cm . Anal. caled for
C1,H5N50: C, 58.76; H, 6.16; N, 28.55. Found: C, 58.69; H,
6.22; N, 28.48.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(4-methylphenyl)prop-
anamide (5p). White solid, yield (1 mmol/10 mmol scale):
117 mg (48%)/1.05 g (43%), mp 221 °C (MeOH). "H NMR (300
MHz, DMSO-dg): 6 2.24 (3H, s, CH;), 2.63-2.70 (4H, m,

This journal is © The Royal Society of Chemistry 2018
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(CH,),C=0), 5.03-5.77 (2H, br s, NH,), 7.08 (2H, d, %] =
8.2 Hz, H-3' and H-5"), 7.47 (2H, d, ] = 8.4 Hz, H-2’ and H-6'),
9.86 (1H, s, NHC=O0), 11.56-12.31 (1H, br s, NH). "*C NMR
(75 MHz, DMSO-dg): 6 20.3 (CH3), 23.9 (CH,CH,C=0), 34.2
(CH,CH,C=0), 118.9 (C-2’ and C-6'), 128.9 (C-3' and C-5'),
131.6 (C-4), 136.8 (C-1'), 156.6 and 159.8 (C-3 and C-5), 170.1
(C=0). IR (KBr) » 3306 (N-H), 3192 (N-H), 3130 (N-H), 1663
(C=0), 1608, 1553, 1406, 1236, 1110, 1060 cm . Anal. caled
for C1,H,5N50: C, 58.76; H, 6.16; N, 28.55. Found: C, 58.68; H,
6.20; N, 28.48.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(4-isopropylphenyl) prop-
anamide (5q). White solid, yield (1 mmol/10 mmol scale):
162 mg (59%)/1.86 g (68%), mp 187-188 °C (MeCN). "H NMR
(300 MHz, DMSO-de): 6 1.17 (6H, d, *] = 6.9 Hz, (CH;),CH),
2.64-2.67 (4H, m, (CH,),C=0), 2.82 (1H, m, *] = 6.9 Hz,
(CH;),CH), 4.98-5.78 (2H, br s, NH,), 7.14 (2H, d, *J = 8.5 Hz, H-
3’ and H-5'), 7.49 (2H, d, ] = 8.5 Hz, H-2" and H-6'), 9.86 (1H, s,
NHC=O0), 11.56-12.32 (1H, br s, NH). >C NMR (75 MHz,
DMSO-de): 6 23.9 ((CH3),CH), 23.9 (CH,CH,C=O0), 32.7
((CH;),CH), 34.4 (CH,CH,C=0), 119.0 (C-2" and C-6"), 126.2 (C-
3’ and C-5'), 137.0 (C-1'), 142.8 (C-4"), 156.6 and 159.8 (C-3 and
C-5),170.2 (C=0). IR (KBr) » 3429 (N-H), 3306 (N-H), 3243 (N-
H), 1651 (C=0), 1594, 1532, 1414, 1251, 1093, 1065 cm " ". Anal.
caled for C{4,H4N5O: C, 61.52; H, 7.01; N, 25.62. Found: C,
61.40; H, 7.08; N, 25.54.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(3-methoxyphenyl)prop-
anamide (5r). Brownish solid, yield (1 mmol/10 mmol scale):
67 mg (26%)/812 mg (31%), mp 174-175 °C (MeCN). '"H NMR
(300 MHz, DMSO-d,): 6 2.65-2.70 (4H, m, (CH,),C=0), 3.34
(3H, s, OCHj), 5.07-5.76 (2H, br s, NH,), 6.60 (1H, ddd, *J =
1.1 Hz, *J = 2.5 Hz, °] = 8.0 Hz, H-6'), 7.11 (1H, ddd, */ = 1.5 Hz,
*J =1.5 Hz, *] = 8.3 Hz, H-4'), 7.18 (1H, t, *] = 8.0 Hz, H-5'), 7.32
(1H, dd, % = 2.0 Hz, ¥J = 2.0 Hz, H-2), 9.94 (1H, s, NHC=0),
11.58-12.30 (1H, br s, NH). "*C NMR (75 MHz, DMSO-dg): 6 23.6
(CH,CH,C=0), 34.3 (CH,CH,C=0), 54.8 (OCHj3), 104.7 (C-2'),
108.3 (C-4'), 111.2 (C-6'), 129.3 (C-5'), 140.4 (C-1), 156.8 and
159.4 (C-3 and C-5), 159.4 (C-3'), 170.4 (C=0). IR (KBr) v 3438
(N-H), 3304 (N-H), 3223 (N-H), 1670 (C=0), 1612, 1548, 1478,
1211, 1074, 1045 cm ™. Anal. caled for C,,H;5N50,: C, 55.16; H,
5.79; N, 26.80. Found: C, 55.04; H, 5.86; N, 26.68.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(4-methoxyphenyl)prop-
anamide (5s). White solid, yield (1 mmol/10 mmol scale):
131 mg (50%)/1.19 g (46%), mp 221-222 °C (MeOH). "H NMR
(300 MHz, DMSO-d,): 6 2.62-2.67 (4H, m, (CH,),C=0), 3.71
(3H, s, OCH3), 4.98-5.77 (2H, br s, NH,), 6.85 (2H, d, > = 9.1 Hz,
H-3' and H-5'), 7.49 (2H, d, *] = 9.0 Hz, H-2' and H-6'), 9.80
(1H, s, NHC=0), 11.55-12.31 (1H, br s, NH). ">C NMR (75 MHz,
DMSO-ds): 6 23.9 (CH,CH,C=O0), 33.7 (CH,CH,C=0), 55.0
(OCH3), 113.7 (C-3' and C-5'), 120.4 (C-2 and C-6'),132.5 (C-1'),
154.9 (C-4'), 156.6 and 159.8 (C-3 and C-5), 169.8 (C=O0). IR
(KBr) » 3416 (N-H), 3295 (N-H), 3135 (N-H), 1652 (C=0), 1548,
1515, 1407, 1249, 1067, 1029 cm . Anal. caled for C;,H;5N50,:
C, 55.16; H, 5.79; N, 26.80. Found: C, 55.05; H, 5.82; N, 26.73.
3-(5-Amino-1H-1,2,4-triazol-3-yl)-N-(4-acetamidophenyl)prop-
anamide (5t). Light grey solid, yield (1 mmol/10 mmol scale):
110 mg (38%)/1.28 g (44%), mp 267-269 °C (H,0). "H NMR (300
MHz, DMSO-d,): 6 2.01 (3H, s, CH;C=0), 2.63-2.68 (4H, m,
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(CH,),C=0), 4.97-5.77 (2H, br s, NH,), 7.44-7.51 (4H, m, H-2,
H-3', H-5', H-6), 9.82 (1H, s, NHC=0), 9.88 (1H, s, NHC=0),
11.55-12.32 (1H, br s, NH). "*C NMR (75 MHz, DMSO-dg): 6 23.8
(CH,CH,C=0), 33.7 (CH,CH,C=0), 119.2 (C-2/, C-3’, C-5' and
C-6'), 134.5 (C-4'), 134.5 (C-1'), 156.7 and 159.8 (C-3 and C-5),
167.8 (C=OCHj;), 170.0 (C=0). IR (KBr) v 3463 (N-H), 3306
(N-H), 3117 (N-H), 3030 (N-H), 1662 (C=O0), 1617, 1533, 1408,
1277, 1120, 1058 cm™ . Anal. caled for C;3H;4NgO,: C, 54.16; H,
5.59; N, 29.15. Found: C, 54.02; H, 5.64; N, 29.00.

X-Ray crystallographic analysis

Intensity data for 5j were measured for a colourless crystal (0.09
x 0.13 x 0.24 mm) at 100 K on an Rigaku/Oxford Diffraction
XtaLAB Synergy diffractometer (Dualflex, AtlasS2) fitted with
CuKo radiation (A = 1.54178 A) so that 0.« = 67.1°. Data
reduction and Gaussian absorption corrections were by stan-
dard methods.>* The structure was solved by direct-methods*
and refined on F> (ref. 23) with anisotropic displacement
parameters, C-bound H atoms included in the riding model
approximation and N-bound H atoms refined with N-H = 0.88-
0.91 + 0.01 A. A weighting scheme of the form w = 1/[¢*(F,?) +
(0.043P)” + 0.479P] where P = (F,> + 2F.%)/3) was introduced. The
molecular structure diagram showing 70% probability
displacement ellipsoids was generated by ORTEP for Windows>*
and the packing diagrams with DIAMOND.> Additional data
analysis was made with PLATON.*® In order to confirm the
location of the acidic-H atoms, an unrestrained refinement was
performed which yielded N-H bond lengths in the range 0.84(2)
to 0.898(18) A, thereby, conforming the original assignment.

Crystal data for 3-(5-amino-1H-1,2,4-triazol-3-yl)-N-(phenyl)
propanamide (5j). M = 231.26, monoclinic, P2,/n, a =
8.58760(10), b = 9.09790(10), ¢ = 14.20640(10) A, § =
100.8930(10)°, V = 1089.934(19) A®, Z = 4, D, = 1.409 g cm °,
F(000) = 488, u = 0.795 mm ™, no. reflns meas. = 25 310, no.
unique reflns = 1939 (R;,: = 0.028), no. reflns with I = 20(J) =
1882, no. parameters = 166, R (obs. data) = 0.032, wR, (all data)
= 0.081. CCDC deposition number: 1844791.
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