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Electrospun metal and metal alloy decorated TiO,
nanofiber photocatalysts for hydrogen generationt
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Photocatalytic nanofibers of TiO, decorated with 2% metal (Pt, Pd, and Cu) and metal alloys (Pt,Pd and PtCu)
were synthesized by the polymer-assisted electrospinning method, followed by microwave-assisted ethylene
glycol reduction. Structurally, nanofibers calcined at 500 °C adopted an anatase phase along with a remnant
rutile phase. Morphological, structural, and photocatalytic studies were carried out using scanning and
transmission electron microscopy equipped with an energy dispersive spectroscopy attachment, X-ray
powder diffraction, X-ray photoelectron spectroscopy, and photocatalytic hydrogen generation under UV-
Vis irradiation. The calcined nanofibers were found to have a diameter of 60.0 = 5.0 nm and length of up
to several microns. High resolution TEM imaging suggests that the nanofibers are composed of
agglomerated individual TiO, nanoparticles, which are tightly packed and stacked along the axial direction
of the nanofibers. PXRD studies suggest alloy formation, as evident from peak shifting towards higher two-
theta values. Surface modification with co-catalysts is shown to contribute considerably to the rate of
photocatalytic H, generation. The amount of H, generated gradually increases as a function of time. The
2%Pt,Pd/TiO, catalyst shows the highest rate of H, generation (4 mmol h—t graMcataysd, €ven higher than
that of 2%Pt/TiO, nanofiber photocatalyst (2.3 mmol ht graMcatayst), While 2%Cu/TiO, nanofiber
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Introduction

The current drive towards developing efficient photocatalysts
demands the engineering of advanced functional materials. A
wide range of inorganic (ie., metal oxides, nitrides, sulfides,
phosphides, and some nonmetal nitrides) catalysts have been
explored as photocatalysts for energy conversion and environ-
mental pollution remediation."” The choice of photocatalytic
material depends on many variables, including band gap (BG)
energy, stability under irradiation, cost effectiveness, and ease of
preparation. Additionally, lowering the recombination proba-
bility of photogenerated electron-hole carriers and making them
readily available for water oxidation and reduction reactions are
of high importance. Photocatalytic water splitting using semi-
conductors is initiated by the direct absorption of incident light,
the energy of which is greater than the band gap energy of the
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photocatalyst shows the least activity among the decorated catalysts (0.04 mmol h™? gramMcatalyst)-

photocatalyst. As a result of the photon absorption, electrons and
holes (photocarriers) are created. The electrons (e ) excited from
valence band (VB) to conduction band (CB) reduce H" ions into
H, gas (HER, eqn (1)) while holes (h+) oxidize water into O, (OER,
eqn (1)). This process is governed by intrinsic factors of photo-
catalyst such as the position of energy bands, band gap, crystal-
linity of material, availability of co-catalysts etc. Most importantly,
potentials of the bottom level of CB and the top level of VB are
required to be more negative (relative to H'/H, redox potential)
and positive (relative to redox potential of O,/H,0), respectively.
Ultimately, the redox potential of water (1.23 eV) needs to be
within the band gap energy of the photocatalysts if it is to func-
tion as a water splitting catalyst.?

2H* +2¢~ — H, (HER) 1)

H,0 +2h" — %02 +2H"(OER) 2)
1

H,0— 502 + H,(overall) (3)

The band gap of the catalyst, i.e., its electronic structure, is
strongly associated with the photon energy absorption and
electron excitation to create photocarriers. Concurrently,
water oxidation and H' reduction are mostly dependent upon
the co-catalysts or promoters loaded on the photocatalyst.® It is
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quite challenging to develop low band gap semiconductors
with sufficient stability and surface properties that lead to
higher activity. Furthermore, preventing the recombination of
photocarriers, which is equally responsible for low catalytic
activity of photocatalysts, presents its own challenges as well.

Numerous synthesis and fabrication methods have been
developed to synthesize one dimensional (1D) nanostructures®
because they are uniquely positioned to be used in various
applications. This is due to their high aspect ratio, superior
electron survivability,’” and well-defined unidirectional
channel for electrical carrier transport.** For these reasons, 1D
nanostructures are presumed to have potential to be used in
applications in a wide range of areas, including photocatalysis,
solar cells, heterogeneous catalysis, and sensors. The use of
nanowires or nanofibers, particularly in photocatalytic water
splitting, is advantageous over bulk semiconductor materials
due to their reduced radial dimension and increased surface
to volume ratio."” These properties facilitate active and rapid
diffusion of photogenerated electron-hole charge carriers to
the catalyst surface. Additionally, the nanofiber surface func-
tions as an excellent substrate for secondary materials, in that
it can be easily decorated with co-catalysts, which facilitate
effective transfer of photogenerated carriers from the catalyst
to redox reactions.™ ™ It has also been reported that dimen-
sionally unconstrained nanofibers are beneficial in vectorial
transport of photogenerated charge carriers through grain
boundaries, resulting in enhanced separation of electron-hole
pairs compared to nanoparticles.***® This process is important
for avoiding photogenerated electron-hole recombination.

A wide range of co-catalysts, including noble metals (Pt,"”*®
Au," Rh,*), core-shell types (Ni@NiO,*** Rh@Cr,0; (ref. 21)),
metal oxides (NiO, RuO, (ref. 3 and 23)), and even doped co-
catalysts (Rh,_,Cr,O; (ref. 24)) has been studied and has
shown significant promise in enhancing photocatalytic activity
towards overall water splitting and H, generation. It has been
reported that the physicochemical structure and dispersion of
co-catalysts play a vital role in enhancing photocatalytic activity.
For instance, (Zn,Ga; ,)(O,N;_,) loaded with Rh@Cr,0; core—
shell co-catalyst has produced 6 times more H, than the same
core-shell structure in which the core was replaced with Pt, and
12 times more H, than a Pd core.”* Even though metal alloys
have not been frequently chosen as co-catalysts in photo-
catalysts, they have been studied as cathode catalysts in oxygen
reduction reaction (ORR) in low temperature proton exchange
membrane (PEM) fuel cells.>?° In relation to this study, liter-
ature precedence is available in terms of the synthesis of Pt,-
Ni,,,*”*** pt,Coy,** Pt,Cu,,* and Pt,Pd,** nanoparticles. Pt;Pd
alloy catalysts have shown enhanced catalytic activity and
stability, compared to Pt only catalysts in PEM fuel cells, due to
better electronic properties of Pd, the alloying effect, and
particle size.*?

In this study, we discuss the fabrication of TiO, nanofibers by
employing polymer-assisted electrospinning method and deco-
ration of nanofiber surfaces with noble metal and metal alloy co-
catalysts. A polymer-assisted electrospinning technique was
employed to fabricate TiO, nanofibers according to methods
described elsewhere.**** A microwave-assisted polyol reduction
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method was used to deposit metal and metal alloy co-catalysts.
The photocatalytic H, production activities from methanol-
water mixture by TiO, nanofibers decorated with co-catalysts Pt,
Cu, Pd, PtCu, and Pt,Pd have been studied. Numerous analytical
and photocatalytic studies were performed to understand and
compare photocatalytic behavior of TiO, nanofiber photo-
catalysts. From this work, a detailed comparison of photo-
catalytic activities as a function of the nature of co-catalysts has
been made. Herein, we report the physico-chemical character-
ization of TiO, nanofiber photocatalysts and the effect of co-
catalysts, especially metal alloy co-catalysts toward photo-
catalytic H, generation.

Experimental section
Synthesis of TiO, nanofiber photocatalyst

TiO, nanofiber photocatalysts were fabricated by electro-
spinning a solution of titanium isopropoxide, which is
a common sol-gel precursor used to synthesize TiO,, as previ-
ously reported with slight modifications.* Briefly, 0.30 g of PVP
polymer was dissolved in 7.0 mL of abs. ethanol by stirring. In
a separate flask, the precursor solution was prepared by
dispersing 4.0 mL of Ti(OiPr), (13.0 mmol) in a mixture of
7.5 mL absolute ethanol and 3.0 mL of glacial acetic acid. The
spinning solution was prepared by slowly adding the viscous
polymer solution into the precursor solution while magnetically
stirring. The transparent electrospinning solution was quickly
loaded into a 10.0 mL glass syringe, which is attached to
a stainless-steel needle (18 gauge) through plastic tubing. The
needle was connected to the anode of the DC high-voltage
power supply (Gamma High Voltage Research, Ormond
Beach, Florida) and a sheet of aluminum foil was used as the
sample collector. The electrospinning process was carried out
by applying 15 kV and a 1.0 mL h™" flow rate while maintaining
the distance between the tip of the needle and the aluminum
foil to be 6 cm. As-prepared PVP/Ti(OiPr), composite nanofibers
were left overnight for hydrolysis and followed by calcination at
500 °C for 3 hours in air.

Metal nanoparticle deposition

TiO, nanofiber photocatalyst was deposited with 2 wt% of pure
metal (Cu, Pt, and Pd) or metal alloy (Pt,Pd and PtCu) co-catalysts
by employing a microwave-assisted polyol reduction method.
Briefly, 0.40 g of photocatalyst was dispersed in 20.0 mL of
ethylene glycol by sonication in order to uniformly disperse the
photocatalyst. Next, required amounts of metal precursors were
dissolved in ~2 mL of ethylene glycol and mixed with photo-
catalyst dispersion by stirring overnight in order to achieve
homogeneous distribution of metal precursors. Due to the diffi-
culty of dissolving Pd precursor in pure ethylene glycol, a mixture
of water/ethylene glycol was used. The reduction of the metal
precursors was carried out under microwave irradiation for 2
minutes with 10 s intervals. The co-catalyst loaded samples were
recovered by centrifugation, and a series of washings with de-
ionized water was performed afterwards to remove ethylene
glycol. The samples were dried in an oven at 70 °C overnight.

This journal is © The Royal Society of Chemistry 2018
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Physical characterization

Powder X-ray diffraction (PXRD). X-ray diffraction patterns
were collected on a PANalytical X’Pert Pro with a Cu K, X-ray
tube (2 = 1.54184 A). All data were processed with HighScore
Plus, a software package supplied by PANalytical. PXRD data
were collected at room temperature after dispersing the
samples on a quartz slide.

Scanning electron microscopy (SEM). Scanning electron
microscopy (SEM) images were collected on a Zeiss Merlin with
a gun acceleration set at 20.0 kV. Energy-dispersive X-ray spec-
troscopy (EDS) elemental mappings were collected with
a Bruker EDS system. Samples were prepared by dispersing each
powder sample on carbon-conductive tape and adhered to an
SEM stub. Transmission electron microscopy (TEM) images
were obtained on a Zeiss LIBRA 200 FEG transmission electron
microscopy operating at 200 kv.

Thermogravimetric analysis (TGA). A Pyris 1 series ther-
mogravimetric analyzer was used to determine thermal stability
and crystallization temperature of TiO, nanofiber photo-
catalysts. A heating profile was set to heat the nanofibers pho-
tocatalysts to 800 °C with a temperature ramp rate of 5 °C min "
in a continuous flow of air.

Surface area analysis. Brunauer-Emmett-Teller (BET)
surface area measurements were collected on a Micromeritics
Gemini VI Surface Area and Pore Density Analyzer at 77 K.
Powder samples were outgassed at 120 °C for 12 hours prior to
analysis. The specific surface area and pore size distribution of
samples were evaluated using the BET method.

X-ray photoelectron spectroscopy. X-ray photoelectron spec-
troscopy (XPS) spectra were collected for each powder sample
on a Thermo K-Alpha XPS system with a spot size set at 400 pm
and an energy resolution of 0.1 eV. Each spectrum was corrected
for charging effects by shifting the peaks relative to the C1s peak
(284.8 eV). Thermo Avantage Software was used for all XPS
analysis, which was provided through Thermo Scientific.

Photocatalytic experiments. The photocatalytic activities
nanofibers photocatalysts were evaluated using the following
procedure. The photocatalytic reaction was carried out using an
outer-irradiation reaction cell connected to an inert gas line
(argon). Nanofiber photocatalyst powder (0.1 g) was dispersed
in a mixture of methanol and water (1 : 5 v/v ratio) and stirred
for ~60 min while purging with argon prior to irradiation. To
initiate the photocatalytic reaction, the obtained photocatalyst
suspension was then irradiated with a 300 W Xenon lamp
without the use of bandpass filters. At a given irradiation time
interval, a 50 L sample of gas was drawn from the headspace of
the photocatalytic cell using a gas-tight syringe and analyzed
with a Shimadzu GC 8A fitted with a 5 A mol-sieve column and
thermal conductivity detector (TCD).

Results and discussion

Herein, we report the synthesis, characterization, and applica-
tion of TiO, nanofiber photocatalysts, decorated with noble
metal and metal alloy co-catalysts, prepared by electrospinning
method combined with microwave-assisted polyol reduction. In
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electrospinning, when proper conditions are applied, the
charged droplet stretches into a stable jet and then forms an
elongated fiber, which deposits on the collector as a nanofiber
mat. TiO, nanofibers were synthesized by the spinning of tita-
nium isopropoxide (Ti(OiPr),) and poly(vinylpyrrolidone) (PVP)
polymer mixture dispersed in absolute ethanol. The titanium
alkoxide precursor undergoes hydrolysis when it is in contact
with moisture and forms a gel. However, the hydrolysis process
must be controlled and precipitation needs to be avoided
during the solution preparation and spinning process in order
to maintain a continuous flow of precursor solution. Addition of
glacial acetic acid helps to hinder hydrolysis process and also
helps to manipulate porosity of the nanofibers.** The PVP
polymer plays a role as a sacrificial template and also maintains
the viscosity in the spinning solution.” Proper regulation of
viscoelastic behavior of the spinning solution is essential in
order to produce well-formed nanofibers. It is reported that too
low polymer concentrations lead to bead formation as well as
non-uniform nanofibers.*” The low viscoelasticity of the spin-
ning solution may cause disruptions in the spinning jet and
rather act as electrospray than electrospinning. In contrast, too
high polymer concentrations result in non-uniform, thicker
fibers as a result of inadequate stretching and thinning
process.’”*® Therefore, it is vital to adjust solution viscosity by
adjusting the polymer content in order to fabricate uniform
nanofibers. The distance from the tip of the spinneret to the
substrate is an essential parameter as well and need to be
properly adjusted. The distance and the fiber diameter have an
inverse relationship (i.e. higher the distance smaller the fiber
diameter) possibly because longer distance offers adequate time
for thinning process.* While the reaction mixture must be non-
aqueous, the as-spun fibers still must undergo hydrolysis;
therefore, environmental moisture was allowed to drive hydro-
lysis of as-spun fibers left under ambient air overnight before
calcining.

The conditions applied in the spinning process define the
nature of nanofibers produced. It is important to optimize the
synthetic parameters, which vary from material to material. The
distance from spinneret to the substrate (current collector),
applied voltage, and flow rate are some of the key factors that
affect the nanofiber morphology and thickness. It is reported
that applied voltage higher than that of optimal causes bead
formation but does not readily reduce the fiber diameter.*” It is
expected to obtain higher yields at a higher flow rate. However,
it is evident that higher flow rates significantly increase the fiber
diameter. In this study, nanofiber fabrication was carried out by
applying 15 kV, 6 cm spinneret to substrate distance, and
1.0 mL h™" flow rate.

Thermogravimetric analysis (TGA) of uncalcined nanofibers
(Fig. 1a) shows first weight loss (=20%) upon heating up to
~200 °C in air, which can be attributed to the removal of
surface-adsorbed moisture and solvents present due to incom-
plete drying. The second major weight loss (=36%) between
300 °C and 500 °C is due to desorption and decomposition of
poly(vinylpyrrolidone) polymer (PVP), which is an integral part
of the spinning mixture. After 500 °C, the TGA curve levels off,
indicating a formation of a thermally stable material and
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Fig.1 TGA and DTA plots of (a) calcined and uncalcined TiO, nanofibers acquired by heating in air. (b) FTIR spectra of calcined and uncalcined

TiO, nanofibers.

removal of all organic moieties from nanofiber catalyst. There-
fore, all as-prepared nanofibers samples were calcined at 500 °C
in air in order to remove adsorbed solvents and the PVP polymer
and to form a stable crystalline catalyst. In comparison, the TGA
weight loss curve recorded for pre-calcined nanofibers indicates
little or no weight loss. The TGA data correlate well with FT-IR
patterns acquired for uncalcined and calcined nanofibers
(Fig. 1b). The differential thermal analysis (DTA) curve, shown
in Fig. 1a, indicates two prominent transformations that
correspond with TGA curve. The exothermic peak at 500 °C
represents the formation of anatase TiO, phase. The FT-IR
spectrum of uncalcined as-prepared nanofibers shows several
vibrational bands, which are originating from PVP polymer. The
band at 1654 cm™' can be attributed to C=0 and N-C
stretching frequencies while bands at 1531 and 1420 cm ™" are
ascribed to CH deformation of cyclic CH, groups. In addition,
the peak that appears at 1289 cm™'corresponds to amide C-N
vibration.* On the other hand, the FT-IR spectrum of the
calcined-nanofiber photocatalyst is featureless and agrees with
TGA data.

® Anatase TiO, 4 Rutile TiO,

AA o [ ]
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The powder X-ray diffraction (PXRD) technique was used to
investigate the crystal structure of nanofibers and to elucidate
alloying. TiO, nanofiber photocatalysts deposited with 2%
metal co-catalysts show no diffraction peaks originating from
metal or metal alloy co-catalysts due to the presence of very
small percentage of respective co-catalyst (Fig. S1T). In order to
solely elucidate the alloying effect, photocatalysts were depos-
ited with 10% metal or metal alloy co-catalysts under similar
reaction conditions using polyol reduction method, and the
XRD patterns of those photocatalysts are shown in Fig. 2a.
Presence of sharp peaks in XRD pattern indicate that the
calcination in air at 500 °C turns as-synthesized nanofibers into
a polycrystalline phase of anatase-TiO, along with some
residual rutile-phase (Fig. 2a). The presence of rutile-TiO, may
have an added benefit because its band gap is 0.2 eV lower than
that of anatase-TiO, (3.0 vs. 3.2 €V), thus the electron excitation
from valence band (VB) to conduction band (CB) is easier in the
rutile phase. Due to the fact that anatase has a slightly higher
CB, the conduction band electrons can be effectively transferred
to CB of rutile TiO,. This process tends to increase the charge
separation and decrease recombination.'® Fig. 2b shows

| PtCUITIO,,

Intensity (a.u.)

| PL,PAITIO,

25 30 35 40 45
20/°

20 50

Fig. 2 PXRD patterns of TiO, nanofiber photocatalysts (a) deposited with various co-catalysts. (b) PXRD patterns of 2%Pt/TiO,, 2%Pt,Pd/TiO,,
and 2%PtCu/TiO, nanofiber photocatalysts in the region 20° = 26 < 50°.
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magnified XRD patterns of 2%PtCu/TiO,, 2%Pt/TiO,, and 2%
Pt,Pd/TiO, nanofiber photocatalysts. The XRD pattern of 2%
PtCu/TiO, shows the diffraction peaks corresponding to (111)
and (200) facets of a typical face-centered cubic (fcc) crystal
structure of Pt-Cu alloy. All the resulting diffraction peaks of the
Pt-Cu alloy of PtCu/TiO, nanofiber photocatalyst are shifted to
higher 26 angles in comparison to diffraction peaks of pure Pt
(JCPDS standard 65-2868) and are located between the diffrac-
tion peaks originated from pure Pt and Cu. This observation
indicates the formation of Pt-Cu alloy. The peak shifting can be
ascribed to lattice parameter contraction in Pt-Cu alloy, which
originates from partial substitution of bigger Pt atoms (atomic
radius 1.77 A) with smaller Cu atoms (atomic radius 1.45 A)."
Similar to the Pt-Cu alloy, the XRD pattern of the 2%Pt,Pd/TiO,
nanofiber photocatalyst shows a positive shift towards higher 26
angles with respect to the peak positions in 2%Pt/TiO, nano-
fiber catalyst (Fig. 2b). Again, the shift of Pt-Pd diffraction peaks
is indicative of alloy formation between Pt and Pd, which is
caused by the lattice contraction as a result of partial incorpo-
ration of smaller Pd atoms (atomic radius 1.69 A) with bigger Pt
atoms.*” The degree of peak shift in Pt-Pd alloy is smaller than
that of Pt-Cu alloy due to the fact that the difference of atomic
radii of Pt and Pd is quite small compared to the atomic radii
difference between Pt and Cu.

Morphology and microstructure of photocatalysts were
investigated using scanning electron and transmission electron
microscopy (SEM and TEM). The SEM image of TiO, nanofiber
photocatalyst, shown in Fig. 3, is displaying the morphology of
the calcined fibers. The TiO, nanofibers are uniform in the long
axial direction with an average diameter of approximately 60.0
=+ 5.0 nm calculated by analyzing at least 150 individual fibers.
The electrospinning method facilitates the formation of longer

0.5 um
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nanofibers, perhaps in centimeter lengths, if proper synthesis
conditions are maintained to control the continuity of spinning
process. The low magnification SEM image of TiO, nanofibers
produced by calcination in air at 500 °C indicates that the fibers
can be grown into millimeter lengths along the fiber axial
direction (Fig. 3a). Literature reports suggest that the fibers
produced from electrospinning process are more flexible,*”**
and the Young's modulus of fibers is reported to be improved
even though the tensile strength evidently decreases with
calcinations.** However, it is possible for calcined nanofibers to
break into smaller segments of fibers during applied stress such
as sonication. In this study, the calcined TiO, fibers were
sonicated in ethylene glycol for about one hour prior to co-
catalyst deposition. We have observed that sonication has an
impact on fiber length and it breaks fibers into smaller fibers
(Fig. 3b). However, even after this fragmentation, fiber lengths
are still in the micron range.

High resolution SEM and TEM images (Fig. 3b inset and
Fig. 3d, respectively) clearly show that the electrospun nano-
fibers are made from agglomerated individual TiO, nano-
particles, which are tightly packed and stacked along the axial
direction of the nanofibers. Therefore, TiO, nanofibers are ex-
pected, as suggested by literature,* to exhibit similar XRD
patterns and XPS spectra as of TiO, nanoparticles. The inset in
Fig. 3b shows a high magnification SEM image of TiO, nano-
fibers, which exhibits a porous nature in calcined fibers. The
decomposition of the PVP polymer and residual organic
solvents and their removal as carbon dioxide during calcina-
tions are responsible for the porosity of TiO, nanofibers.
However, surface area of the photocatalysts collected by
employing N, adsorption-desorption isotherms are quite low
compared to literature-reported surface area values'*** and are

Fig.3 SEM micrographs of (a) TiO, nanofiber photocatalyst produced by calcination at 500 °C and (b) TiO, nanofiber photocatalyst calcined and
sonicated; TEM micrographs of (c) Pt co-catalyst deposited calcined TiO, nanofiber photocatalyst; and (d) high magnification image, which

shows TiO, nanoparticle stacking.

This journal is © The Royal Society of Chemistry 2018
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in the range of 15-25 m® g~ '. As noted by previous publications,
the surface area of TiO, decreases with increased annealing
temperature. In the current study, TiO, nanofibers were
annealed at 500 °C. In comparison to previous reports, the
average diameter of the TiO, nanofibers was larger, which
explains the decreased surface area per gram. Presence of co-
catalyst (e.g. Pt) is evident from dark spots observed in TEM
micrograph (Fig. 3c).

SEM imaging combined with EDS elemental mapping of the
co-catalyst deposited TiO, nanofiber photocatalysts clearly
show the distribution of noble metal co-catalysts on TiO,
nanofiber surface. Fig. 4 shows a SEM image of 2%Pt,Pd/TiO,
nanofiber photocatalyst along with its EDS elemental mapping
data. Fig. 4 clearly depicts the presence of Pt and Pd particles
and their homogenous distribution over the nanofiber surface.
The presence of co-catalysts was evidenced by XRD analysis, but
showed small diffraction peaks due to their presence in very
minute amounts. Nevertheless, EDS elemental mapping data
coupled with XPS data undoubtedly indicate the presence of co-
catalysts on the surface of the TiO, nanofiber photocatalysts.
Similar distribution of Pt, Pd, and Cu in Pt-Cu alloy, Pt, Pd, and
Cu co-catalysts was observed and respective elemental mapping
data are provided in ESI (Fig. S27).

XPS elucidates the surface chemistry of the electrospun TiO,
nanofiber photocatalysts decorated with various metal and
noble metal co-catalysts; Cu, PtCu, Pt,Pd, and Pd (Fig. 5). As
evidenced by XPS, the oxidation state of the Ti in the TiO,
nanofiber is Ti** for most samples; however, in the TiO,
nanofibers loaded with Cu co-catalyst, the surface of the TiO,
become partially reduced to Ti** (Fig. S31). Introduction of the
Ti** defect is possibly due to the ethylene glycol reduction
method utilized to decorate TiO, nanofiber surface with metal
nanoparticles.*® Shown in Fig. 5a-b are XPS spectra of Pt,Pd co-
catalysts. Peaks located at 70.9 and 74.3 eV in Fig. 5a corre-
sponds with Pt 4f;, and Pt 4f5/, binding energies, while peaks
appear at 335.0 and 340.3 eV in Fig. 5b originates from Pd 3ds,
and Pd 3dj;),, respectively. This is further evidence of coexis-
tence of Pt and Pd. Furthermore, most samples show oxidation
on the surface of the co-catalyst. XPS also revealed that the
surface of the 2%Pt,Pd/TiO, catalyst contained both oxidized
and metallic Pt and Pd species. The two peaks located at 71.93
and 75.83 eV can be attributed to the presence of PtO, while
PtO, presence is evidenced by two peaks appearing at 73.76 and
77.66 eV (Fig. 5a). Similarly, Pd also shows oxidation, which is
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evidenced by the two peaks at 335.73 and 341.2 eV (Fig. 5b). The
surface oxidation of the noble metal-based co-catalysts can be
explained on the basis of the utilized chemical synthesis for the
photocatalyst fabrication. Microwave-assisted polyol synthesis,
which was utilized to decorate TiO, nanofiber photocatalysts
with metal or metal alloy co-catalyst, was conducted in an open
container using ethylene glycol as the reducing agent, in
a microwave designed for domestic use. It is highly possible for
atmospheric surface oxidation to occur under microwave heat-
ing because the localized temperature exceeds the boiling point
of ethylene glycol. In Fig. 5a, the observed Pt 4f binding energy
is lower (by ca. 0.3 eV) than the standard binding energies of
bulk Pt (71.2 eV (ref. 47)). This peak shift can be attributed to
alloy formation as a consequence of electronic interactions
between Pt and Pd atomic orbitals.*®

In the XPS spectra for the alloyed 2%PtCu/TiO, catalyst
(Fig. 5c and d), Pt 4f;), and Pt 4f;;, peaks appear along with Cu
2pss» (932.7 €V) and Cu 2py;, (952.6 eV), indicating the coexis-
tence of Pt and Cu. Similar to the Pt,Pd case, PtCu alloy
formation can be confirmed due to peak shift of Pt 4f,,, and 4fs,
» peaks by ca. 0.2 eV towards lower binding energy, as compared
to peak positions of bulk Pt. The peak shift is caused by the
interaction between Pt and Cu and their varying electro nega-
tivities (2.28 and 1.90, respectively).* The surface oxidation of Pt
is apparent, with the presence of both PtO and PtO, species,
while the Cu remains in its reduced state. However, XPS data of
2%Cu/TiO, nanofiber photocatalyst (Fig. 5f) clearly show that
the surface of the Cu co-catalyst is primarily composed of Cu,O
(Cu 2p3,, at 933.2 eV and Cu 2p4, at 952.9 eV) and CuO (Cu 2p3/,
at 935.1 and Cu 2p;, at 955.0 eV). The two different behaviors of
copper can be ascribed to the catalytic reduction of Cu** in the
presence of pre-formed Pt nuclei. Hence, reduced form of
copper is more stable in Pt-Cu alloy than in standalone copper
nanoparticles.** Similarly, the 2%Pd/TiO, nanofiber photo-
catalyst contained surface palladium oxide species, as seen in
Fig. 5e. Interestingly, after the 2%Pd/TiO, catalyst was used for
photocatalysis, it contained a similar concentration of surface
palladium oxide and a similar oxidation state of the TiO,
support, suggesting that the catalyst support is both chemically
and photochemically stable under UV irradiation and in the
presence of water.

The photocatalytic activity of TiO, nanofibers decorated
with noble metal and metal alloy co-catalysts was evaluated by
investigating hydrogen generation under UV-Vis irradiation in

Fig. 4 SEM image of 2%Pt,Pd/TiO, nanofiber photocatalyst with related EDS mapping and EDS spectrum of Ti, O, Pd, and Pt.
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Fig. 5 XPS spectra of the co-catalyst deposited TiO, nanofiber photocatalysts.

a 5:1 (v/v) water-methanol mixture. The photocatalytic
experiments were carried out at room temperature, where
temperature of the photocatalytic cell was controlled using
a water jacket around the cell. A photocatalytic cell containing
catalyst dispersion was purged with argon for one hour prior to
the experiment. The experiment was conducted in the pres-
ence of methanol as sacrificial agent (hole-scavenger). Fig. 6a
shows photocatalytic hydrogen generation in millimole H, per
gram of catalyst as a function of time, and Fig. 6b depicts
amount of H, formed in millimole per milligram of noble
metal co-catalyst. Pristine TiO, nanofibers, without co-
catalysts show little or no photocatalytic activity in terms of

This journal is © The Royal Society of Chemistry 2018

hydrogen generation under UV-Vis irradiation, which is
a common behavior shown by most of hydrogen generating or
water splitting photocatalysts.>® However, co-catalyst depos-
ited photocatalysts clearly show hydrogen generation and
prove co-catalysts play a significant role to generate consider-
able amount of H, gas. The amount of H, generated gradually
increases as a function of time for all the catalysts tested.
However, it may be possible to observe a plateau due to
increase in pressure within the photocatalytic cell as H, gas
accumulates. Among the photocatalysts tested, the nanofiber
photocatalyst with 2%Pt,Pd co-catalyst shows the highest H,
generation (4 mmol h™! graM ,calyst), €ven higher than that of

RSC Aadv., 2018, 8, 32865-32876 | 32871


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra04148b

Open Access Article. Published on 24 September 2018. Downloaded on 10/29/2025 6:55:53 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

25

—a— 2% Pt,Pd/TiO, NF
—=—2% PY/TiO, NF
—e— 2% Pd/TiO, NF
—v— 2% PtCu/TiO, NF
—=a— 2% Cu/TiO, NF
——TiO, only

- N
o o
1 1

Hg/ mmol. g1 catalyst

Time / hours

H, /mmol mg™' of noble metal

View Article Online

Paper

0.0 T T T T
4 5 6

3
Time / hours

Fig. 6 Photocatalytic hydrogen generation by co-catalyst deposited TiO, nanofiber photocatalysts as a function of time. Reaction conditions:
catalyst 0.10 g; distilled water : methanol in 5 : 1 ratio, 50 mL; 300 W Xe lamp.

2%Pt/TiO, nanofiber photocatalysts; meanwhile, 2%Cu/TiO,
nanofiber photocatalyst was the least active (0.04 mmol h™*
graMcyealyst). The amount of H, generated by 2%Pt,Pd/TiO,
nanofiber photocatalyst is approximately 45% higher than the
amount of H, generated by 2%Pt/TiO, nanofiber photo-
catalyst. The exact reason for the enhanced catalytic behavior
of 2%Pt,Pd/TiO, nanofiber photocatalyst is not known at this
point. The function of Pt cocatalyst is to cause adsorption of
H' from the photolyte, to facilitate the adsorbed protons to
combine with photogenerated electron on the surface of the
Pt, and to cause molecular H, to be produced.’**>* Alloying Pt
with Pd can fine-tune the co-catalyst's hydrogen adsorption
free energy, thus increasing the hydrogen adsorption rate
leading into higher photocatalytic activity towards hydrogen
generation. Gonzalez et al. has reported that the alloying of Pt
with Pd has reportedly decreased the activation energy of Pt by
20% (ref. 42) in Pt-Pd alloy catalyst leading to a higher activity
in terms of ethanol oxidation in comparison to Pt only catalyst.
Pt-Pd catalyst is not only active in molecular hydrogen
generation but also in hydrogenation of organic molecules. As
reported by Huang et al., Pt,Pd catalyst has shown the highest
turnover frequency (TOF) out of various Pt-Pd catalysts tested
for the hydrogenation of nitrobenzene.” It is true that Pt is one
of the most desirable cocatalyst because hydrogen adsorption
energy on Pt is optimal. However, alloying of Pt with Pd may
further fine-tune hydrogen adsorption energy of Pt-Pd cocat-
alyst leading to improved photocatalytic hydrogen generation.
It is reported that alloying of Pt and Pd with a mol ratioof 2 : 1
(~30 mol% Pd) leads to a maximum hydrogen generation and
turnover frequency as a result of optimization of hydrogen
adsorption energy of Pt by Pd.*® Furthermore, Pt/Pd binary
structures are reported to be tolerant to self-poisoning.** As
evident from literature reported photocurrent measure-
ments,* Pt-Pd cocatalyst exhibits enhanced interfacial elec-
tron transfer and decreased electron-hole recombination.
Therefore, based on literature reported facts about Pt-Pd
cocatalyst and the observed enhanced photocatalytic hydrogen
generation data collected for 2%Pt,Pd/TiO, nanofiber photo-
catalyst, we can assume that the Pt,Pd cocatalyst effectively
reduces photogenerated electron-hole recombination and

32872 | RSC Adv,, 2018, 8, 32865-32876

improves interfacial electron transfer leading to higher pho-
tocatalytic activity. Pd is also known to act as a catalytically
enhancing agent through modifying the electronic properties
of Pt. We assume that a similar phenomenon is taking place
with respect to photocatalytic H, generation by 2%Pt,Pd/TiO,.
Even though there is clear positive effect of using Pt,Pd alloy
co-catalyst, the alloying of Pt with Cu shows no significant
enhancement of hydrogen generation, and observed activity is
significantly lower than that of Pt co-catalyst. The activity of
functional cocatalysts the hydrogen evolution
pathway suggested by Zhu and co-workers,> which can be
attributed to three steps; successful surface capture of H
atoms through strong H atom adsorption energy, generation
of molecular H, through reduction by photogenerated elec-
trons and the release of molecular H, from the catalyst
surface. It is reported that H atom absorption energy of Cu is
relatively small compared to noble metals such as Pt and Pd
while molecular H, adsorption energy is smaller (2.49 eV and
0.001 eV, respectively).”® This in fact suggests that Cu is prone
to release molecular H, quite easily but lacks strong capture of
H atoms, which is essential in hydrogen reduction reaction.
The observation of relatively low photocatalytic activity by 2%
PtCu/TiO, nanofiber photocatalyst may be attributed to the
fact that alloying of Pt with Cu obscures the electronic prop-
erties of Pt such as higher H atom adsorption energy.

The normalized H, generation per milligram of noble metal
co-catalyst (Fig. 6b) of 2%PtCu/TiO, suggests that the activity is
similar to the activity shown by 2%Pd/TiO, nanofiber photo-
catalyst. As was indicated in Fig. 6a, a gradual increase in H,
generation was observed throughout the time period in which
catalytic activity was tested. The photocatalytic activity that
originates from Cu/TiO, nanofiber photocatalyst is significantly
low and copper co-catalyst exists mainly in the form of Cu®,
CuO, or Cu,0, as evidenced in XPS data. Surface oxidation of Cu
is highly likely due to the experimental conditions of polyol
reduction applied to deposit metal co-catalysts. Nonetheless,
presence of CuO and Cu,O has little or no negative effect
because copper oxides can serve as co-catalysts by rendering the
reduction sites for H, generation.’”*® Besides being a co-
catalyst, CuO/TiO, system may act as a heterojunction, which

involves

This journal is © The Royal Society of Chemistry 2018
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tend to promote charge separation and extend the lifetime of
photogenerated carriers due to the band positions of TiO, and
CuO. Due to the fact that the conduction band (CB) of CuO is
more positive than that of TiO,, photoinduced electrons in the
CB of TiO, quickly migrate to CB of CuO and make them readily
available for water reduction reaction.” We speculate that if
copper co-catalyst were to present only in elemental form, the
photocatalytic activity would be lower than that was observed.
However, more data and information are needed to make
a concrete conclusion.

The amount of hydrogen produced by various photocatalysts
differs due to catalyst properties (surface area, crystallinity,
cocatalyst, type of scavengers etc.) as well as the conditions
applied in photocatalytic measurements. Photocatalytic activity
of Degussa P25 has been used as a baseline to compare pho-
tocatalytic data in some literature reports. The photocatalytic
hydrogen production values reported for Degussa P25 ranges
from 0.004 mmol h™' ¢! to 5.2 mmol h™" g~".18%%61 A gtudy
conducted by Choi and co-workers reported that Pt/TiO,
nanofiber photocatalyst to be a better catalyst than Pt deposited
Degussa P25 catalyst and have shown a 25% increase in
hydrogen production. The increase in catalytic activity is
attributed to the higher surface area of Pt/TiO, nanofiber cata-
lyst as compared to Degussa P25 (96.3 vs. 52 m> g '). The
photocatalytic hydrogen production by Pt/TiO, nanofiber cata-
lyst reported by Choi and co-workers are higher than that of
measured in this manuscript (6.5 mmol h™' g¢~* vs. 3.2 mmol
h™' ¢7') and a comparison of the activity of 2%Pt,Pd/TiO,
nanofiber photocatalyst with literature data is not possible as
there are no reports that describe the photocatalytic activity of
2%Pt,Pd/TiO, nanofiber photocatalyst. The literature reported
higher activity of Pt/TiO, nanofiber photocatalyst may be
ascribed to higher catalytic surface area (96.3 vs. 25 m* g~ ').

The higher activity of 2%Pt,Pd/TiO, catalyst is indicative of
higher charge separation of photogenerated electrons and
holes. This should be reflected in photocurrent measurements
acquired as a function of time. Luo et al. has measured photo-
currents of Pt-Pd/CdS and pristine CdS photocatalysts and re-
ported that Pt-Pd/CdS has shown significantly higher
photocurrent. This is indicative that Pt-Pd cocatalyst evidently
decreases photogenerated electron-hole recombination rate by
effectively trapping electrons in the Pt-Pd cocatalyst and
transferring from Pt-Pd cocatalyst into hydrogen reduction
reaction.® Additionally, enhanced photocurrent indicates
effective interfacial electron transfer from photocatalyst to
cocatalyst. Therefore, a higher photocurrent observed for Pt-Pd
cocatalyst explains the enhanced photocatalytic activity, in
terms of hydrogen production, of Pt-Pd/CdS photocatalyst. In
this token, the 2%Pt,Pd/TiO, nanofiber photocatalyst is ex-
pected to behave similarly and show better photocurrents in
comparison to pristine TiO, if measured. Based on the
enhanced photocatalytic hydrogen generation data collected for
2%Pt,Pd/TiO, nanofiber photocatalyst, we can assume that the
Pt,Pd cocatalyst effectively reduces photogenerated electron-
hole recombination and improves interfacial electron transfer
leading to higher photocatalytic activity.

This journal is © The Royal Society of Chemistry 2018
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Fig.7 The recyclability data of 2%Pt,Pd/TiO, nanofiber photocatalysts
under UV-Visible light irradiation in the presence of sacrificial reagent
methanol.

Table 1 Apparent quantum yield calculated based on incident
photons at 254 nm

Activity/mmol

Photocatalysts H, h™' g™ catalyst AQY (%)
2%Pt,Pd/TiO, 3.62 10
2%Pt/TiO, 2.47 6.6
2%Pd/TiO, 1.99 5.3
2%PtCu/TiO, 1.37 3.6
2%Cu/TiO, 0.47 1.3

TiO, (no co-catalyst) 1.1 x 107° 2.9 x 1073

Reusability of catalysts and percent deactivation were
investigated by using 2%Pt,Pd/TiO, nanofiber photocatalyst.
The light induced H, generation was repeated over three
successive cycles, and the resulting data is shown in Fig. 7.
Evidently, photocatalytic activity slightly decreased after
repeated cycles, with an overall decrease of approximately 6%
over three consecutive cycles, which indicates that the 2%Pt,Pd/
TiO, nanofiber photocatalyst was reasonably stable under UV-
Vis irradiation.

Due to the fact that photocatalytic activity depends on
experimental conditions, apparent quantum yield (AQY) was
determined for each catalyst using eqn (4) in order to solely
compare activities of nanofiber photocatalysts. The results are
summarized in Table 1.

number of reacted photons

AQY (%) = (4)

number of incident photons

The AQY of 2%Pt,Pd/TiO, nanofiber photocatalyst was
calculated to be the highest (10%), with the overall order from
greatest to least AQY for each co-catalyst used of Pt,Pd > Pt > Pd
> PtCu > Cu. It should be noted that the AQY was calculated
based on the intensity of the incident photons at 254 nm.
However, in actual experiment, no cutoff filters were used and
both UV and Visible irradiance was allowed. Therefore, the
actual AQY may be different from what is reported due to an
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increased number of absorbed and reacted photons. In this
report, AQY was primarily used to compare the activities of each
photocatalyst.

Conclusions

Metal and metal alloy decorated TiO, nanofiber photocatalysts
were successfully prepared by employing polymer-assisted
electrospinning and subsequent microwave-assisted ethylene
glycol reduction methods. Simple microwave-assisted co-
reduction is sufficient for successfully depositing Pt,Pd and
PtCu alloy co-catalysts due to rapid nucleation and high local
temperature. One drawback of this method is the surface
oxidation of metal co-catalysts, which takes place due the
reduction process occurring in ambient air. However, this is not
expected to be a detrimental effect on photocatalysis. Co-
catalyst deposited TiO, nanofiber photocatalysts show greater
hydrogen generation in comparison with pristine TiO, nano-
fiber photocatalyst. The noble metal and metal alloy co-catalyst
deposited TiO, performed exceptionally well, with the catalytic
activity change in the order of Pt,Pd > Pt > Pd > PtCu > Cu. Out of
all the catalysts tested, 2%Pt,Pd/TiO, nanofiber photocatalyst
showed the highest activity. The photocatalytic activity towards
hydrogen generation is reproducible, and the 2%Pt,Pd/TiO,
catalyst loses about 6% of initial activity over 3 consecutive
trials.
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