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High electrochemical performance of
nanocrystallized carbon-coated LiFePO, modified

by tris(pentafluorophenyl) borane as a cathode
material for lithium-ion batteries
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Tris(pentafluorophenyl) borane (C1gBF;s) was first adopted as a boron source, which clearly demonstrated

its modification effects. XPS and EDX mapping proved that boron can be successfully doped into a carbon

layer. The high number of defects in the carbon induced by boron was demonstrated via Raman

spectroscopy and thus, the electric conductivity of LiFePO4 was greatly enhanced. The boron-doped

composite possessed a higher specific discharge capacity and rate capability than the undoped sample.
For instance, the reversible specific capacity for the boron-doped cathode reached 165.8 mA h g~! at
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0.5C, which was almost close to its theoretical capacity (166 mA h g~%). Even at a high rate of 5C, it still

possessed a high specific capacity of 124.8 mA h g~*. This provides for the possibility that boron-doped

DOI: 10.1039/c8ra04119a

rsc.li/rsc-advances ion batteries.

1. Introduction

Lithium-ion batteries (LIBs) play a significant role in a variety of
portable electronic devices including electrical grids and elec-
tric and hybrid vehicles. Since the cathode material constitutes
30-40% of the manufacturing costs of a Li-ion battery, it is a key
material to determine the safety, performance, cost and cycle
life of LIB. Lithium iron phosphate (LiFePO,) has attracted the
most interest because of its environmental friendliness, low
material cost, high safety, long cycle life, acceptable operating
voltage (3.4 V vs. Li'/Li), and reasonable theoretical capacity of
170 mA h g~". The major challenge for LiFePO, is its sluggish
rate performance due to its intrinsically low electrical conduc-
tivity and lithium-ion diffusion coefficient. Therefore, obtaining
further improvements for achieving high rate performance is
still a challenge that must be solved for LiFePO, before it can be
used to satisfy the demands of power devices.

To improve the rate capability of LiFePO,4, numerous efforts
have been made including conductive coatings, elemental
doping®® and nanoscale optimization.®*® Of all these strategies,
reducing LiFePO, grains to the nanoscale has been demon-
strated to be highly effective because it shortens the migration
distance of lithium ions. Moreover, elemental doping has
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carbon-coated LiFePO4 cathodes may deliver high energy and power density for rechargeable lithium-

significant effect on the electronic conductivity of the carbon
layers in LIBs. So far, doping with nitrogen,"** sulfur,
phosphorus™ and boron™?° has been studied, and it has
demonstrated improved electrochemical properties for the
cathode materials. Boron atoms have a unique characteristic:
they can substitute carbon atoms® in the crystal lattice and
serve as acceptor sites for electrons via their particular elec-
tronic structures.” In comparison to pristine materials, boron-
doped carbon coatings possess enhanced electric conductivity
as dopants can provide more electron carriers in the conduction
band.

In this study, a boron-doped carbon coating was applied to
improve the electrochemical performance of LiFePO, cathodes.
The chemical co-precipitation method was employed for the
preparation of all the samples. XPS and EDX mapping proved
that boron has been doped into the carbon coatings. Raman
spectroscopy demonstrated that a high number of defects in the
carbon-coated layer can be induced by boron. Thus, the electric
conductivities of the LiFePO, samples coated by boron-doped
carbon were greatly enhanced, and boron-doped modification
was demonstrated to be an effective method.

14-16

2. Experimental
2.1. Materials and preparation

The chemical co-precipitation method was employed to
prepare LiFePO, samples coated by boron-doped carbon. In
a typical synthesis, FeSO,-7H,O(Alfa, 99%), LiH,PO, (Alfa,
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97%) and LiOH-H,O (Alfa, 98%) in stoichiometric amounts
were chosen as starting materials. Glucose to a total weight of
20 wt% of the above chemicals was added into the aqueous
solution as a carbon source. The suspension was stirred at 0-
4 °C for about 30 min. The final precursor powder was then
filtered, washed with ethanol, and dried at 100 °C in a vacuum
oven for 2 h. Tris(pentafluorophenyl) borane (C;3BF;5), which
was used as a boron source, was mixed with the precursor
powder and ground for about 20 min. The n(B)/n(C) percent-
ages of C,3BF;5 and glucose were 0.1%, 0.3% and 0.5%, and
the samples were labeled as LiFePO,/CB, 1, LiFePO,/CB, ; and
LiFePO,/CB, 5, respectively. Finally, the mixture was heat-
treated at 975 K at Ar-H, atmosphere to synthesize the
LiFePO,/CB samples. For comparison, an undoped LiFePO,/C
sample was also prepared by a similar method without boron
addition.

2.2. Characterization

The crystal and phase structures of the obtained samples
were characterized by a D8 ADVANCE X-ray diffraction (XRD)
instrument. Raman spectra were acquired by the Renishaw-
Invia Raman system with an argon ion laser source (532
nm). XPS spectra were collected on a Escalab 250Xi instru-
ment with a monochromatic Al K-alpha X-ray source. The
precise content of boron was determined by inductively
coupled plasma analysis using an IRIS Advantage ICP-AES
spectrometer. SEM and TEM were performed to observe the
particle morphology and size distribution. SEM images were
taken on a JEOL JSM-6700 microscope at an accelerating
voltage of 5 kV. The element mappings of the samples were
characterized by JSM-6460 energy dispersive X-ray spectros-
copy (EDX). TEM was performed on a JEOL JEM-2100 trans-
mission electron microscope at an accelerating voltage of 200
kV. The phase and structure of the material were monitored
using selected area electron diffraction (SAED). The carbon
contents were accurately acquired with a Leco CS844 C-S
analyzer.

2.3. Electrochemical measurement

The working electrode was prepared by casting a slurry of
86 wt% LiFePO,/C or LiFePO,/CB composites, 7 wt% carbon
black and 7 wt% polyvinylidene fluoride (PVDF) binder on an
aluminum foil as the current collector. Electrochemical
performances of the as-prepared samples were studied using
CR2025 coin-type cells, which consisted of a cathode, a Celgard
separator and metallic lithium with 1 M LiPF¢ in EC/DEC
(1:1 vol%) as the electrolyte. All the cells were assembled in
an Ar-filled glove box (H,O < 1 ppm, O, < 1 ppm). Galvanostatic
cycling was measured on a Neware BTS Device between cut off
voltages of 2.0 and 4.3 V (vs. Li/Li"). Electrochemical impedance
spectroscopy (EIS) was performed using an electrochemical
work-station (CHI750) over the frequency range from 0.01 Hz to
100 kHz. Cyclic voltammetry (CV) testing was carried out at
a scan rate of 0.1 mV s~ between 2.0 and 4.3 V by CHI750. All
the electrochemical measurements were performed at room
temperature (25 °C).
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3. Results and discussion

3.1. Structural and morphology characterization

The crystal and phase structures of all the samples were inves-
tigated by XRD analysis. As indicated in Fig. 1a, the samples
were found to be pure LiFePO, with an ordered olivine structure
(JCPDS card no. 83-2092), and they exhibited no impurities and
a single phase. Carbon was not detected mainly because the
residual carbon is amorphous. The amorphous carbon mostly
originates from the decomposition product of glucose and
slightly from the decomposition product of C;3BF;s.

Raman spectroscopy has historically been used to probe
structural and electronic characteristics of graphite materials,
thus providing useful information on the defects (D-band) and
in-plane vibrations of sp? carbon atoms (G-band).?*** Raman
spectra of all the samples in the wavenumber range of 1100-
2000 cm ™' are shown in Fig. 1b. As we can see, the peaks of the
D- and G-bands lie at about 1320 ecm™' and 1590 cm™?,
respectively. As we know, it is important to characterize defects
by the intensity ratio of Raman D- and G-bands (Ip/I).>>*® As
illustrated in Fig. 1b, the Ip/Is values for LiFePO,/C, LiFePO,/
CBy.1, LiFePO,/CB, ; and LiFePO,/CB, s samples are 0.95, 1.13,
1.31 and 1.14, respectively. This confirms that many defects
have been induced by boron doping, which will be helpful for
electric conductivity, thus improving high-power capability of
the cathodes.

To confirm that boron is doped into the carbon coatings, XPS
analysis was conducted. The C 1s and B 1s spectra of the
LiFePO,/CB, ; sample are shown in Fig. 1c and d, respectively.
The C 1s spectrum, as shown in Fig. 1c, exhibited a peak at
about 284.9 eV, which agreed with previously reported
results.”?° From the XPS spectrum of C 1s, the peaks at binding
energies of 284.8 eV, 285.9 eV and 289.3 eV were assigned to sp*
graphite C=C, C-O, and C=0 bonds.*”** Moreover, a peak at
about 282.7 eV could be assigned to the C-B species.” It is
shown in Fig. 1d that the B 1s spectrum can be deconvoluted
into three components: the peak at 188.6 eV corresponded to
a BC;-type bond,* and the peaks located at about 190.9 eV and
192.4 eV were assigned to BC,O- and BCO,-type bonds,
respectively.**> The above XPS analyses proved the doping of
boron in this sample. For lithium-ion batteries, the graphite-
like BC; dopant species plays a significant role in improving
the electronic conductivity and electrochemical activity of the
carbon-coated layer on the cathode surface.' It was confirmed
that the LiFePO,/CB composites exhibit better electrochemical
properties than the undoped sample. To determine the precise
content of boron in the resulting composites, ICP-AES analysis
was employed, and a boron content of 0.16 wt% was detected
for the LiFePO,/CB, ; sample.

The morphology and dimensions of all the samples were
characterized (Fig. 2) by SEM. The LiFePO,/C sample showed
spherical nano-grain morphology in the size range of 20-
100 nm, as shown in Fig. 2a. This small grain size is beneficial
for shortening the distance of lithium-ion migration, which
enhances the migration rate of lithium ions. There are no
visible differences among different samples (Fig. 3b-d) with
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Fig. 1
for the LiFePO4/CBg 3 sample.

respect to morphologies and grain sizes. Fig. 3 shows SEM and
EDX of the LiFePO,/CB, ; sample. From the distribution of Fe,
O, P, C and B (Fig. 3b-d), it can be confirmed that boron is
homogenously distributed in all the samples.

The HRTEM images of all the samples are shown in Fig. 4. It
can be seen that the carbon-coated layer is amorphous and
about 2-4 nm in thickness. The thin carbon film is favorable for
electronic transport during the electrochemical process. The
SAED patterns are presented in the inset of Fig. 4. Both the
SAED patterns and high-resolution lattice fringes reveal high
crystallization in all the samples. It is also shown that diffrac-
tion spots have a tendency to become circular, as seen in the
insets of Fig. 4c and d, which show random large angle crys-
tallographic orientation among different grains. A C-S
elemental analyzer is adopted to determine the carbon
contents of all the samples. The measured results for LiFePO,/
C, LiFePO,/CBy 1, LiFePO,/CB, ; and LiFePO,/CB, s samples are
around 6.91%, 6.98%, 6.95% and 6.93%, respectively. This
indicates that boron doping does not affect the carbon contents
of the LiFePO, samples.

3.2. Dynamics and electrochemical performance

The electrochemical performances of all the samples were tested
by coin cells. Fig. 5a exhibits the galvanostatic charge/discharge
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(a) XRD patterns and (b) Raman spectra of the as-prepared LiFePO,4/C and various LiFePO4/CB samples; XPS spectra of (c) C 1sand (d) B 1s

curves of different samples at a low rate of 0.5C. For all the
cathodes, a planar platform at about 3.50 V is associated with the
lithium-ion extraction process, and a flat discharge plateau at
about 3.35 V corresponds to lithium-ion insertion into LiFePO,
crystals. It can be observed from Fig. 5a that the LiFePO,/C
sample delivers an initial discharge capacity of 150.6 mA h g,
whereas the doped LiFePO,/CB,; and LiFePO,/CB,; samples
exhibit higher discharge capacities than the LiFePO,/C sample.
Particularly, the LiFePO,/CB,; sample delivers the highest
discharge capacity of 165.8 mA h g~ *. However, the LiFePO4/CBy
sample shows lower specific capacity, which may be caused by
excess boron. The capacities of all the samples are calculated
based on the content of LiFePO,. The results for cycling perfor-
mance combined with coulombic efficiency at 0.5C in the
potential range of 2.0-4.3 V (Li'/Li) are shown in Fig. 5b. All the
samples show good cycling stabilities. As illustrated in Fig. 5b,
there is nearly no degradation for all the samples during 200
discharge cycles at the rate of 0.5C. The coulombic efficiency
approaches 88% for all the samples, as indicated in Fig. 5b.
Particularly, the corresponding average coulombic efficiency for
the LiFePO,/CBy; sample is above 99%, suggesting highly
reversible Li-ion insertion/extraction kinetics.

To evaluate the effect of boron doping on lithium-ion
migration into the bulk electrode and charge transfer

This journal is © The Royal Society of Chemistry 2018
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Fig. 2 SEM images of (a) LiFePO4/C, (b) LiFePO4/CByg 1, (c) LiFePO4/CBg 3 and (d) LiFePO,4/CBg 5 powders.

impedance, electrochemical impedance spectroscopy (EIS) of kHz. All the EIS spectra clearly exhibit a semicircle in the high-
the cycled samples was carried out. Fig. 5¢ shows the EIS spectra  to-middle frequency region and an inclined line within the low
of all the samples in the frequency range from 0.1 Hz to 100 frequency range. The resistance of the semicircle corresponds
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Fig.4 HRTEM images of (a) LiFePO,4/C, (b) LiFePO4/CBg 4, (c) LiIFePO4/CBg 3 and (d) LiFePO4/CBg 5 samples; the inset shows the SAED patterns of

the samples.

to the charge-transfer process. Fig. 5c indicates that the charge
transfer resistance is smaller for LiFePO,/CB,; and LiFePO,/
CBy; samples than that for the LiFePO,/C sample due to the
smaller diameter of the semicircle. Therefore, suitable boron
doping greatly enhances the conductivity of the cathodes and
improves electron transport during the electrochemical charge/
discharge process. The LiFePO,/CB,5s sample shows higher
charge-transfer resistance, which may be due to excess of boron.

The inclined line is assigned to the migration of lithium ions
into the bulk of the electrode material, the so-called Warburg
impedance (Z).** The Warburg coefficient (¢) can be obtained
by the following eqn (1):**

Zre = Re + Rct + o_w—ll2 (1)

Here, R, is the resistance of the electrolyte, R is the charge
transfer resistance and w is the angular frequency in the low
frequency region. Both R, and R are kinetic parameters that
are independent of frequency. Thus, ¢ is the slope for the plot of
Zw.e vs. the reciprocal root square of the lower angular

28982 | RSC Adv., 2018, 8, 28978-28986

frequencies (w “?). The plots of Z. vs. the reciprocal root

square of the lower angular frequencies (w™*?) at different
levels of boron doping in LiFePO,/C composites are shown in
Fig. 5d. The slope of the fitted line is the Warburg coefficient o.
In addition, the Li-ion diffusion rates are determined by the
following eqn (2):*

D = R°T*24n*F' C*” (2)

here, R is the gas constant, T'is the absolute temperature (K), F
is the Faraday constant, A is the surface area of the LiFePO,
cathode, n is the number of electrons during the process of Li-
ion transportation, C is the molar concentration of Li-ions in
the LiFePO, cathode and ¢ is the Warburg coefficient. The Li-
ion diffusion values are 2.32 x 10~ ** cm? S %, 1.52 x 10~ *?
em? $7% 1.32 x 107 em?® S7! and 3.29 x 107 em? S7Y, as
determined by eqn (2) for the boron-doped nanocrystallized
LiFePO,/C, LiFePO,/CBy,, LiFePO,/CBy; and LiFePO,/CBy 5
samples, respectively. It is noticed that the difference among
the Li-ion diffusion rates is not much for the LiFePO,/C,

This journal is © The Royal Society of Chemistry 2018
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Fig. 5 Electrochemical behaviors of LiFePO,4/C and various LiFePO4/CB electrodes: (a) initial specific capacities and (b) cycling performance
combined with coulombic efficiency at 0.5C in the potential range of 2.0-4.3 V (Li*/Li). (c) EIS spectrum after 50 cycles at 0.5C. (d) The plot of Z,.

vs. the reciprocal root square of the lower angular frequencies (v
curves at a scan rate of 0.1 mV s,

LiFePO,/CB,; and LiFePO,/CB,; samples. Compared to the
reported 10~ *° to 107 '° in the literature,®® the Li-ion diffusion
rates of these nanocrystallized samples are improved due to
short Li-transport lengths in LiFePO, and the coupling effects
of electrons, since suitable boron doping notably increases the
electric conductivity of LiFePO,. Surplus boron doping hinders
the transport of Li ions in LiFePO,, which may be the reason
for lower Li-ion diffusion rates in the LiFePO,/CB, s sample
compared to those in other samples.

This journal is © The Royal Society of Chemistry 2018

—1/2)

at different amounts of boron doping in LiFePO4/C composites. (e) CV

Cyclic voltammetry (CV) curves of LiFePO,/C and various
LiFePO,4/CB samples are measured at a scan rate of 0.1 mV s *
and shown in Fig. 5e. It can be seen that a typical Fe**/Fe** redox
couple corresponds to the LiFePO,/FePO, two-phase reaction. It
can be seen from Fig. 5e that the LiFePO,/CB, ; sample delivers
the lowest value of 321 mV in potential interval and the highest
peak current intensity. This gives an index to the fastest kinetics
of the electrons and lithium-ion migration of this sample. The

RSC Aadv., 2018, 8, 28978-28986 | 28983
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above results match well with those of the galvanostatic elec-
trochemical tests.

Fig. 6 exhibits the galvanostatic discharge/charge curves
ranging from 0.5C to 5C between 2.0 V and 4.3 V for all the
samples. As shown in Fig. 6a, the LiFePO,/C sample delivers
higher discharge capacities of 150.9, 149.7, 136.9, and
116.0 mA h g~ ' at 0.5C, 1C, 2C and 5C, respectively. It can be
observed that the charge/discharge plateaus become uneven due
to the electrode polarization as the rates increase. Compared to
the specific discharge capacity of the undoped sample, the
specific discharge capacities of the LiFePO,/CB,; and LiFePO,/
CB,; electrodes first increase and then decrease for LiFePO,/
CB, 5 electrodes, which may be caused by surplus boron addition.
Of all the samples, the LiFePO,/CB,; sample exhibits the best
high-rate capacity, maintaining 165.8 mAh g™ ", 1644 mAh g™,
155.6 mA h g " and 124.8 mA h g~ at 0.5C, 1C, 2C and 5C,
respectively. The excellent high rate capacity of LiFePO,/CBy 3
cathode can be ascribed to doped boron, which may create new
lithium active sites,*® alter the electronic structure®” and increase
electric conductivity.*®

4. Conclusion

Tris(pentafluorophenyl) borane (C;3BF;5) was successfully used

as a boron source, and LiFePO,/CB composites were

28984 | RSC Adv., 2018, 8, 28978-28986

synthesized in this study. As the cathode material, the LiFePO,/
CB,.; sample exhibited a high specific capacity of 165 mAh g™*
and much improved rate capability of 124.8 mA h g™ " at
a current rate of 5C. The analysis of EIS and CV tests revealed
that the charge-transfer resistances of the cathodes clearly
decreased by suitable boron doping, and the reversibilities of
the electrode reactions were enhanced. This study indicates that
the boron-doped LiFePO,/CB cathode is promising for high-
power lithium-ion batteries.
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