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al and metal alloy decorated TiO2

nanofiber photocatalysts for hydrogen generation†

Courtney Ligon, a Kaniece Latimer,a Zachary D. Hood, bc Sanuja Pitigala,a

Kyle D. Gilroyd and Keerthi Senevirathne *a

Photocatalytic nanofibers of TiO2 decorated with 2% metal (Pt, Pd, and Cu) and metal alloys (Pt2Pd and PtCu)

were synthesized by the polymer-assisted electrospinning method, followed by microwave-assisted ethylene

glycol reduction. Structurally, nanofibers calcined at 500 �C adopted an anatase phase along with a remnant

rutile phase. Morphological, structural, and photocatalytic studies were carried out using scanning and

transmission electron microscopy equipped with an energy dispersive spectroscopy attachment, X-ray

powder diffraction, X-ray photoelectron spectroscopy, and photocatalytic hydrogen generation under UV-

Vis irradiation. The calcined nanofibers were found to have a diameter of 60.0 � 5.0 nm and length of up

to several microns. High resolution TEM imaging suggests that the nanofibers are composed of

agglomerated individual TiO2 nanoparticles, which are tightly packed and stacked along the axial direction

of the nanofibers. PXRD studies suggest alloy formation, as evident from peak shifting towards higher two-

theta values. Surface modification with co-catalysts is shown to contribute considerably to the rate of

photocatalytic H2 generation. The amount of H2 generated gradually increases as a function of time. The

2%Pt2Pd/TiO2 catalyst shows the highest rate of H2 generation (4 mmol h�1 gramcatalyst), even higher than

that of 2%Pt/TiO2 nanofiber photocatalyst (2.3 mmol h�1 gramcatalyst), while 2%Cu/TiO2 nanofiber

photocatalyst shows the least activity among the decorated catalysts (0.04 mmol h�1 gramcatalyst).
Introduction

The current drive towards developing efficient photocatalysts
demands the engineering of advanced functional materials. A
wide range of inorganic (i.e., metal oxides, nitrides, suldes,
phosphides, and some nonmetal nitrides) catalysts have been
explored as photocatalysts for energy conversion and environ-
mental pollution remediation.1–7 The choice of photocatalytic
material depends on many variables, including band gap (BG)
energy, stability under irradiation, cost effectiveness, and ease of
preparation. Additionally, lowering the recombination proba-
bility of photogenerated electron–hole carriers and making them
readily available for water oxidation and reduction reactions are
of high importance. Photocatalytic water splitting using semi-
conductors is initiated by the direct absorption of incident light,
the energy of which is greater than the band gap energy of the
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photocatalyst. As a result of the photon absorption, electrons and
holes (photocarriers) are created. The electrons (e�) excited from
valence band (VB) to conduction band (CB) reduce H+ ions into
H2 gas (HER, eqn (1)) while holes (h+) oxidize water into O2 (OER,
eqn (1)). This process is governed by intrinsic factors of photo-
catalyst such as the position of energy bands, band gap, crystal-
linity ofmaterial, availability of co-catalysts etc.Most importantly,
potentials of the bottom level of CB and the top level of VB are
required to be more negative (relative to H+/H2 redox potential)
and positive (relative to redox potential of O2/H2O), respectively.
Ultimately, the redox potential of water (1.23 eV) needs to be
within the band gap energy of the photocatalysts if it is to func-
tion as a water splitting catalyst.8

2H+ + 2e� / H2 (HER) (1)

H2Oþ 2hþ/
1

2
O2 þ 2HþðOERÞ (2)

H2O/
1

2
O2 þH2ðoverallÞ (3)

The band gap of the catalyst, i.e., its electronic structure, is
strongly associated with the photon energy absorption and
electron excitation to create photocarriers. Concurrently,
water oxidation and H+ reduction are mostly dependent upon
the co-catalysts or promoters loaded on the photocatalyst.3 It is
RSC Adv., 2018, 8, 32865–32876 | 32865
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quite challenging to develop low band gap semiconductors
with sufficient stability and surface properties that lead to
higher activity. Furthermore, preventing the recombination of
photocarriers, which is equally responsible for low catalytic
activity of photocatalysts, presents its own challenges as well.

Numerous synthesis and fabrication methods have been
developed to synthesize one dimensional (1D) nanostructures9

because they are uniquely positioned to be used in various
applications. This is due to their high aspect ratio, superior
electron survivability,10 and well-dened unidirectional
channel for electrical carrier transport.11 For these reasons, 1D
nanostructures are presumed to have potential to be used in
applications in a wide range of areas, including photocatalysis,
solar cells, heterogeneous catalysis, and sensors. The use of
nanowires or nanobers, particularly in photocatalytic water
splitting, is advantageous over bulk semiconductor materials
due to their reduced radial dimension and increased surface
to volume ratio.12 These properties facilitate active and rapid
diffusion of photogenerated electron–hole charge carriers to
the catalyst surface. Additionally, the nanober surface func-
tions as an excellent substrate for secondary materials, in that
it can be easily decorated with co-catalysts, which facilitate
effective transfer of photogenerated carriers from the catalyst
to redox reactions.13–15 It has also been reported that dimen-
sionally unconstrained nanobers are benecial in vectorial
transport of photogenerated charge carriers through grain
boundaries, resulting in enhanced separation of electron–hole
pairs compared to nanoparticles.13,16 This process is important
for avoiding photogenerated electron–hole recombination.

A wide range of co-catalysts, including noble metals (Pt,17,18

Au,19 Rh,20), core–shell types (Ni@NiO,21,22 Rh@Cr2O3 (ref. 21)),
metal oxides (NiO, RuO2 (ref. 3 and 23)), and even doped co-
catalysts (Rh2�yCryO3 (ref. 24)) has been studied and has
shown signicant promise in enhancing photocatalytic activity
towards overall water splitting and H2 generation. It has been
reported that the physicochemical structure and dispersion of
co-catalysts play a vital role in enhancing photocatalytic activity.
For instance, (ZnxGa1�x)(OxN1�x) loaded with Rh@Cr2O3 core–
shell co-catalyst has produced 6 times more H2 than the same
core–shell structure in which the core was replaced with Pt, and
12 times more H2 than a Pd core.21 Even though metal alloys
have not been frequently chosen as co-catalysts in photo-
catalysts, they have been studied as cathode catalysts in oxygen
reduction reaction (ORR) in low temperature proton exchange
membrane (PEM) fuel cells.25–29 In relation to this study, liter-
ature precedence is available in terms of the synthesis of Ptx-
Niy,27,30,31 PtxCoy,26 PtxCuy,25 and PtxPdy32 nanoparticles. Pt3Pd
alloy catalysts have shown enhanced catalytic activity and
stability, compared to Pt only catalysts in PEM fuel cells, due to
better electronic properties of Pd, the alloying effect, and
particle size.32

In this study, we discuss the fabrication of TiO2 nanobers by
employing polymer-assisted electrospinning method and deco-
ration of nanober surfaces with noble metal and metal alloy co-
catalysts. A polymer-assisted electrospinning technique was
employed to fabricate TiO2 nanobers according to methods
described elsewhere.33,34 A microwave-assisted polyol reduction
32866 | RSC Adv., 2018, 8, 32865–32876
method was used to deposit metal and metal alloy co-catalysts.
The photocatalytic H2 production activities from methanol–
water mixture by TiO2 nanobers decorated with co-catalysts Pt,
Cu, Pd, PtCu, and Pt2Pd have been studied. Numerous analytical
and photocatalytic studies were performed to understand and
compare photocatalytic behavior of TiO2 nanober photo-
catalysts. From this work, a detailed comparison of photo-
catalytic activities as a function of the nature of co-catalysts has
been made. Herein, we report the physico-chemical character-
ization of TiO2 nanober photocatalysts and the effect of co-
catalysts, especially metal alloy co-catalysts toward photo-
catalytic H2 generation.
Experimental section
Synthesis of TiO2 nanober photocatalyst

TiO2 nanober photocatalysts were fabricated by electro-
spinning a solution of titanium isopropoxide, which is
a common sol–gel precursor used to synthesize TiO2, as previ-
ously reported with slight modications.35 Briey, 0.30 g of PVP
polymer was dissolved in 7.0 mL of abs. ethanol by stirring. In
a separate ask, the precursor solution was prepared by
dispersing 4.0 mL of Ti(OiPr)4 (13.0 mmol) in a mixture of
7.5 mL absolute ethanol and 3.0 mL of glacial acetic acid. The
spinning solution was prepared by slowly adding the viscous
polymer solution into the precursor solution while magnetically
stirring. The transparent electrospinning solution was quickly
loaded into a 10.0 mL glass syringe, which is attached to
a stainless-steel needle (18 gauge) through plastic tubing. The
needle was connected to the anode of the DC high-voltage
power supply (Gamma High Voltage Research, Ormond
Beach, Florida) and a sheet of aluminum foil was used as the
sample collector. The electrospinning process was carried out
by applying 15 kV and a 1.0 mL h�1

ow rate while maintaining
the distance between the tip of the needle and the aluminum
foil to be 6 cm. As-prepared PVP/Ti(OiPr)4 composite nanobers
were le overnight for hydrolysis and followed by calcination at
500 �C for 3 hours in air.
Metal nanoparticle deposition

TiO2 nanober photocatalyst was deposited with 2 wt% of pure
metal (Cu, Pt, and Pd) ormetal alloy (Pt2Pd and PtCu) co-catalysts
by employing a microwave-assisted polyol reduction method.
Briey, 0.40 g of photocatalyst was dispersed in 20.0 mL of
ethylene glycol by sonication in order to uniformly disperse the
photocatalyst. Next, required amounts of metal precursors were
dissolved in �2 mL of ethylene glycol and mixed with photo-
catalyst dispersion by stirring overnight in order to achieve
homogeneous distribution of metal precursors. Due to the diffi-
culty of dissolving Pd precursor in pure ethylene glycol, a mixture
of water/ethylene glycol was used. The reduction of the metal
precursors was carried out under microwave irradiation for 2
minutes with 10 s intervals. The co-catalyst loaded samples were
recovered by centrifugation, and a series of washings with de-
ionized water was performed aerwards to remove ethylene
glycol. The samples were dried in an oven at 70 �C overnight.
This journal is © The Royal Society of Chemistry 2018
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Physical characterization

Powder X-ray diffraction (PXRD). X-ray diffraction patterns
were collected on a PANalytical X’Pert Pro with a Cu Ka X-ray
tube (l ¼ 1.54184 Å). All data were processed with HighScore
Plus, a soware package supplied by PANalytical. PXRD data
were collected at room temperature aer dispersing the
samples on a quartz slide.

Scanning electron microscopy (SEM). Scanning electron
microscopy (SEM) images were collected on a Zeiss Merlin with
a gun acceleration set at 20.0 kV. Energy-dispersive X-ray spec-
troscopy (EDS) elemental mappings were collected with
a Bruker EDS system. Samples were prepared by dispersing each
powder sample on carbon-conductive tape and adhered to an
SEM stub. Transmission electron microscopy (TEM) images
were obtained on a Zeiss LIBRA 200 FEG transmission electron
microscopy operating at 200 kV.

Thermogravimetric analysis (TGA). A Pyris 1 series ther-
mogravimetric analyzer was used to determine thermal stability
and crystallization temperature of TiO2 nanober photo-
catalysts. A heating prole was set to heat the nanobers pho-
tocatalysts to 800 �C with a temperature ramp rate of 5 �Cmin�1

in a continuous ow of air.
Surface area analysis. Brunauer–Emmett–Teller (BET)

surface area measurements were collected on a Micromeritics
Gemini VI Surface Area and Pore Density Analyzer at 77 K.
Powder samples were outgassed at 120 �C for 12 hours prior to
analysis. The specic surface area and pore size distribution of
samples were evaluated using the BET method.

X-ray photoelectron spectroscopy. X-ray photoelectron spec-
troscopy (XPS) spectra were collected for each powder sample
on a Thermo K-Alpha XPS system with a spot size set at 400 mm
and an energy resolution of 0.1 eV. Each spectrumwas corrected
for charging effects by shiing the peaks relative to the C1s peak
(284.8 eV). Thermo Avantage Soware was used for all XPS
analysis, which was provided through Thermo Scientic.

Photocatalytic experiments. The photocatalytic activities
nanobers photocatalysts were evaluated using the following
procedure. The photocatalytic reaction was carried out using an
outer-irradiation reaction cell connected to an inert gas line
(argon). Nanober photocatalyst powder (0.1 g) was dispersed
in a mixture of methanol and water (1 : 5 v/v ratio) and stirred
for �60 min while purging with argon prior to irradiation. To
initiate the photocatalytic reaction, the obtained photocatalyst
suspension was then irradiated with a 300 W Xenon lamp
without the use of bandpass lters. At a given irradiation time
interval, a 50 mL sample of gas was drawn from the headspace of
the photocatalytic cell using a gas-tight syringe and analyzed
with a Shimadzu GC 8A tted with a 5 Å mol-sieve column and
thermal conductivity detector (TCD).
Results and discussion

Herein, we report the synthesis, characterization, and applica-
tion of TiO2 nanober photocatalysts, decorated with noble
metal and metal alloy co-catalysts, prepared by electrospinning
method combined with microwave-assisted polyol reduction. In
This journal is © The Royal Society of Chemistry 2018
electrospinning, when proper conditions are applied, the
charged droplet stretches into a stable jet and then forms an
elongated ber, which deposits on the collector as a nanober
mat. TiO2 nanobers were synthesized by the spinning of tita-
nium isopropoxide (Ti(OiPr)4) and poly(vinylpyrrolidone) (PVP)
polymer mixture dispersed in absolute ethanol. The titanium
alkoxide precursor undergoes hydrolysis when it is in contact
with moisture and forms a gel. However, the hydrolysis process
must be controlled and precipitation needs to be avoided
during the solution preparation and spinning process in order
to maintain a continuous ow of precursor solution. Addition of
glacial acetic acid helps to hinder hydrolysis process and also
helps to manipulate porosity of the nanobers.36 The PVP
polymer plays a role as a sacricial template and also maintains
the viscosity in the spinning solution.9 Proper regulation of
viscoelastic behavior of the spinning solution is essential in
order to produce well-formed nanobers. It is reported that too
low polymer concentrations lead to bead formation as well as
non-uniform nanobers.37 The low viscoelasticity of the spin-
ning solution may cause disruptions in the spinning jet and
rather act as electrospray than electrospinning. In contrast, too
high polymer concentrations result in non-uniform, thicker
bers as a result of inadequate stretching and thinning
process.37,38 Therefore, it is vital to adjust solution viscosity by
adjusting the polymer content in order to fabricate uniform
nanobers. The distance from the tip of the spinneret to the
substrate is an essential parameter as well and need to be
properly adjusted. The distance and the ber diameter have an
inverse relationship (i.e. higher the distance smaller the ber
diameter) possibly because longer distance offers adequate time
for thinning process.39 While the reaction mixture must be non-
aqueous, the as-spun bers still must undergo hydrolysis;
therefore, environmental moisture was allowed to drive hydro-
lysis of as-spun bers le under ambient air overnight before
calcining.

The conditions applied in the spinning process dene the
nature of nanobers produced. It is important to optimize the
synthetic parameters, which vary frommaterial to material. The
distance from spinneret to the substrate (current collector),
applied voltage, and ow rate are some of the key factors that
affect the nanober morphology and thickness. It is reported
that applied voltage higher than that of optimal causes bead
formation but does not readily reduce the ber diameter.37 It is
expected to obtain higher yields at a higher ow rate. However,
it is evident that higher ow rates signicantly increase the ber
diameter. In this study, nanober fabrication was carried out by
applying 15 kV, 6 cm spinneret to substrate distance, and
1.0 mL h�1

ow rate.
Thermogravimetric analysis (TGA) of uncalcined nanobers

(Fig. 1a) shows rst weight loss (z20%) upon heating up to
�200 �C in air, which can be attributed to the removal of
surface-adsorbed moisture and solvents present due to incom-
plete drying. The second major weight loss (z36%) between
300 �C and 500 �C is due to desorption and decomposition of
poly(vinylpyrrolidone) polymer (PVP), which is an integral part
of the spinning mixture. Aer 500 �C, the TGA curve levels off,
indicating a formation of a thermally stable material and
RSC Adv., 2018, 8, 32865–32876 | 32867
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Fig. 1 TGA and DTA plots of (a) calcined and uncalcined TiO2 nanofibers acquired by heating in air. (b) FTIR spectra of calcined and uncalcined
TiO2 nanofibers.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Se

pt
em

be
r 

20
18

. D
ow

nl
oa

de
d 

on
 2

/7
/2

02
6 

3:
07

:2
5 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
removal of all organic moieties from nanober catalyst. There-
fore, all as-prepared nanobers samples were calcined at 500 �C
in air in order to remove adsorbed solvents and the PVP polymer
and to form a stable crystalline catalyst. In comparison, the TGA
weight loss curve recorded for pre-calcined nanobers indicates
little or no weight loss. The TGA data correlate well with FT-IR
patterns acquired for uncalcined and calcined nanobers
(Fig. 1b). The differential thermal analysis (DTA) curve, shown
in Fig. 1a, indicates two prominent transformations that
correspond with TGA curve. The exothermic peak at 500 �C
represents the formation of anatase TiO2 phase. The FT-IR
spectrum of uncalcined as-prepared nanobers shows several
vibrational bands, which are originating from PVP polymer. The
band at 1654 cm�1 can be attributed to C]O and N–C
stretching frequencies while bands at 1531 and 1420 cm�1 are
ascribed to CH deformation of cyclic CH2 groups. In addition,
the peak that appears at 1289 cm�1corresponds to amide C–N
vibration.40 On the other hand, the FT-IR spectrum of the
calcined-nanober photocatalyst is featureless and agrees with
TGA data.
Fig. 2 PXRD patterns of TiO2 nanofiber photocatalysts (a) deposited wit
and 2%PtCu/TiO2 nanofiber photocatalysts in the region 20� # 2q # 50

32868 | RSC Adv., 2018, 8, 32865–32876
The powder X-ray diffraction (PXRD) technique was used to
investigate the crystal structure of nanobers and to elucidate
alloying. TiO2 nanober photocatalysts deposited with 2%
metal co-catalysts show no diffraction peaks originating from
metal or metal alloy co-catalysts due to the presence of very
small percentage of respective co-catalyst (Fig. S1†). In order to
solely elucidate the alloying effect, photocatalysts were depos-
ited with 10% metal or metal alloy co-catalysts under similar
reaction conditions using polyol reduction method, and the
XRD patterns of those photocatalysts are shown in Fig. 2a.
Presence of sharp peaks in XRD pattern indicate that the
calcination in air at 500 �C turns as-synthesized nanobers into
a polycrystalline phase of anatase-TiO2 along with some
residual rutile-phase (Fig. 2a). The presence of rutile-TiO2 may
have an added benet because its band gap is 0.2 eV lower than
that of anatase-TiO2 (3.0 vs. 3.2 eV), thus the electron excitation
from valence band (VB) to conduction band (CB) is easier in the
rutile phase. Due to the fact that anatase has a slightly higher
CB, the conduction band electrons can be effectively transferred
to CB of rutile TiO2. This process tends to increase the charge
separation and decrease recombination.16 Fig. 2b shows
h various co-catalysts. (b) PXRD patterns of 2%Pt/TiO2, 2%Pt2Pd/TiO2,
�.

This journal is © The Royal Society of Chemistry 2018
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magnied XRD patterns of 2%PtCu/TiO2, 2%Pt/TiO2, and 2%
Pt2Pd/TiO2 nanober photocatalysts. The XRD pattern of 2%
PtCu/TiO2 shows the diffraction peaks corresponding to (111)
and (200) facets of a typical face-centered cubic (fcc) crystal
structure of Pt–Cu alloy. All the resulting diffraction peaks of the
Pt–Cu alloy of PtCu/TiO2 nanober photocatalyst are shied to
higher 2q angles in comparison to diffraction peaks of pure Pt
(JCPDS standard 65-2868) and are located between the diffrac-
tion peaks originated from pure Pt and Cu. This observation
indicates the formation of Pt–Cu alloy. The peak shiing can be
ascribed to lattice parameter contraction in Pt–Cu alloy, which
originates from partial substitution of bigger Pt atoms (atomic
radius 1.77 Å) with smaller Cu atoms (atomic radius 1.45 Å).41

Similar to the Pt–Cu alloy, the XRD pattern of the 2%Pt2Pd/TiO2

nanober photocatalyst shows a positive shi towards higher 2q
angles with respect to the peak positions in 2%Pt/TiO2 nano-
ber catalyst (Fig. 2b). Again, the shi of Pt–Pd diffraction peaks
is indicative of alloy formation between Pt and Pd, which is
caused by the lattice contraction as a result of partial incorpo-
ration of smaller Pd atoms (atomic radius 1.69 Å) with bigger Pt
atoms.42 The degree of peak shi in Pt–Pd alloy is smaller than
that of Pt–Cu alloy due to the fact that the difference of atomic
radii of Pt and Pd is quite small compared to the atomic radii
difference between Pt and Cu.

Morphology and microstructure of photocatalysts were
investigated using scanning electron and transmission electron
microscopy (SEM and TEM). The SEM image of TiO2 nanober
photocatalyst, shown in Fig. 3, is displaying the morphology of
the calcined bers. The TiO2 nanobers are uniform in the long
axial direction with an average diameter of approximately 60.0
� 5.0 nm calculated by analyzing at least 150 individual bers.
The electrospinning method facilitates the formation of longer
Fig. 3 SEMmicrographs of (a) TiO2 nanofiber photocatalyst produced by
sonicated; TEM micrographs of (c) Pt co-catalyst deposited calcined T
shows TiO2 nanoparticle stacking.

This journal is © The Royal Society of Chemistry 2018
nanobers, perhaps in centimeter lengths, if proper synthesis
conditions are maintained to control the continuity of spinning
process. The low magnication SEM image of TiO2 nanobers
produced by calcination in air at 500 �C indicates that the bers
can be grown into millimeter lengths along the ber axial
direction (Fig. 3a). Literature reports suggest that the bers
produced from electrospinning process are more exible,37,43

and the Young's modulus of bers is reported to be improved
even though the tensile strength evidently decreases with
calcinations.44 However, it is possible for calcined nanobers to
break into smaller segments of bers during applied stress such
as sonication. In this study, the calcined TiO2 bers were
sonicated in ethylene glycol for about one hour prior to co-
catalyst deposition. We have observed that sonication has an
impact on ber length and it breaks bers into smaller bers
(Fig. 3b). However, even aer this fragmentation, ber lengths
are still in the micron range.

High resolution SEM and TEM images (Fig. 3b inset and
Fig. 3d, respectively) clearly show that the electrospun nano-
bers are made from agglomerated individual TiO2 nano-
particles, which are tightly packed and stacked along the axial
direction of the nanobers. Therefore, TiO2 nanobers are ex-
pected, as suggested by literature,16 to exhibit similar XRD
patterns and XPS spectra as of TiO2 nanoparticles. The inset in
Fig. 3b shows a high magnication SEM image of TiO2 nano-
bers, which exhibits a porous nature in calcined bers. The
decomposition of the PVP polymer and residual organic
solvents and their removal as carbon dioxide during calcina-
tions are responsible for the porosity of TiO2 nanobers.
However, surface area of the photocatalysts collected by
employing N2 adsorption–desorption isotherms are quite low
compared to literature-reported surface area values16,45 and are
calcination at 500 �C and (b) TiO2 nanofiber photocatalyst calcined and
iO2 nanofiber photocatalyst; and (d) high magnification image, which

RSC Adv., 2018, 8, 32865–32876 | 32869
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in the range of 15–25 m2 g�1. As noted by previous publications,
the surface area of TiO2 decreases with increased annealing
temperature. In the current study, TiO2 nanobers were
annealed at 500 �C. In comparison to previous reports, the
average diameter of the TiO2 nanobers was larger, which
explains the decreased surface area per gram. Presence of co-
catalyst (e.g. Pt) is evident from dark spots observed in TEM
micrograph (Fig. 3c).

SEM imaging combined with EDS elemental mapping of the
co-catalyst deposited TiO2 nanober photocatalysts clearly
show the distribution of noble metal co-catalysts on TiO2

nanober surface. Fig. 4 shows a SEM image of 2%Pt2Pd/TiO2

nanober photocatalyst along with its EDS elemental mapping
data. Fig. 4 clearly depicts the presence of Pt and Pd particles
and their homogenous distribution over the nanober surface.
The presence of co-catalysts was evidenced by XRD analysis, but
showed small diffraction peaks due to their presence in very
minute amounts. Nevertheless, EDS elemental mapping data
coupled with XPS data undoubtedly indicate the presence of co-
catalysts on the surface of the TiO2 nanober photocatalysts.
Similar distribution of Pt, Pd, and Cu in Pt–Cu alloy, Pt, Pd, and
Cu co-catalysts was observed and respective elemental mapping
data are provided in ESI (Fig. S2†).

XPS elucidates the surface chemistry of the electrospun TiO2

nanober photocatalysts decorated with various metal and
noble metal co-catalysts; Cu, PtCu, Pt2Pd, and Pd (Fig. 5). As
evidenced by XPS, the oxidation state of the Ti in the TiO2

nanober is Ti4+ for most samples; however, in the TiO2

nanobers loaded with Cu co-catalyst, the surface of the TiO2

become partially reduced to Ti3+ (Fig. S3†). Introduction of the
Ti3+ defect is possibly due to the ethylene glycol reduction
method utilized to decorate TiO2 nanober surface with metal
nanoparticles.46 Shown in Fig. 5a–b are XPS spectra of Pt2Pd co-
catalysts. Peaks located at 70.9 and 74.3 eV in Fig. 5a corre-
sponds with Pt 4f7/2 and Pt 4f5/2 binding energies, while peaks
appear at 335.0 and 340.3 eV in Fig. 5b originates from Pd 3d5/2
and Pd 3d3/2, respectively. This is further evidence of coexis-
tence of Pt and Pd. Furthermore, most samples show oxidation
on the surface of the co-catalyst. XPS also revealed that the
surface of the 2%Pt2Pd/TiO2 catalyst contained both oxidized
and metallic Pt and Pd species. The two peaks located at 71.93
and 75.83 eV can be attributed to the presence of PtO, while
PtO2 presence is evidenced by two peaks appearing at 73.76 and
77.66 eV (Fig. 5a). Similarly, Pd also shows oxidation, which is
Fig. 4 SEM image of 2%Pt2Pd/TiO2 nanofiber photocatalyst with related

32870 | RSC Adv., 2018, 8, 32865–32876
evidenced by the two peaks at 335.73 and 341.2 eV (Fig. 5b). The
surface oxidation of the noble metal-based co-catalysts can be
explained on the basis of the utilized chemical synthesis for the
photocatalyst fabrication. Microwave-assisted polyol synthesis,
which was utilized to decorate TiO2 nanober photocatalysts
with metal or metal alloy co-catalyst, was conducted in an open
container using ethylene glycol as the reducing agent, in
a microwave designed for domestic use. It is highly possible for
atmospheric surface oxidation to occur under microwave heat-
ing because the localized temperature exceeds the boiling point
of ethylene glycol. In Fig. 5a, the observed Pt 4f binding energy
is lower (by ca. 0.3 eV) than the standard binding energies of
bulk Pt (71.2 eV (ref. 47)). This peak shi can be attributed to
alloy formation as a consequence of electronic interactions
between Pt and Pd atomic orbitals.48

In the XPS spectra for the alloyed 2%PtCu/TiO2 catalyst
(Fig. 5c and d), Pt 4f7/2 and Pt 4f5/2 peaks appear along with Cu
2p3/2 (932.7 eV) and Cu 2p1/2 (952.6 eV), indicating the coexis-
tence of Pt and Cu. Similar to the Pt2Pd case, PtCu alloy
formation can be conrmed due to peak shi of Pt 4f7/2 and 4f5/
2 peaks by ca. 0.2 eV towards lower binding energy, as compared
to peak positions of bulk Pt. The peak shi is caused by the
interaction between Pt and Cu and their varying electro nega-
tivities (2.28 and 1.90, respectively).49 The surface oxidation of Pt
is apparent, with the presence of both PtO and PtO2 species,
while the Cu remains in its reduced state. However, XPS data of
2%Cu/TiO2 nanober photocatalyst (Fig. 5f) clearly show that
the surface of the Cu co-catalyst is primarily composed of Cu2O
(Cu 2p3/2 at 933.2 eV and Cu 2p1/2 at 952.9 eV) and CuO (Cu 2p3/2
at 935.1 and Cu 2p1/2 at 955.0 eV). The two different behaviors of
copper can be ascribed to the catalytic reduction of Cu2+ in the
presence of pre-formed Pt nuclei. Hence, reduced form of
copper is more stable in Pt–Cu alloy than in standalone copper
nanoparticles.41 Similarly, the 2%Pd/TiO2 nanober photo-
catalyst contained surface palladium oxide species, as seen in
Fig. 5e. Interestingly, aer the 2%Pd/TiO2 catalyst was used for
photocatalysis, it contained a similar concentration of surface
palladium oxide and a similar oxidation state of the TiO2

support, suggesting that the catalyst support is both chemically
and photochemically stable under UV irradiation and in the
presence of water.

The photocatalytic activity of TiO2 nanobers decorated
with noble metal and metal alloy co-catalysts was evaluated by
investigating hydrogen generation under UV-Vis irradiation in
EDS mapping and EDS spectrum of Ti, O, Pd, and Pt.

This journal is © The Royal Society of Chemistry 2018

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra04148b


Fig. 5 XPS spectra of the co-catalyst deposited TiO2 nanofiber photocatalysts.
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a 5 : 1 (v/v) water-methanol mixture. The photocatalytic
experiments were carried out at room temperature, where
temperature of the photocatalytic cell was controlled using
a water jacket around the cell. A photocatalytic cell containing
catalyst dispersion was purged with argon for one hour prior to
the experiment. The experiment was conducted in the pres-
ence of methanol as sacricial agent (hole-scavenger). Fig. 6a
shows photocatalytic hydrogen generation in millimole H2 per
gram of catalyst as a function of time, and Fig. 6b depicts
amount of H2 formed in millimole per milligram of noble
metal co-catalyst. Pristine TiO2 nanobers, without co-
catalysts show little or no photocatalytic activity in terms of
This journal is © The Royal Society of Chemistry 2018
hydrogen generation under UV-Vis irradiation, which is
a common behavior shown by most of hydrogen generating or
water splitting photocatalysts.24 However, co-catalyst depos-
ited photocatalysts clearly show hydrogen generation and
prove co-catalysts play a signicant role to generate consider-
able amount of H2 gas. The amount of H2 generated gradually
increases as a function of time for all the catalysts tested.
However, it may be possible to observe a plateau due to
increase in pressure within the photocatalytic cell as H2 gas
accumulates. Among the photocatalysts tested, the nanober
photocatalyst with 2%Pt2Pd co-catalyst shows the highest H2

generation (4 mmol h�1 gramcatalyst), even higher than that of
RSC Adv., 2018, 8, 32865–32876 | 32871

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra04148b


Fig. 6 Photocatalytic hydrogen generation by co-catalyst deposited TiO2 nanofiber photocatalysts as a function of time. Reaction conditions:
catalyst 0.10 g; distilled water : methanol in 5 : 1 ratio, 50 mL; 300 W Xe lamp.
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2%Pt/TiO2 nanober photocatalysts; meanwhile, 2%Cu/TiO2

nanober photocatalyst was the least active (0.04 mmol h�1

gramcatalyst). The amount of H2 generated by 2%Pt2Pd/TiO2

nanober photocatalyst is approximately 45% higher than the
amount of H2 generated by 2%Pt/TiO2 nanober photo-
catalyst. The exact reason for the enhanced catalytic behavior
of 2%Pt2Pd/TiO2 nanober photocatalyst is not known at this
point. The function of Pt cocatalyst is to cause adsorption of
H+ from the photolyte, to facilitate the adsorbed protons to
combine with photogenerated electron on the surface of the
Pt, and to cause molecular H2 to be produced.50–52 Alloying Pt
with Pd can ne-tune the co-catalyst's hydrogen adsorption
free energy, thus increasing the hydrogen adsorption rate
leading into higher photocatalytic activity towards hydrogen
generation. Gonzalez et al. has reported that the alloying of Pt
with Pd has reportedly decreased the activation energy of Pt by
20% (ref. 42) in Pt–Pd alloy catalyst leading to a higher activity
in terms of ethanol oxidation in comparison to Pt only catalyst.
Pt–Pd catalyst is not only active in molecular hydrogen
generation but also in hydrogenation of organic molecules. As
reported by Huang et al., Pt2Pd catalyst has shown the highest
turnover frequency (TOF) out of various Pt–Pd catalysts tested
for the hydrogenation of nitrobenzene.53 It is true that Pt is one
of the most desirable cocatalyst because hydrogen adsorption
energy on Pt is optimal. However, alloying of Pt with Pd may
further ne-tune hydrogen adsorption energy of Pt–Pd cocat-
alyst leading to improved photocatalytic hydrogen generation.
It is reported that alloying of Pt and Pd with a mol ratio of 2 : 1
(�30 mol% Pd) leads to a maximum hydrogen generation and
turnover frequency as a result of optimization of hydrogen
adsorption energy of Pt by Pd.50 Furthermore, Pt/Pd binary
structures are reported to be tolerant to self-poisoning.54 As
evident from literature reported photocurrent measure-
ments,50 Pt–Pd cocatalyst exhibits enhanced interfacial elec-
tron transfer and decreased electron–hole recombination.
Therefore, based on literature reported facts about Pt–Pd
cocatalyst and the observed enhanced photocatalytic hydrogen
generation data collected for 2%Pt2Pd/TiO2 nanober photo-
catalyst, we can assume that the Pt2Pd cocatalyst effectively
reduces photogenerated electron–hole recombination and
32872 | RSC Adv., 2018, 8, 32865–32876
improves interfacial electron transfer leading to higher pho-
tocatalytic activity. Pd is also known to act as a catalytically
enhancing agent through modifying the electronic properties
of Pt. We assume that a similar phenomenon is taking place
with respect to photocatalytic H2 generation by 2%Pt2Pd/TiO2.
Even though there is clear positive effect of using Pt2Pd alloy
co-catalyst, the alloying of Pt with Cu shows no signicant
enhancement of hydrogen generation, and observed activity is
signicantly lower than that of Pt co-catalyst. The activity of
functional cocatalysts involves the hydrogen evolution
pathway suggested by Zhu and co-workers,55 which can be
attributed to three steps; successful surface capture of H
atoms through strong H atom adsorption energy, generation
of molecular H2 through reduction by photogenerated elec-
trons and the release of molecular H2 from the catalyst
surface. It is reported that H atom absorption energy of Cu is
relatively small compared to noble metals such as Pt and Pd
while molecular H2 adsorption energy is smaller (2.49 eV and
0.001 eV, respectively).56 This in fact suggests that Cu is prone
to release molecular H2 quite easily but lacks strong capture of
H atoms, which is essential in hydrogen reduction reaction.
The observation of relatively low photocatalytic activity by 2%
PtCu/TiO2 nanober photocatalyst may be attributed to the
fact that alloying of Pt with Cu obscures the electronic prop-
erties of Pt such as higher H atom adsorption energy.

The normalized H2 generation per milligram of noble metal
co-catalyst (Fig. 6b) of 2%PtCu/TiO2 suggests that the activity is
similar to the activity shown by 2%Pd/TiO2 nanober photo-
catalyst. As was indicated in Fig. 6a, a gradual increase in H2

generation was observed throughout the time period in which
catalytic activity was tested. The photocatalytic activity that
originates from Cu/TiO2 nanober photocatalyst is signicantly
low and copper co-catalyst exists mainly in the form of Cu0,
CuO, or Cu2O, as evidenced in XPS data. Surface oxidation of Cu
is highly likely due to the experimental conditions of polyol
reduction applied to deposit metal co-catalysts. Nonetheless,
presence of CuO and Cu2O has little or no negative effect
because copper oxides can serve as co-catalysts by rendering the
reduction sites for H2 generation.57,58 Besides being a co-
catalyst, CuO/TiO2 system may act as a heterojunction, which
This journal is © The Royal Society of Chemistry 2018
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Fig. 7 The recyclability data of 2%Pt2Pd/TiO2 nanofiber photocatalysts
under UV-Visible light irradiation in the presence of sacrificial reagent
methanol.

Table 1 Apparent quantum yield calculated based on incident
photons at 254 nm

Photocatalysts
Activity/mmol
H2 h

�1 g�1 catalyst AQY (%)

2%Pt2Pd/TiO2 3.62 10
2%Pt/TiO2 2.47 6.6
2%Pd/TiO2 1.99 5.3
2%PtCu/TiO2 1.37 3.6
2%Cu/TiO2 0.47 1.3
TiO2 (no co-catalyst) 1.1 � 10�3 2.9 � 10�3
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tend to promote charge separation and extend the lifetime of
photogenerated carriers due to the band positions of TiO2 and
CuO. Due to the fact that the conduction band (CB) of CuO is
more positive than that of TiO2, photoinduced electrons in the
CB of TiO2 quickly migrate to CB of CuO and make them readily
available for water reduction reaction.59 We speculate that if
copper co-catalyst were to present only in elemental form, the
photocatalytic activity would be lower than that was observed.
However, more data and information are needed to make
a concrete conclusion.

The amount of hydrogen produced by various photocatalysts
differs due to catalyst properties (surface area, crystallinity,
cocatalyst, type of scavengers etc.) as well as the conditions
applied in photocatalytic measurements. Photocatalytic activity
of Degussa P25 has been used as a baseline to compare pho-
tocatalytic data in some literature reports. The photocatalytic
hydrogen production values reported for Degussa P25 ranges
from 0.004 mmol h�1 g�1 to 5.2 mmol h�1 g�1.16,60,61 A study
conducted by Choi and co-workers16 reported that Pt/TiO2

nanober photocatalyst to be a better catalyst than Pt deposited
Degussa P25 catalyst and have shown a 25% increase in
hydrogen production. The increase in catalytic activity is
attributed to the higher surface area of Pt/TiO2 nanober cata-
lyst as compared to Degussa P25 (96.3 vs. 52 m2 g�1). The
photocatalytic hydrogen production by Pt/TiO2 nanober cata-
lyst reported by Choi and co-workers are higher than that of
measured in this manuscript (6.5 mmol h�1 g�1 vs. 3.2 mmol
h�1 g�1) and a comparison of the activity of 2%Pt2Pd/TiO2

nanober photocatalyst with literature data is not possible as
there are no reports that describe the photocatalytic activity of
2%Pt2Pd/TiO2 nanober photocatalyst. The literature reported
higher activity of Pt/TiO2 nanober photocatalyst may be
ascribed to higher catalytic surface area (96.3 vs. 25 m2 g�1).

The higher activity of 2%Pt2Pd/TiO2 catalyst is indicative of
higher charge separation of photogenerated electrons and
holes. This should be reected in photocurrent measurements
acquired as a function of time. Luo et al. has measured photo-
currents of Pt–Pd/CdS and pristine CdS photocatalysts and re-
ported that Pt–Pd/CdS has shown signicantly higher
photocurrent. This is indicative that Pt–Pd cocatalyst evidently
decreases photogenerated electron–hole recombination rate by
effectively trapping electrons in the Pt–Pd cocatalyst and
transferring from Pt–Pd cocatalyst into hydrogen reduction
reaction.50 Additionally, enhanced photocurrent indicates
effective interfacial electron transfer from photocatalyst to
cocatalyst. Therefore, a higher photocurrent observed for Pt–Pd
cocatalyst explains the enhanced photocatalytic activity, in
terms of hydrogen production, of Pt–Pd/CdS photocatalyst. In
this token, the 2%Pt2Pd/TiO2 nanober photocatalyst is ex-
pected to behave similarly and show better photocurrents in
comparison to pristine TiO2 if measured. Based on the
enhanced photocatalytic hydrogen generation data collected for
2%Pt2Pd/TiO2 nanober photocatalyst, we can assume that the
Pt2Pd cocatalyst effectively reduces photogenerated electron–
hole recombination and improves interfacial electron transfer
leading to higher photocatalytic activity.
This journal is © The Royal Society of Chemistry 2018
Reusability of catalysts and percent deactivation were
investigated by using 2%Pt2Pd/TiO2 nanober photocatalyst.
The light induced H2 generation was repeated over three
successive cycles, and the resulting data is shown in Fig. 7.
Evidently, photocatalytic activity slightly decreased aer
repeated cycles, with an overall decrease of approximately 6%
over three consecutive cycles, which indicates that the 2%Pt2Pd/
TiO2 nanober photocatalyst was reasonably stable under UV-
Vis irradiation.

Due to the fact that photocatalytic activity depends on
experimental conditions, apparent quantum yield (AQY) was
determined for each catalyst using eqn (4) in order to solely
compare activities of nanober photocatalysts. The results are
summarized in Table 1.

AQYð%Þ ¼ number of reacted photons

number of incident photons
� 100 (4)

The AQY of 2%Pt2Pd/TiO2 nanober photocatalyst was
calculated to be the highest (10%), with the overall order from
greatest to least AQY for each co-catalyst used of Pt2Pd > Pt > Pd
> PtCu > Cu. It should be noted that the AQY was calculated
based on the intensity of the incident photons at 254 nm.
However, in actual experiment, no cutoff lters were used and
both UV and Visible irradiance was allowed. Therefore, the
actual AQY may be different from what is reported due to an
RSC Adv., 2018, 8, 32865–32876 | 32873
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increased number of absorbed and reacted photons. In this
report, AQY was primarily used to compare the activities of each
photocatalyst.

Conclusions

Metal and metal alloy decorated TiO2 nanober photocatalysts
were successfully prepared by employing polymer-assisted
electrospinning and subsequent microwave-assisted ethylene
glycol reduction methods. Simple microwave-assisted co-
reduction is sufficient for successfully depositing Pt2Pd and
PtCu alloy co-catalysts due to rapid nucleation and high local
temperature. One drawback of this method is the surface
oxidation of metal co-catalysts, which takes place due the
reduction process occurring in ambient air. However, this is not
expected to be a detrimental effect on photocatalysis. Co-
catalyst deposited TiO2 nanober photocatalysts show greater
hydrogen generation in comparison with pristine TiO2 nano-
ber photocatalyst. The noble metal and metal alloy co-catalyst
deposited TiO2 performed exceptionally well, with the catalytic
activity change in the order of Pt2Pd > Pt > Pd > PtCu > Cu. Out of
all the catalysts tested, 2%Pt2Pd/TiO2 nanober photocatalyst
showed the highest activity. The photocatalytic activity towards
hydrogen generation is reproducible, and the 2%Pt2Pd/TiO2

catalyst loses about 6% of initial activity over 3 consecutive
trials.
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