Open Access Article. Published on 10 July 2018. Downloaded on 1/25/2026 1:39:16 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

ROYAL SOCIETY
OF CHEMISTRY

View Article Online

View Journal | View Issue,

i ") Check for updates ‘

Cite this: RSC Adv., 2018, 8, 24827

Received 9th May 2018
Accepted 23rd June 2018

DOI: 10.1039/c8ra03961e

Enhanced photocatalytic and antibacterial activity
of plasma-reduced silver nanoparticlest

L. Chandana,? P. Ghosal,® T. Shashidhar® and Ch. Subrahmanyam & *

A non-thermal atmospheric pressure plasma jet has been used for the green synthesis of highly dispersed
colloidal silver nanoparticles. The reducing species such as hydrogen radicals and hydrated electrons are
identified, and the change in the solution pH is studied during AgNP formation. The structural properties and
size of the plasma-reduced silver nanoparticles are characterized via X-ray diffraction, ultraviolet-visible
spectroscopy, fluorescence spectroscopy and transmission electron microscopy. The size of the colloidal
AgNPs is tuned by adjusting the initial concentration of AgNOs. The effect of terephthalic acid, a hydroxyl
radical scavenger, on the reduction of Ag* ion is studied. The typical catalytic activity data indicate the better
performance of the plasma-reduced colloidal Ag nanoparticles than that obtained from the chemical
reduction method. The antibacterial activity of the plasma-reduced Ag nanoparticles also shows a better
performance than that of the chemically reduced AgNPs, highlighting the potential of the plasma reduction
approach for the synthesis of metal nanoparticles, which are stable even after 30 days without a stabilizing
agent. Additionally, the effects of hydroxyl scavengers (isopropyl alcohol) and Fenton's reagent (Fe* salt) on

rsc.li/rsc-advances CV degradation are studied.

1. Introduction

The application of metal nanoparticles in various fields of science
and technology is continuously increasing due to their unique
electronic and optical properties.* Especially, silver nanoparticles
are widely used in biological and catalytic applications due to their
non-hazardous nature.”™ Silver in the form of nitrate is generally
used to induce antimicrobial activity; however, in the case of silver
nanoparticles (AgNPs), there is a huge increase in the surface area
exposed to microorganisms. AgNPs are successfully used in food
storage, wound healing, electrical appliances, medicine and
personal care products.>® Unlike, their “macro” counterparts,
nanoparticles have unique and effective physico-chemical prop-
erties, which make them suitable towards antimicrobial applica-
tions.>" It has been observed that reducing the size of AgNPs
enhances their stability and biocompatibility.™ A large variety of
metal oxides, including TiO, and ZnO, have been studied for the
mitigation of toxic organic pollutants. TiO, is one of the widely
studied photocatalysts due to its large band gap of 3.2 eV; however,
the scope of its application is limited due to the requirement of UV
light. Thus, attempts have been made to shift its absorption edge
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into the visible region by incorporating metal nanoparticles (Ag/
Au/Mn/Cr) into the TiO, matrix or Au/Ag NPs supported on TiO,,
which can improve its visible light response."*™* A large number of
preparation methods have been reported for the synthesis of noble
nanoparticles such as laser ablation, electrochemical synthesis,
microwave irradiation, radiolysis, solvothermal synthesis, chem-
ical reduction methods and glow discharge plasma.’ Among
these methods, the chemical reduction route is simple and less
time consuming. In the chemical reduction process, reducing
agents such as hydrazine hydrate (N,H,) and sodium borohydride
(NaBH,) are used to reduce the metal precursors, and the resulting
nanoparticles are stabilized with sodium dodecyl sulfate (SDS) and
N-vinylpyrrolidone.'®* Picosecond laser ablation and ultrasonic
irradiation have been tested for the synthesis of AgNPs;**'
however, these methods have specific limitations due to the need
for highly sophisticated instruments, and their reducing agents are
harmful to the environment. Accordingly, the synthesis of stable
silver nanoparticles without the use of capping agents is highly
desirable.

Non-thermal plasma reduction is a green, fast, economic
and facile synthesis method for colloidal AgNPs in the absence
of stabilizers at ambient conditions.”” Electrical discharge in
water may alter physical and chemical properties and may
create a reactive environment such as shock waves, high electric
fields, UV radiation and in particular chemically reactive species
such as hydroxyl radicals ("OH), hydrogen radicals ("H) and
hydrated electrons (e,q).” In this scenario, "H and e,q~ act as
reducing agents, which can reduce Ag" to Ag. Furthermore, the
highly energetic electrons play a vital role in protecting the
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formed colloidal AgNPs from aggregation. Hydrogen (H,)
plasmas have been used successfully to reduce metal ions due
to the production of strong reducing species such as "H.***
However, an atmospheric pressure plasma jet (APPJ) operating
under argon atmosphere is the most efficient and economical
process.

Herein, the synthesis of AgNPs has been carried out with an
atmospheric pressure plasma jet under ambient conditions;
AgNPs are synthesized without the use of either a reducing
agent or a stabilizer. The size of AgNPs in the colloidal solution
is tuned by changing the reaction conditions. The formation of
AgNPs is confirmed by various techniques such as structural
(XRD and TEM) and optical (UV-Vis and fluorescence) spec-
troscopies. Additionally, the photocatalytic activity and anti-
bacterial activity of the plasma-reduced AgNPs (Ag-P) are tested,
and the results are compared with those of chemically reduced
AgNPs (Ag-C).

2. Experimental
2.1 Experimental setup

A schematic of the experimental setup and details are given
elsewhere.”® Briefly, plasma was created by applying high
voltage between a stainless steel inner electrode (high voltage
electrode) and stainless steel mesh outer electrode (ground
electrode). A high voltage probe was connected to the inner
electrode to measure the applied voltage (16 kV), and the voltage
(V)-charge (Q) waveforms were recorded using an oscilloscope
(Tektronix TDS 2014B). The applied voltage (V) was plotted
against the charge (Q) to obtain a Lissajous figure, and its area
was multiplied by the frequency to give the power dissipated in
the discharge.”**” The power dissipated in the discharge was
around 0.9 W at an applied voltage of 16 kV.

2.2 Reagents and methods

Silver nitrate (AgNO;), sodium borohydride (NaBH,), mono-
chloroacetic acid (CICH,COOH), titanium dioxide (TiO,), crystal
violet, terephthalic acid (TA), 2-hydroxy terephthalic acid (HTA),
hydrogen peroxide (H,0,), sulfuric acid (H,SO,), potassium
nitrate (KNO3), sodium hydroxide (NaOH), isopropyl alcohol,
and ferrous chloride (FeCl,) were purchased from Merck. An
Aalborg mass flow controller (MFC) was used to adjust the gas
flow rate at 300 sccm. The hydrated electrons (e,q ) formed
during the discharge process were identified using Goodman's
method.?® For this, 1 mM of monochloroacetic acid was used as
the e,q~ scavenger, where CI" reacts with e, to give ClI™ ions.
The chloride ions formed during the discharge process were
analyzed by ion chromatography (IC) on a DIONEX ICS-2100
using 24 mA current, eluent (25 mM of KOH) flow rate of 0.38
mL min~" and 10 pL of sample, and the column temperature
was maintained at 30 °C during the analysis. An emission
spectrometer (Princeton Instrument Action SpectraPro® SP-
2300) was used to identify the active species formed at the
gas-liquid interface. For this, an optical fiber probe was posi-
tioned close to the flask to obtain the emission spectrum of the
discharge species. A grating with a resolution of 500 nm at 600 g

24828 | RSC Adv., 2018, 8, 24827-24835

View Article Online

Paper

mm~ ' was used, and the diameters of the optical sensor and
optical fiber were 11 mm and 3.36 mm, respectively. Plasma
discharge was carried out under an argon atmosphere at
a constant flow rate of 300 sccm.

Twenty mL of AgNO; solution (1-3 mM) was placed in
a beaker, and the plasma jet was placed approximately 3 mm
above from the sample surface. The plasma reduction time was
varied in between 5 and 15 min. The AgNO; solutions with
different concentrations (1-3 mM) were labeled as S1, S2 and
S3, respectively. Metal-impregnated TiO, nanocomposites (Ag-
TiO,) were synthesized via the wet impregnation method. TiO,
(~250 mg) was mixed with 25 mL of deionized water (DI) by
adding an appropriate amount (0.5-2 wt%) of AgNPs, and the
resulting solution was stirred overnight, washed repeatedly with
DI water, and then dried at 100 °C.** In the chemical method,
AgNPs were prepared using NaBH,, as previously reported.?®
Solutions of 2.38 x 10> M NaBH, and 1.32 x 10> M AgNO,
were prepared separately. To 40 mL of the NaBH, solution, 2, 4,
6 and 8 mL of the AgNO; solutions were added under stirring to
give a yellow colored solution. The first two solutions (1.20 x
10" M) were stable, whereas with the further addition of
AgNOg;, the solutions became unstable; after 1 h, the solutions
started to become turbid and grey.

For photocatalytic degradation, crystal violet (CV) was used
as a model dye, and the photocatalytic experiments were per-
formed under sunlight. To achieve adsorption-desorption
equilibrium, the dye-containing solution along with the catalyst
was placed in the dark for 30 min before exposure to the
sunlight. The concentration after equilibrium was considered
as the initial concentration (20 mg L™"). The average tempera-
ture during the experiment was found to be around 30 °C
(Hyderabad: 17°38'N, 78°48'E; date: 5th January 2018). A small
amount of aliquot was collected every 20 min and centrifuged at
5000 rpm for 5 min to obtain uncontaminated supernatant. An
ultraviolet-visible (UV-Vis) spectrophotometer was used to
measure the concentration of dye present in the supernatant at
different time intervals. The antibacterial and photocatalytic
activities of three different AgNPs (S1, S2 and S3) were tested,
and the results were compared with those of chemically reduced
AgNPs. The plasma-reduced AgNPs and chemically reduced
AgNPs are labeled as Ag-P and Ag-C, respectively.

For bacterial inactivation studies, a standard wild-type
commercially available Escherichia coli DH5alpha strain was
used, and similar results were found with E. coli BL21 and E. coli
K-12. A loop full of bacterial cells was inoculated into 100 mL of
freshly prepared nutrient broth and then incubated to the
exponential phase for 16 h at 37 °C with a constant stirring rate
of 200 rpm. The bacterial cells were grown to ~3.0 OD at
600 nm, harvested by centrifugation (6000 rpm) for 5 min and
then suspended in sterilized deionized water (DI). The bacterial
(E. coli) concentration was monitored using optical density (OD)
at 600 nm at regular time intervals. To maintain the bacterial
concentration relatively constant from one experiment to
another, the bacterial suspension was maintained at a constant
ODg, value of 0.1.

The long-lived H,0, species formed during photocatalysis
were identified using titanium sulfate, which formed the yellow

This journal is © The Royal Society of Chemistry 2018
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colored pertitanic acid and showed a maximum absorbance at
420 nm (T90+ UV-Vis spectrometer, PG 94 Instruments Ltd.,
India). Anhydrous titanium dioxide (0.5 g) was added to 50 mL
of sulfuric acid, and this solution was heated to 150 °C in a sand
bath for 15 h to obtain the titanium sulfate reagent; the solution
was diluted and filtered through 0.45 pm filter paper. The short-
lived "OH species were quantified by the chemical dosimetry
method, where terephthalic acid (TA) reacts with "OH to form 2-
hydroxy terephthalic acid (HTA), which is a fluorescent
compound. A solution containing 2 mM of TA, 5 mM of NaOH,
and 50 mg of 1 wt% Ag(P)-TiO, catalyst (50 mL) was irradiated
with sunlight up to 120 min. During fluorescence spectroscopy,
TA and HTA molecules in the solution were irradiated by UV
light with an excitation wavelength of 310 nm, and only HTA
showed an emission at 425 nm. The extent of mineralization
was confirmed using a TOC-VCPH (Shimadzu, Japan) analyzer.

2.3 Characterization techniques

Various types of analytical tools were used to characterize the
plasma-reduced AgNPs. A T90+ UV-Vis spectrometer (PG
Instruments Ltd., India) was used to study the surface plasmon
resonance (SPR) of AgNPs and to determine the concentration
of CV present in the solution. A Horiba fluoromax-4 fluores-
cence spectrometer was used to study the fluorescence emission
spectra of AgNPs. X-ray diffraction (XRD) was used to study the
crystallinity of the Ag nanoparticles. Diffraction patterns were
recorded using Cu Ko radiation (1.5418 A) with an Ni filter in
the 260 range of 5-50°. XRD patterns were obtained with a step
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size of 0.0167° and a scan rate of 0.0301° s~ ' on a PANalytical
X'pert PRO powder X-ray diffractometer. The morphology of
products was analyzed via transmission electron microscopy
(TEM-TECNAI-G2 EDS model).

3. Results and discussion

3.1 Identification of reducing species

Fig. 1la presents the emission spectrum of the gas-liquid
interface, which confirmed that the formed reducing species "H
showed a characteristic emission at 658.8 nm. The discharge
gas Ar produces long-lived metastable Ar (3p) species, which
transfer the energy to water molecules, leading to the formation
of "H and "‘OH.**° Goodman's method was used to identify the
hydrated electrons (e,q ) during plasma discharge. As pre-
sented in eqn (4), the hydrated electrons react with "Cl to form
Cl™, which was further confirmed by IC (Fig. 1b).

H,0" + nH,0 — H;0" + w'OH + (n — 1)’'H (1)
H,O+ *” — 'H+ OH +e” (2)

H,0* —» "OH + H" + ¢~ (3)

eaq + CICH,COOH — CI~ + "CH,COOH (4)

The highly energetic electrons can induce the dissociation of
water molecules to ‘OH and "H in an aqueous solution (eqn (1)-

o
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Fig. 1
treatment time (16 kV voltage and 300 sccm Ar gas flow).
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(a) Optical emission spectrum of the hydrogen radical (*H). (b) Chromatogram of chloride ions. (c) Change in solution pH as a function of
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(3)). Additionally, the strong reducing species e,q and 'H from
the plasma discharge can easily reduce Ag' metal ions into Ag
colloidal solution (eqn (5) and (6)).** The highly energetic elec-
trons play a prominent role in protecting the plasma-reduced
colloidal Ag nanoparticles from aggregation.” The particles
retain their electric charge and repel each other, resulting in the
formation of stable and uniform colloidal AgNPs. The time
required for Ag" ion reduction decreased to 10 min in the
presence of the "OH scavenger TA, which prevented the
recombination of '"H and 'OH. The pH of the AgNO; solution
decreased more than that of the blank (pure water). As pre-
sented in eqn (6), the reduction of Ag" by plasma was accom-
panied with the release of a proton. Therefore, the AgNO;-
containing solution became more acidic (3.01) than the blank
solution (3.72) (Fig. 1c).

Agt +e, — Agk=33x 10" (5)

Agt+'H > Ag+H" k=22 x 10" (6)

3.2 Ultraviolet-visible and fluorescence spectroscopy

UV-Vis spectroscopy is a preliminary characterization tech-
nique, and the formation of AgNPs was confirmed by specific
surface plasmon resonance (SPR) bands.?*** The particle size,
concentration and shape of the nanoparticles are the most
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important factors that cause changes in the SPR bands. The
effect of the initial concentration of AgNO; samples was studied
by recording their UV-Vis spectrum every 5 min. As seen from
Fig. 2a, the synthesis of AgNPs using 1 mM of AgNO; solution
resulted in an SPR peak at 412 nm, which shifted to 421 nm and
423 nm with an increase in the AgNO; concentration from 2 to
3 mM, respectively. A red shift and broadening of the SPR peaks
were observed with the increase in concentration, which sug-
gested an increase in particle size. The plasma treatment time
enhanced the rate of Ag' reduction, and the intensity and
sharpness of the SPR peaks increased due to the formation of
more AgNPs (Fig. 2b). The UV-Vis spectra of pure TiO, and
1 wt% Ag-loaded TiO, are presented in Fig. S1 in the ESL{ The
cut-off wavelength of pure TiO, was observed at 382 nm (3.24
eV), which shifted to 425 (2.91 eV) nm for the 1 wt% Ag-loaded
TiO,,

The plasma treatment time and the initial concentration of
AgNO; play prominent roles in the synthesis of colloidal AgNPs.
In this context, the optimized conditions required to obtain
small-sized colloidal AgNPs are 1 mM AgNO; solution and 15 min
of plasma treatment. The AgNPs prepared with 1 mM AgNO; via
the chemical route with the NaBH, reducing agent were unstable;
after 12 h, a turbid solution was obtained due to the agglomer-
ation of silver nanoparticles. Interestingly, the AgNPs prepared
from the plasma approach were stable even after 30 days. As seen
from Fig. 2c and d, the absorption spectrum of the chemically
reduced AgNPs shifted irregularly, whereas in the spectrum of
the plasma-treated AgNPs, this shift was not observed.

460 5(;0 600
Wavelength (nm)

plasma reduction
after 30 days

0154

0124

e
o
©
1

b
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o
L

0.03

Absorbance (a.u.)
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—— Chemical reduction
—— After twelve hours

300 460 560
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Fig. 2 UV-Vis spectra of the plasma-reduced AgNPs. (a) Effect of the ini

A(I)O 5(|)0 600
Wavelength (nm)

itial concentration (1-3 mM) of AgNOs solution on the SPR pattern. (b)

Effect of the plasma treatment time on the SPR pattern (at 16 kV voltage and 300 sccm Ar gas flow). (c) Plasma-reduced AgNPs immediately and
30 days after their preparation. (d) Chemically reduced AgNPs immediately and 12 h after their preparation.
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3.3 XRD

The X-ray diffraction patterns of the plasma-reduced silver nano-
particles are shown in Fig. 3. The strong Bragg reflections at the 26
values of 38.26° (2.35), 44.21° (2.05), 64.52° (1.44), 77.55° (1.23) and
81.68° (1.18) corresponded to the (111), (200) (220) (311) and (222)
planes, which confirmed the formation of Ag nanoparticles (JCPDS
file no. 04-0783).** As seen from the above-mentioned patterns, the
most significant peak was positioned at a d-spacing of 2.35 A°,
which corresponded to the (111) plane. In addition, the crystal
sizes of these AgNPs were calculated using the Debye-Scherrer
formula, as given in eqn (7), and they were found to be 11, 14 and
16 nm. The XRD results confirmed that the resultant silver parti-
cles were crystalized in an FCC arrangement. The XRD pattern of
TiO, and Ag-loaded TiO, is given in Fig. S2 in ESL7 It was noted
that no Ag phase was identified by XRD analysis since the content
of Ag loaded on the TiO, surface was very low.

d = KMB cos 0 (7)

3.4 TEM

The TEM images of AgNPs are presented in Fig. 4a—c, which show
highly dispersed and spherical colloidal nanoparticles. The
average particle sizes of AgNPs are around 11, 14 and 16 nm for
1 mM, 2 mM and 3 mM samples, respectively. The selected area
electron diffraction (inset of Fig. 4) confirms the interlayer
spacing of 0.236 nm, which is the characteristic d-spacing for the
(111) plane of Ag, and this result is consistent with the observa-
tion made from the XRD data. The particle size increases with an
increase in the initial concentration, as shown in Fig. 4d—f.

3.5 Antibacterial activity of plasma- and chemically reduced
AgNPs

The plasma-reduced AgNPs (S1, S2 and S3) were tested for their
antibacterial activities on E. coli. In this study, E. coli with a CFU
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Fig. 3 X-ray diffraction pattern of the plasma-reduced silver nano-
particles (at 16 kV voltage and 300 sccm Ar gas flow).
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concentration of 10’ per mL was used to study the antibacterial
activity of AgNPs (inset of Fig. 5). The bacterial (E. coli) growth
curves decreased with a decrease in the particle size and accord-
ingly, S1 showed the highest antibacterial activity due to their
smallest particle size (Fig. 5a). The antibacterial activity of AgNPs
was collectively due to the ROS formation as well as Ag" ions. S1
showed the highest amount of ROS ("OH) than S3, which indicated
that AgNPs having small particle size showed the highest amount
of ROS formation (Fig. S3 in ESI{). Additionally, the effect of Ag"
ions was also studied. An equivalent amount of Ag salt was added
to the bacterial solution, and only 64% bacterial inactivation was
observed; this indicated that for bacterial inactivation, both AgNPs
and Ag" ions play important roles (Fig. S4 in ESIY).

Since the above-mentioned studies confirmed that sample
S1 showed the best antibacterial activity, further experiments
were continued with the same sample. The minimum inhibi-
tory concentration (MIC) method was used to study the anti-
bacterial effectiveness with different AgNP concentrations.
AgNPs with concentrations ranging from 10 to 50 mg L™ " were
added to the bacterial culture and then incubated for 12 h at
37 °C with a constant stirring rate of 200 rpm. The final
bacterial concentration decreased with an increase in the
AgNP concentration; when the concentration reached
40 mg L', E. coli growth was completely inhibited. In the
present study, MIC of AgNPs to E. coli was 40 mg L' (Fig. 5b).
To study the bacterial growth curve, the bacterial (E. coli)
concentration was monitored every 1 h by optical density (OD)
at 600 nm (Fig. 5c). It was found that the bacterial growth
decreased continuously with an increase in the AgNP
concentration. At a low concentration of AgNPs, bacterial
growth was delayed; however, at a higher concentration,
bacterial growth was completely inhibited. When the activity
of plasma-reduced AgNPs was compared with that of the
chemically reduced AgNPs, it was confirmed that the activity of
Ag-P was better than that of Ag-C. The antimicrobial activity of
AgNPs was investigated by many scientists against a broad
range of microbes including bacteria, viruses and fungi.
Nowadays, AgNPs are a well-established alternative to antibi-
otic therapy because of their significant potential for solving
the problems associated with the development of multidrug
resistance in microorganisms and hence, they are known as
next-generation antibiotics.>*3¢

3.6 Photocatalytic activity of plasma- and chemically
reduced AgNPs

The photocatalytic degradation of CV was studied with TiO, and
Ag-supported TiO, catalysts (0.5 wt% Ag(P)-TiO,, 1 wt% Ag(P)-
TiO,, 2 wt% Ag(P)-TiO, and 1 wt% Ag(C)-TiO,) with the
optimum concentration of 1 g L™"; 1 wt% Ag(P)-TiO, showed
the best conversion (98%) (Fig. 6a). In the case of 2 wt% Ag-
TiO,, an excess amount of Ag occupied more TiO, surface and
lowered the possibility of contact with O,,"* which may inhibit
the electron transfer from TiO, to O, molecules, resulting in the
decrease in catalytic activity. The degradation of organic dye
followed first-order kinetics, and the rate constants (eqn (8))
were found to be 0.03, 0.025, 0.02, 0.007 and 0.005 min~* for

RSC Adv., 2018, 8, 24827-24835 | 24831
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Fig. 4 (a—c) TEM images of the colloidal Ag nanoparticles (scale bar: 50 nm) and (d—f) size distributions of colloidal Ag nanoparticles (at 16 kV

voltage and 300 sccm Ar gas flow).

1 wt% Ag(P)-TiO,, 2 wt% Ag(P)-TiO,, 0.5 wt% Ag(P)-TiO,, 1 wt%
Ag(C)-TiO, and pure TiO, (Fig. 6b), respectively.

—In(C/Cy) = kt (8)

Since the results confirmed that 1 wt% Ag(P)-TiO, catalyst
showed the best photocatalytic activity, it was used for further
experiments. A set of experiments were carried out by varying

the catalyst (1 wt% Ag-TiO,) amount in the range of 30-60 mg;
the activity data indicated that an increase in conversion was
achieved with an increase in the catalyst concentration up to 1g
L~ " and after that, the efficiency decreased (Fig. 6¢). This can be
explained in terms of active sites present on the catalyst surface
for the photocatalytic reactions. A high amount of catalyst in
solution increases the turbidity, which may decrease the inter-
action of light with the active sites present on the catalyst
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Fig. 5
concentration of AgNPs on E. coli growth curves (initial OD at 0.1).
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Fig. 6 The effect of the Ag-supported TiO, catalyst on CV degradation: (a) % of degradation and (b) first-order kinetic plots. The effect of the
amount of 1 wt% Ag—-TiO, catalyst on CV degradation: (c) % degradation (d) first order kinetic plots ((A) TiO,, (B) 50 mg Ag(C)-TiO,, (C) 30 mg
Ag(P)-TiO,, (D) 40 mg Ag(P)-TiO,, (E) 50 mg Ag(P)-TiO,, and (F) 60 mg Ag(P)-TiO5).

surface. The maximum degradation of CV was observed with
1 wt% Ag(P)-TiO, at 1 g L~ within 120 min under sunlight. As
seen from Fig. 6d, the degradation of CV followed first-order
kinetics, and the rate constants were found to be 0.005, 0.007,
0.0116, 0.017, 0.022 and 0.03 min " for pure TiO,, 50 mg Ag(C)-
TiO,, 30 mg Ag(P)-TiO,, 40 mg Ag(P)-TiO,, 60 mg Ag(P)-TiO,,
and 50 mg Ag(P)-TiO,, respectively. The effect of 1 wt% Ag(P)-
TiO, catalyst loading on the degradation of CV highlighted the
better performance of the plasma-reduced Ag-P catalyst than that
of chemically reduced Ag-C with the same amount of the catalyst.
A plausible mechanism for the degradation of CV is shown in
Fig. S5 in the ESIL.T The degradation of CV dye may occur through
the attack of ‘OH on the central carbon of CV via the conjugated
structure of aminotriphenylmethane to produce intermediates,
which are further oxidized to CO, and H,O (mineralization
products).”” The extent of mineralization was achieved up to 56%
with the highly active 1 wt% Ag(P)-TiO, catalyst, and it also
showed the best conversion (98%), which decreased to 61% in
the presence of isopropyl alcohol (hydroxyl scavenger). The
complete degradation of CV was achieved within 70 min in the
presence of FeCl,, which may be due to the formation of "OH via
Fenton reactions, which readily oxidizes CV (eqn (9))

Fe’" + H,0, —» "OH + OH™ + Fe** (9)

TiO, is a proven photocatalyst, which has a wide band gap of
3.2 eV. Accordingly, the modification of TiO, with noble metal
nanoparticles such as Ag or Au shifts its absorption edge to the
visible region (<3.2 eV). Since the experiments are conducted

This journal is © The Royal Society of Chemistry 2018

with commercial TiO, under open sunlight, the observed
activity is explained based on the combined effect of TiO, and
AgNPs impregnated on TiO,. During the photo-excitation of
AgNPs under sunlight, the electrons below the Fermi level (Ef) of
AgNPs are excited to the surface plasmon states, leaving positive
charges (h") below E;.**° The interaction of holes with water
molecules leads to the formation of “OH (eqn (10) and (11)). The
electrons are transferred to the conduction band of TiO,, which
minimizes electron-hole recombination (eqn (12)) and provides
more electrons for the reduction of molecular oxygen to
superoxide anion radicals (O, "), the protonation of which gives
"HO, radicals (eqn (13) and (14)). The reduction of "HO, yields
H,0, species, which undergo decomposition to form ‘OH
radicals (eqn (15) and (16)) (Fig. 7).** The 'OH radical has an
oxidation potential of 2.8 V, which is sufficient to oxidize a wide

SPR effect v VA7
+OH «— -H02<—@ O
Fyd

CO, + H;0

Organics

Fig. 7 Schematic diagram of the photocatalytic mechanism of the
Ag-TiO, catalyst.
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Fig. 8 Identification of reactive oxygen species with 1 wt% Ag(P)-TiO

range of organic compounds including CV (eqn (17)). The
photocatalytic activity of pure Ag(P) or Ag(C) is negligible due to
rapid electron-hole recombination.

Ag+h — h" +e” (10)

h* + H,0 - '"OH + H" (11)

e + TiO, — TiOs(e") (12)
TiO,(e7) + O, — TiO, + "0y~ (13)
‘0,” + H" — "HO, (14)

"HO, + "HO, — H,0, + 0, (15)
H,0, — "OH +'OH (16)

'OH + CV — degraded products (17)

3.7 Identification of reactive oxygen species

The ROS such as H,0, and "OH formed during photocatalysis
were identified using the titanium sulfate and chemical
dosimetry method. The reactive oxygen species were identified
in a solution containing 50 mg of catalyst (1 wt% Ag(P)-TiO,)
and in the absence of CV dye. H,0, reacted with titanium
sulfate to give yellow-colored pertitanic acid, which showed
a maximum absorbance at 420 nm, as shown in Fig. 8a. The ‘OH
radicals formed during photocatalysis may react with TA to
form HTA, which showed an emission at 425 nm (Fig. 8b).>* The
formation of active species was also compared with that of the
chemically reduced catalyst 1 wt% Ag(C)-TiO,, and the plasma-
reduced catalyst 1 wt% Ag(P)-TiO, showed the highest active
species formation.

4. Conclusions

Highly dispersed colloidal silver nanoparticles (AgNPs) were
synthesized using an atmospheric pressure plasma jet under

24834 | RSC Adv., 2018, 8, 24827-24835
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ambient conditions. Reducing species such as "H and e, were
identified via optical emission spectroscopy (OES) and Good-
man's method. It was observed that the pH of the AgNO,-con-
taining solution decreased during the plasma treatment, which
indicated the reduction of Ag" ions. The formation of colloidal
AgNPs was confirmed by surface plasmon resonance (SPR)
bands using ultraviolet-visible and fluorescence spectroscopies,
and TEM images confirmed the spherical morphology of the
plasma-reduced Ag nanoparticles. The size of the colloidal
AgNPs was tuned by adjusting the AgNO; initial concentration.
The addition of "OH scavenger TA to the solution decreased the
treatment time for Ag" reduction. The typical activity tests
confirmed that the plasma-reduced AgNPs (Ag-P) showed
superior antibacterial and photocatalytic activities than the
chemically reduced AgNPs (Ag-C). Interestingly the plasma-
reduced AgNPs were stable even after 30 days, whereas the
chemically reduced AgNPs agglomerated within 12 h. The
extent of mineralization achieved was up to 56% with the highly
active 1 wt% Ag(P)-TiO, catalyst. The hydroxyl scavenger iso-
propyl alcohol showed a negative effect on CV degradation,
whereas Fe®" salts played a positive role in CV degradation.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Authors would like to thank MHRD, India for the financial
assistance.

References

1 K. M. A. El-Nour, A. A. Eftaiha, A. Al-Warthan and
R. A. Ammar, Arabian J. Chem., 2010, 3, 135-140.

2 H. Gu, P. L. Ho, E. Tong, L. Wang and B. Xu, Nano Lett., 2003,
3, 1261-1263.

3 J. M. Kohler, L. Abahmane, J. Wagner, J. Albert and G. Mayer,
Chem. Eng. Sci., 2008, 63, 5048-5055.

4 M. De, P. S. Ghosh and V. M. Rotello, Adv. Mater., 2008, 20,
4225-4241.

This journal is © The Royal Society of Chemistry 2018


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra03961e

Open Access Article. Published on 10 July 2018. Downloaded on 1/25/2026 1:39:16 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

5A. A. Kajani, A. K. Bordbar, S. H. Z. Esfahani,
A. R. Khosropour and A. Razmjou, RSC Adv., 2014, 4,
61394-61403.

6 Q. H. Tran and A. T. Le, Adv. Nat. Sci.: Nanosci. Nanotechnol.,
2013, 4, 033001.

7 T. V. Duncan, J. Colloid Interface Sci., 2011, 363, 1-24.

8 Y. Cai, X. Piao, W. Gao, Z. Zhang, E. Nie and Z. Sun, RSC Adv.,
2017, 7, 34041-34048.

9 A. Panacek, M. Kolar, R. Vecefova, R. Prucek, J. Soukupova,
V. Krystof and L. Kvitek, Biomaterials, 2009, 30, 6333-6340.

10 S. Chernousova and M. Epple, Angew. Chem., Int. Ed., 2013,
52, 1636-1653.

11 J. Y. Kim, S. E. Kim, J. E. Kim, J. C. Lee and ]. Y. Yoon, J.
Korean Soc. Environ. Eng., 2005, 27, 771-776.

12 F. Gao, Y. Yang and T. Wang, Chem. Eng. J., 2015, 270, 418-
427.

13 R. Kaur and B. Pal, New J. Chem., 2015, 39, 5966-5976.

14 Z. Zheng, B. Huang, X. Qin, X. Zhang, Y. Dai and
M. H. Whangbo, J. Mater. Chem., 2011, 21, 9079-9087.

15 P. Korshed, L. Li, Z. Liu and T. Wang, PLoS One, 2016, 11,
€0160078.

16 Z. Tang, S. Liu, S. Dong and E. Wang, J. Electroanal. Chem.,
2001, 502, 146-151.

17 B. Soroushian, I. Lampre, J. Belloni and M. Mostafavi,
Radiat. Phys. Chem., 2005, 72, 111-118.

18 M. G. Guzman, J. Dille and S. Godet, Int. J. Chem. Biol. Eng.,
2009, 2, 104-111.

19 T. A. Kareem and A. A. Kaliani, Ionics, 2012, 18, 315-327.

20 N. A. Samoilova, I. V. Blagodatskikh, E. A. Kurskaya,
M. A. Krayukhina, O. V. Vyshivannaya, S. S. Abramchuk
and 1. A. Yamskov, Colloid J., 2013, 75, 409-420.

21 V. G. Pol, H. Grisaru and A. Gedanken, Langmuir, 2005, 21,
3635-3640.

22 X. Liang, Z. J. Wang and C. J. Liu, Nanoscale Res. Lett., 2009,
5, 124.

23 L. Chandana and C. Subrahmanyam, Chem. Eng. J., 2017,
329, 211-219.

24 J. He, I. Ichinose, T. Kunitake and A. Nakao, Langmuir, 2002,
18, 10005-10010.

This journal is © The Royal Society of Chemistry 2018

View Article Online

RSC Advances

25 S.S.Kim, H. Lee, B. K. Na and H. K. Song, Catal. Today, 2004,
89, 193-200.

26 L. Chandana, P. M. K. Reddy and C. Subrahmanyam, Chem.
Eng. J., 2015, 282, 116-122.

27 D. Ray and C. Subrahmanyam, RSC Adv., 2016, 6, 39492-
39499.

28 L. Mulfinger, S. D. Solomon, M. Bahadory,
A. V. Jeyarajasingam, S. A. Rutkowsky and C. Boritz, J.
Chem. Educ., 2007, 84, 322.

29 L. Chandana and C. Subrahmanyam, J. Environ. Chem. Eng.,
2016, 6, 3780-3786.

30 H. O. L. Li, J. Kang, K. Urashima and N. Saito, J. Inst.
Electrostat. Jpn, 2013, 37, 22-27.

31 N. Shirai, S. Uchida and F. Tochikubo, jpn. J. Appl. Phys.,
2014, 53, 046202.

32 F. U. Khan, Y. Chen, N. U. Khan, Z. U. H. Khan, A. U. Khan,
A. Ahmad and P. Wan, J. Photochem. Photobiol., B, 2016, 164,
344-351.

33 R. Desai, V. Mankad, S. K. Gupta and P. K. Jha, Nanosci.
Nanotechnol. Lett., 2012, 4, 30-34.

34 Y. Sun and Y. Xia, Science, 2002, 298, 2176-2179.

35 M. K. Rai, S. D. Deshmukh, A. P. Ingle and A. K. Gaade, J.
Appl. Microbiol., 2012, 112, 841-852.

36 C. Malarkodi, S. Rajeshkumar, K. Paulkumar,
G. Gnanajobitha, M. Vanaja and G. Annadurai, Advances in
Nano Research, 2013, 1, 83-91.

37 Y. H.B. Liao, J. X. Wang, J. S. Lin, W. H. Chung, W. Y. Lin and
C. C. Chen, Catal. Today, 2011, 174, 148-159.

38 K. H. Leong, B. L. Gan, S. Ibrahim and P. Saravanan, Appl.
Surf. Sci., 2014, 319, 128-135.

39 M. Z.Ge, C.Y. Cao, S. H. Li, Y. X. Tang, L. N. Wang, N. Qi and
Y. K. Lai, Nanoscale, 2016, 8, 5226-5234.

40 H. Wang, X. Yang, J. Zi, M. Zhou, Z. Ye,J. Liand Y. Yan, J. Ind.
Eng. Chem., 2016, 35, 83-92.

41 M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras,
A. G. Kontos and M. H. Entezari, Appl. Catal., B, 2012, 125,
331-349.

RSC Adv., 2018, 8, 24827-24835 | 24835


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra03961e

	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e

	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e

	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e
	Enhanced photocatalytic and antibacterial activity of plasma-reduced silver nanoparticlesElectronic supplementary information (ESI) available. See DOI: 10.1039/c8ra03961e


