RSC Advances

PAPER

Cite this: RSC Adv., 2018, 8, 22786

Received 22nd April 2018 Accepted 8th June 2018 DOI: 10.1039/c8ra03443e

rsc.li/rsc-advances

1. Introduction

Among various heavy metal ions, cadmium (n) is one of the most dangerous ions due to its high toxicity and carcinogenicity.^{1,2} As we know, Cd^{2+} has been widely used in many fields such as industry, agriculture, metallurgy, etc.^{3,4} However, high levels of $Cd²⁺$ can impose huge threats to the environment and human health due to its bioaccumulation through the food chain.^{5,6} Excessive intake of Cd^{2+} can not only increase the risk of cancer, heart disease, cardiovascular diseases and diabetes,⁷⁻¹⁰ but also damage the liver and kidneys. As a highly toxic heavy metal, cadmium has been listed on the "CERCLA Priority List of Hazardous Substances" of Toxic Substances and Disease Registry (ATSDR).¹¹ Thus, efficient methodologies for selective detection of Cd^{2+} are desperately needed. One of the greatest challenges in Cd^{2+} detection is the highly similar binding properties of Cd^{2+} and Zn^{2+} that are located in the same group of the periodic table.¹² Therefore, the development of highly selective sensors of Cd^{2+} without interferences from Zn^{2+} under physiological conditions has become a hot research topic.

Anions play important roles in biological, medical, environmental and chemical sciences.¹³–¹⁵ Among various anions, bisulfite (HSO_3^-) is one of the most concerned anions, which has been widely used as an enzyme inhibitor, antimicrobial agent, beverages, and an antioxidant for foods.¹⁶ In fact,

A highly selective fluorescent probe for detection of Cd^{2+} and HSO_3^- based on photochromic diarylethene with a triazole-bridged coumarinquinoline group

Shuli Guo, Gang Liu,* Congbin Fan **D** and Shouzhi Pu*

A novel photochromic diarylethene containing a quinoline-linked 3-aminocoumarin Schiff base unit (1O) was synthesized and used for the selective detection of Cd^{2+} and HSO_3^- . The synthesized probe exhibited a straightforward response for the selective detection of $Cd²⁺$. Its fluorescence emission redshifted \sim 126 nm and was enhanced 24.9 fold in the presence of Cd²⁺. Meanwhile, the fluorescence color of 1O changed from dark cyan to golden yellow. The binding stoichiometry between 1O and $Cd²⁺$ was determined to be 1 : 1. A molecular logic circuit with three inputs and one output was successfully constructed with its light and metal-responsive behaviors. In addition, 1O was able to selectively recognize HSO_3^- with a 135-fold enhanced fluorescence emission and a notable fluorescence color change from dark cyan to bright cyan. The ¹H NMR and mass spectrometry analyses suggest that the $HSO₃⁻$ sensing of 10 is based on the hydrolysis of the Schiff base group of 10. PAPER
 EXERCT AND A SUBATE CONSULTS AND SELUX CONSULTS AND ACTIVE CONSULTS AND SELUX CO

addition of bisulfite to beer and wine has been customary for centuries in most countries. However, it has been found that some individuals are sensitive to high concentrations of $\mathrm{HSO_3}^$ with the syndromes of asthmatic attack, gastrointestinal distress, allergic reaction and skin allergy.¹⁷⁻²² Thus, the bisulfite content in foodstuffs has been strictly limited in many countries. For this reason, the selective and sensitive chemosensors of bisulfite are highly desired. To date, many of the reported HSO_3^- sensors have based on different reaction mechanisms, including coordination to metal ions, 23,24 complexation with amines,^{25,26} Michael additions,²⁷⁻³² selective reaction with aldehyde or levulinate.³³⁻³⁵ For instance, Zeng et al. Reported a mitochondria-targeted probe derived from the conjugation of carbazole and benzo[e]indolium, to which 1,4 nucleophilic addition reaction with bisulfite occurred.³⁶ However, there are no reports for HSO_3^- sensors, which based on Schiff base with hydrolysis mechanisms.

A variety of advanced technologies, such as inductively coupled plasma-atomic emission spectrometry (ICP-AES),³⁷ atomic absorption spectroscopy (AAS)³⁸ and inductively coupled plasma-mass spectrometry (ICP-MS),³⁹ have been widely used for the analysis of Cd^{2+} and HSO_3 $\overline{}$. By comparison, fluorescent probes are superior and have attracted increasing attentions in ion detections in both chemistry and biology due to their high sensitivity, good selectivity, easy operation, and low cost.⁴⁰⁻⁴⁶

Among the reported photo-responsive materials, diarylethene is one of the most promising photo-switchable molecules, which have exhibited great potentials in optical information storage media and photonic switch devices with

Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China. E-mail: pushouzhi@tsinghua.org.cn; Fax: +86 791 83805870; Tel: +86 791 83805870; +86 791 83831996

their excellent photo reactivity, thermal stability, and fatigue resistance.⁴⁷–⁵¹ Moreover, diarylethenes have also been extensively introduced to application in electronic logic devices in recent years, because they exhibit excellent optical performances and multi-response to various ions owing to their special structures.⁵²⁻⁵⁴ As known to all, electronic equipment has gradually become a necessity in people's lives and the logic circuits are essential for the fabrication of optoelectronic devices. According to the above advantages, an increasing number of diarylethenes were introduced to fluorescent sensor for detection of different ions in recent years. For instance, Li *et al.* reported a highly selective fluorescent probe for Cd^{2+} and Zn^{2+} based on a new diarylethene with quinoline-benzimidazole conjugated system,⁵⁵ Zhang et al. reported a fluorescent sensor for Cd^{2+} based on a new diarylethene with a 1,8-naphthyridine unit,⁵⁶ Duan et al. studied a fluorescent probe for Cd^{2+} based on a diarylethene with pyridinepiperazine-linked hydroxyquinoline group.⁵⁷ However, there are no diarylethenebased chemosensors that exhibit fluorescence response to both Cd $^{2+}$ and HSO $_3^-$. Thus, development of fluorescent probes toward Cd $^{2+}$ and HSO $_3^-$ are still challenging.

In this study, we designed and synthesized a novel photochromic diarylethene bearing a quinoline-linked 3-aminocoumarin Schiff base unit (1O), and its photochromic and fluorescent responses to Cd^{2+} and HSO_3^- were systematically discussed. Scheme 1 shows the photochromic process of 1O.

2. Experiments

2.1 General methods

All solvents were of analytical grade and distilled before use. Other reagents were used as-received. 1 H NMR and 13 C NMR spectra were recorded on a Bruker AV400 spectrometer (400 MHz) using DMSO-d6, CDCl₃ and CD₃CN as the solvents and tetramethylsilane (TMS) as the internal standard. Mass spectra were obtained using an Agilent 1100 Ion Trap LC/MS MSD system. Infrared spectra (IR) were collected on a BrukerVertex-70 spectrometer. Melting points were measured using a WRS-1B melting point apparatus. All metal ions, except for Hg^{2+} and K⁺ that were prepared with their chloride salts, were obtained by dissolving the corresponding metal nitrates (0.1 mmol) in distilled water (10 mL). All anions were obtained by dissolving the corresponding potassium or sodium salts (0.1 mmol) in distilled water (10 mL). The EDTA solution was prepared with ethylenediaminetetraacetic acid disodium salt (Na₂EDTA) (1.0 mmol) in distilled water (10 mL). Fluorescence spectra were measured with a Hitachi F-4600 fluorescence spectrophotometer. UV-vis absorption spectra were recorded on an Agilent 8453

Scheme 2 Synthetic routes of diarylethene 1O.

UV/vis spectrophotometer equipped with an MUA-165 UV lamp and MVL-210 visible lamp for photoirradiation. Fluorescence quantum yield was measured using a QY C11347-11 absolute PL

quantum yield spectrometer. Photoirradiation was conducted on a setup consisting of an SHG-200 UV lamp, Cx-21 ultraviolet fluorescence analysis cabinet, and BMH-250 visible lamp.

Fig. 1 (A) Changes in the absorption spectrum of 10 in acetonitrile (2.0 \times 10⁻⁵ mol L⁻¹) upon alternating irradiation with UV and visible light; (B) fatigue resistance of 1O in acetonitrile under the alternating irradiation at room temperature.

Fig. 2 Changes in the absorption spectrum and color of 10 in acetonitrile (2.0 \times 10⁻⁵ mol L⁻¹) in response to Cd²⁺/EDTA and light stimuli. (A) Spectral changes of 1O induced by Cd²⁺/EDTA; (B) spectral changes of $10 + Cd^{2+}$ induced by UV/vis light; (C) spectral changes of 1C induced by $Cd²⁺/EDTA$.

1O was synthesized following the route shown in Scheme 2. Compounds 2 and 3 were prepared by the methods reported in literature.^{58,59}

2.2.1 Synthesis of compound 4. The NaVc (0.04 g, 0.20 mmol) and $CuSO₄$ (0.025 g, 0.10 mmol) solution in water (10 mL) was added to a solution of 2 (0.55 g, 1.00 mmol) and 3 (0.21 g, 1.00 mmol) in THF (40 mL) under stirring at room temperature. The reaction mixture was stirred at room temperature for 12 h to allow the Cu(i)-catalyzed 1,3-dipolar cycloaddition reaction of 2 and 3, and extracted with CH_2Cl_2 . The organic phase was dried over $Na₂SO₄$, filtered and evaporated. The crude product was purified by silica gel column chromatography using petroleum dichloro/ethyl acetate ($v/v =$ $1/1$) as the eluent to afford 0.51 g compound 4 as a purple solid in 67% yield. $^{1} \text{H}$ NMR (400 MHz, CDCl₃, ppm): δ 1.94 (s, 3H, –CH₃), 2.29 (s, 3H, –CH₃), 5.30 (s, 1H, –CH₂–N–), 5.52 (s, 2H, –CH₂–O–), 5.59 (s, 2H, Ar–H), 7.16 (s, 1H, Ar–H), 7.23 (s, 1H, Ar– H), 7.25 (s, 1H, Ar–H), 7.33 (q, 2H, Ar–H), 7.41 (q, 3H, Ar–H), 7.50 (d, 1H, Ar–H), 7.59 (m, 2H, Ar–H), 7.73 (t, 1H, Ar–H), 8.06 (d, 1H, Ar–H), 8.28 (d, 1H, Ar–H), 10.26 (s, 1H, –CHO).

2.2.2 Synthesis of (1O). Compound 4 (0.23 g, 0.3 mmol) was refluxed with 3-aminocoumarin $(0.048 \text{ g}, 0.3 \text{ mmol})$ in anhydrous methanol (5.0 mL) at 80 $^{\circ}$ C under stirring for 1 h, cooled

to room temperature and filtered. The residue was washed with cold methanol to afford $10(0.22 g)$ in 81% yield. Mp: 439-440 K; ¹H NMR (400 MHz, DMSO, ppm): δ 2.35 (s, 3H, -CH₃), 3.00 (s, 3H, –CH₃), 5.45 (s, 2H, –CH₂–N–), 5.72 (s, 2H, –CH₂–O–), 6.18 (d, 1H, –CH]N–), 7.15 (s, 1H, Ar–H), 7.29 (d, 1H, Ar–H), 7.35 (t, 3H, Ar–H), 7.40 (s, 1H, Ar–H), 7.42 (s, 2H, Ar–H), 7.47 (q, 2H, Ar–H), 7.52 (s, 1H, Ar–H), 7.54 (s, 1H, Ar–H), 7.60 (q, 2H, Ar–H), 7.62 (s, 1H, Ar–H), 7.79 (d, 1H, Ar–H), 7.94 (d, 1H, Ar–H), 8.51 (d, 2H, Ar– H); ¹³C NMR (100 MHz, DMSO, TMS): $\delta = 14.56, 15.07, 50.17,$ 53.01, 63.50, 83.50, 109.65, 111.73, 116.18, 119.37, 120.60, 120.75, 121.62, 121.92, 123.07, 123.36, 124.59, 124.86, 125.29, 125.71, 125.99, 126.36, 127.07, 127.98, 129.35, 130.98, 132.67, 136.35, 137.81, 138.11, 138.42, 141.20, 142.07, 143.62, 144.23, 148.55, 154.11, 154.52, 159.14; IR (KBr, ν , cm⁻¹): 1715 (-C=O), 1628 (–C=N), 1338 (–C–N), 1275 (–C–O); MS (m/z) : Calculated for $C_{48}H_{31}F_6N_5O_3S_2 \text{ [M]}^{\text{+}}$: 903.1773, found: 904.1836 for $\text{[1O + H]}^{\text{+}}$ and 926.1658 for $[10 + Na]$ ⁺.

3. Results and discussion

3.1 Photochromic of diarylethene 1O

The photochromic behavior of diarylethene 1O induced by UV/ vis light was investigated in acetonitrile $(C = 2.0 \times$ 10^{-5} mol L^{-1}) at room temperature. As shown in Fig. 1A, the 1O

Fig. 3 Fluorescence changes of 10 (2.0 \times 10⁻⁵ mol L⁻¹) in acetonitrile in response to various metal ions (2.4 equiv.). (A) Fluorescence emission spectra of 10 in the presence of various metal ions; (B) fluorescence emission spectra of 10 in the presence of Cd^{2+} ; (C) image demonstrating the solution color of 1O in the presence of different metal ions.

solution in acetonitrile is colorless, exhibiting a sharp absorption peak at 242 nm due to the $\pi-\pi^*$ transition. A new absorption band centered at 547 nm appeared upon the irradiation with 297 nm light, accompanied with a visible color change from colorless to purple, due to the photocyclization of 1O to 1C. ⁶⁰–⁶² The photocyclization reaction reached the photostationary state (PSS) in 4.5 min under the irradiation of UV light, where a clear isosbestic point was observed at 300 nm. These observations suggest that the irritation caused a twocomponent photochromic reaction. $63-65$ The absorption spectrum was successfully restored to the original state, accompanied by the color change from purple to colorless, by irradiating the 1C solution with visible light. The cyclization and cycloreversion quantum yields were calculated to be 0.139 and 0.324, respectively. The fatigue resistance of 1O was tested by alternating irradiation with UV and visible light at room temperature. Ten coloration–decoloration cycles of 1O caused only 6.5% degradation (Fig. 1B).

3.2 Changes in absorption spectrum induced by $Cd²⁺$

Fig. 2 shows the absorption spectra and colors of 1O induced by $Cd^{2+}/EDTA$ and UV/vis stimuli in acetonitrile. A new absorption band appeared at 392 nm as Cd^{2+} added and the band intensity increased with the increase of Cd^{2+} amount and reached the maximum at 1.8 equiv. of Cd^{2+} , accompanied by a notable color

change from colorless to yellow, due to the formation of complex $10 + Cd^{2+}$. The addition of an excess amount of EDTA did not restore the original color of 10, suggesting that the Cd^{2+} sensing process of 1O was irreversible (Fig. 2A). As depicted in Fig. 2B, the $10 + Cd^{2+}$ complex was also photoisomerized under the alternating irradiation with UV and visible light. Upon the irradiation with 297 nm UV light, the yellow solution of 1O + $Cd²⁺$ turned plum and a new absorption band emerged at 547 nm ($\varepsilon_{\text{max}} = 8.5 \times 10^3 \text{ mol}^{-1}$ L cm⁻¹) due to the formation of the closed-ring isomer $1C + Cd^{2^{+}}$.^{66,67} Reversely, the plum solution turned yellow, and the absorption spectrum was restored to that of the open-ring isomer $10 + Cd^{2+}$ upon irradiation with visible light. Directly adding Cd^{2+} to the solution of 1C weakened the absorption band centered at 322 nm and enhanced the absorption at 393 nm. Meanwhile, the solution color changed from purple to plum, indicating that 1C and Cd^{2+} formed 1C + $Cd²⁺ complex.$ It is worth noting that the complexation between 1C and Cd^{2+} was not be reversed by EDTA either (Fig. 2C). These results indicate that both isomers of 10 have stronger Cd^{2+} binding ability than EDTA. **BSC** Advances Worwide is columnic in column access articles are computed to the common product of the set of t

3.3 Fluorescence response of 1O to metal ions

The fluorescence and color responses of 10 (2.0 \times 10⁻⁵ mol L⁻¹ in acetonitrile) to various metal cations (2.4 equiv.) including Cd^{2+} , Cr^{3+} , Al^{3+} , Fe^{3+} , Cu^{2+} , Zn^{2+} , Co^{2+} , Mn^{2+} , Hg^{2+} , Pb^{2+} , K^{+} ,

Fig. 4 $\,$ (A) Competitive tests for the fluorescence response of 10 (2.0 \times 10 $^{-5}$ mol L $^{-1}$) in the presence of Cd $^{2+}$ and other competing metal ions in acetonitrile. Black bars represent the fluorescence intensities of 1O in the presence of 2.4 equiv. metal ions. Red bars represent fluorescence intensity of 1O at 633 nm as in the presence of Cd²⁺ (2.4 equiv.) and other competing metal ions. (B) Emission spectra of 1O solutions containing $Cd²⁺$ (2.4 equiv.) and the competing metal ions; (C) fluorescence color of 10 in the presence of $Cd²⁺$ and other competing metal ions.

Fig. 5 Fluorescence responses of 10 (2.0 \times 10⁻⁵ mol L⁻¹) to Cd²⁺/EDTA in acetonitrile, excited at 392 nm. (A) Fluorescent emission spectra of 1O titrated with different amounts of Cd²⁺; (B) fluorescence intensities of 1O at 633 nm as titrated with different equiv. of Cd²⁺; (C) fluorescent emission spectra of $10 + Cd^{2+}$ under alternating photoirradiation with UV and visible light; (D) Job's plot showing the 1:1 complex of 10 with $Cd²⁺$.

 Ca^{2+} , Mg^{2+} , Ba^{2+} , Sr^{2+} , Ag^{+} and Ni^{2+} were investigated with a fluorescence spectroscopy. All metal ions except for Cr^{3+} , Al^{3+} and $Fe³⁺$ caused no obvious changes in the fluorescence

emission at 507 nm of 10 (Fig. 3A). The fluorescence emission of 1O at 507 nm was dramatically enhanced as Cr^{3+} , Al^{3+} or Fe^{3+} added, companied by the color change from dark cyan to bright

Fig. 6 ESI-MS spectra of 10 in the absence of presence of Cd^{2+} in acetonitrile.

RSC Advances **RSC Advances** Paper **RSC Advances** Paper **Paper Paper Paper Paper** Paper Pap

cyan (Fig. 3C). However, the maximum emission peak had an obvious red-shift from 507 nm to 633 nm upon the addition of Cd^{2+} to 10 in acetonitrile, we can see this phenomenon more clearly through Fig. 3B. The structural rigidity of the Cd^{2+} complexes and metal binding close to the diarylethene might be the factors that cooperate to induce the large emission peak shift. Meanwhile, it's emission intensity enhanced by 24.9 folds with the stimulation of 2.4 equiv. of Cd^{2+} , accompanied by a color change from dark cyan to golden yellow. These results indicate that 10 can selectively recognize Cd^{2+} over other metal ions in acetonitrile.

To further demonstrate the selectivity of 10 towards Cd^{2+} in acetonitrile, competitive experiments were conducted on Cd^{2+} in the presence of equal equivalent of other competitive metal

cations listed above. As shown in Fig. 4, the fluorescence response of 10 to Cd^{2+} was not significantly affected by other competing metal ions, except for Cu^{2+} that caused a reduction in emission intensity. However, compared with the variations of emission intensity and fluorescence color induced by Cd^{2+} alone, the interference of Cu^{2+} is negligible. As mentioned above, most Cd^{2+} fluorescent probes encounter the interference from Zn^{2+} that is located in the same group in the periodic table and has similar chemical properties to Cd^{2+} . Yet such interference was not observed in the Cd^{2+} chemosensing of 10 too. These results suggested that **10** is highly selective to Cd^{2+} over other competing cations, even Cr^{3+} , Al^{3+} , Fe^{3+} , and Zn^{2+} in acetonitrile.

 (A)

Fig. 7 (A) Changes in the photochromism, color, and fluorescent of 10 induced by $Cd²⁺/EDTA$ and UV/vis lights; (B) the combinational logic circuit equivalents to the truth table in Table 1, where In1 (297 nm UV light), In2 (500 nm visible light), In3 (Cd²⁺) are inputs, and O1 is output.

Table 1 Truth table for all possible strings of three binary-inputs and the corresponding output digits a

Input			
In1 (UV)	In2 (Vis)	In3 (Cd^{2+})	Output $\lambda_{ab} = 393$ nm
0	0	Ω	0
Ω	0		
	0	0	
θ		0	
	0		0
θ			
		0	0

 a ^a The output is defined as 1 if the absorbance at 393 nm is greater than 0.18, otherwise it is defined as 0.

The fluorescence responses of 10 to $Cd^{2+}/EDTA$ and light stimuli were investigated in acetonitrile at room temperature. The emission peak of 1O at 507 nm disappeared and a new peak centered at 633 nm appeared as Cd^{2+} added due to the formation of $10 + Cd^{2+}$ complex (Fig. 5A). The emission intensity at 633 nm linearly increased with the increase of Cd^{2+} concentration and reached the maximum at 2.4 equiv. Cd^{2+} , followed

by a plateau with further titration (Fig. 5B). Meanwhile, the fluorescence color changed from dark cyan to golden yellow. The fluorescence quantum yield of $10 + Cd^{2+}$ was determined to be 0.031, 14.5-fold greater than that of 10 (Φ_{f} , 10 = 0.002). The 126 nm re-shift of emission peak and up to 24.9-fold enhanced emission intensity suggest that 10 is an ideal fluorescent chemosensor of Cd^{2+} . The subsequent addition of excess EDTA did not restore the fluorescence to the original state of 10, suggesting that the Cd^{2+} sensing process of 10 was irreversible. The $10 + Cd^{2+}$ complex also exhibited photoswitchable fluorescence behaviors upon alternating irradiation with UV and visible light. The fluorescence of $10 + Cd^{2+}$ was quenched dramatically with a clear color change from golden yellow to fawn brown upon the irradiation with 297 nm light, due to the formation of weak fluorescence closed-ring isomer of $1C + Cd^{2+}$ (Fig. 5C). However, the fluorescence intensity of $10 + Cd^{2+}$ was only reduced to ca. 34% at the photostationary state, possibly owing to the incomplete cyclization and the formation of isomers with parallel conformations. The back irradiation with appropriate visible light regenerated the open-ring isomer $10 + Cd^{2+}$ and the original emission intensity was recovered. Paper

Tasks 1 Tuch is also to common access of the example of the example of the common common

Additionally, in order to determine the binding stoichiometry between 10 and Cd^{2+} , the Job's plot with emission intensity at 633 nm as a function of molar fraction of 1O was drawn. The

Fig. 8 Fluorescence responses of 10 (2.0 \times 10⁻⁵ mol L⁻¹ in acetonitrile) to various anions (4.3 equiv.). (A) Fluorescence emission spectra of 10 in the presence of various anions; (B) competitive experiments for the fluorescence response of 10 to HSO_3^- and other competing anions in acetonitrile. Black bars represent fluorescence intensities of 1O in the presence of 4.3 equiv. competing anions. Red bars represent the fluorescence intensities of the corresponding solutions after 4.3 equiv. HSO $_3^-$ added. More details can be found in the web version of this article; (C) fluorescent color of the 10 solution in the presence of different anions.

concentration of $10 + Cd^{2+}$ reached the maximum at the molar fraction of $\lceil \text{Cd}^{2+} \rceil / \lceil \text{Cd}^{2+} \rceil + \lceil 10 \rceil \rceil = \sim 0.5$ (Fig. 5D), indicating that the binding stoichiometry was 1 : 1. The 1 : 1 coordination stoichiometry of 10 with Cd^{2+} was further confirmed by the ESI mass spectrometry (ESI-MS) analysis. 1O exhibited a characteristic peak at 926.1658 m/z for $[10 + Na]^+$ (calcd 926.1659) and 904.1836 m/z for $[1O + H]^{+}$ (calcd 904.1852), which disappeared as 2.4 equiv. of Cd^{2+} were added, accompanied by the appearance of a new peak at 1016.0887 m/z for $[10 + Cd^{2+} - H]^+$ (calcd 1016.0884) (Fig. 6).

3.4 Application in logic circuits

Based on the photochromic behaviors of the diarylethene 1O in response to Cd^{2+} and UV/vis lights, a logic circuit was constructed with light irradiations and Cd^{2+} as the inputs and the absorbance of 1O at 393 nm as the output (Fig. 7). As shown in Fig. 7A, the absorption of 1O (output) can be effectively modulated by a logic circuit constructed with the three inputs including In1: 297 nm UV light, In2: λ > 500 nm visible light, and In3: Cd^{2+} (Fig. 7B). The output can be either 'on' or 'off' with the Boolean value of '1' or '0'. For example, In1 is 'on' with the Boolean value of '1' when 297 nm light is used. Similarly, In2 is '1' as irradiation with appropriate visible light (λ > 500 nm) is used and In3 is '1' as Cd^{2+} is added. The output is considered at 'on' state with the Boolean value of '1' if the absorbance at 393 nm is greater 0.18. Otherwise, it is regarded at 'off state with the Boolean value of '0'. Table 1 lists all possible strings of the binary inputs and the corresponding output digits. Upon the stimulation of different inputs, the diarylethene can exhibit an on–off–on photochromic switching behavior.

3.5 Fluorescence response of 1O to anions

The fluorescence responses of 10 to a variety of anions including HSO_3^- , HSO_4^- , F^- , Cl^- , Br^- , I^- , $H_2PO_4^-$, $CO_3^2^-$, HPO_4^{2-} , SO_3^{2-} , SCN^- , SO_4^{2-} , $S_2O_3^{2-}$, PO_4^{3-} , ClO_4^- , HCO_3^- , $NO₃⁻, Ac⁻$ and CN⁻ were measured in acetonitrile to explore its potential application as a selective anion sensor. As shown in Fig. 8A and C for the fluorescence spectra of 10 in the presence of 4.3 equiv. anions, none of them, except for HSO_3^- caused notably fluorescent emission at 510 nm and a fluorescent color

Fig. 9 Changes in the fluorescence of 10 (2.0 \times 10⁻⁵ mol L⁻¹ in acetonitrile) induced by HSO₃⁻/EDTA and light stimuli at room temperature. Excitation: 370 nm. (A) Fluorescence emission spectra of 10 titrated with different amounts of HSO₃⁻; (B) the fluorescence intensities of 10 at 510 nm in the presence of different equiv. HSO₃⁻; (C) fluorescence emission spectra of 1O + HSO₃⁻ under the irradiation with UV and visible lights.

change from dark cyan to bright cyan. Compared with that of 1O, the fluorescence intensity was enhanced by 135.5 folds, suggesting that 10 can recognize HSO_3^- . The selectivity of the reorganization was further confirmed by competitive experiments. As depicted in Fig. 8B, all competing anions, except for CN^- showed no obvious interference with the HSO_3^- sensing.

To further illuminate the responsive fluorescent emission of 1O induced by HSO_3^- and UV/vis irradiation, fluorescence

titration was conducted at room temperature. As shown in Fig. 9A and B, the fluorescence emission of 10 at 510 nm linearly increased with the increase of HSO_3^- amount, accompanied by a notable fluorescent color change from dark cyan to bright cyan, and reached the maximum at 4.3 equiv. HSO_3^- , followed by a plateau as HSO_3^- further added. The addition of excess EDTA did not recover its original fluorescence intensity, indicating that the HSO_3^- sensing process of 10 was

(B)

Fig. 10 (A) Partial ¹H NMR spectra of 10 in the absence (a) and presence of 4.3 eq. (b) of HSO₃⁻ in deuterated acetonitrile; (B) ESI-MS spectrum of $1O + HSO_3^-$.

Scheme 3 Possible hydrolysis reaction of 10 in the presence of $\mathsf{HSO}_{\mathbf{3}}^-$ in acetonitrile.

irreversible (Fig. 9A). The absolute fluorescence quantum yield of $10 + HSO_3$ [–] was determined to be 0.048, 23 folds high than that of 10 (Φ_{f} , 10 = 0.002). These results suggest that the diarylethene can also be potentially used as a fluorescent probe for the quantitative detection of HSO_3^- . The $\bf{10}$ + HSO_3^- complex also exhibited photoswitchable fluorescence behavior upon alternating irradiation with UV and visible light. The fluorescence of $10 + HSO_3^-$ was quenched dramatically with a clear color change from bright cyan to light cyan under the irradiation of 297 nm light, due to the formation of closed-ring isomer $1C + HSO_3$ ⁻ (Fig. 9C). The fluorescence intensity of $1O + HSO_3$ ⁻ was weakened to ca. 32% at PSS due to the incomplete cyclization and existence of isomers with parallel conformations. Upon the irradiation of visible light, the fluorescent spectrum was restored to the initial state of $10 + HSO_3$ ⁻. PSC Advances $\frac{1}{2}$ June 2018. The business Article is distributed on 21 June 2018. Downloaded on 21 June 2018. Downloaded on 21 June 2018. The properties of starting and the properties of SQ_C ¹ Max and 2018. The a

To further explore the interaction between ${\bf 10}$ and ${\rm HSO_3}^-$ in solution and determine the sensing mechanism, the ¹H NMR titration of 10 with HSO_3^- was performed in deuterated acetonitrile. 10 exhibited a singlet at δ 6.18 ppm of the imine protons (N=CH) (Fig. 10A). As 4.3 equiv. $\mathrm{HSO_3}^-$ was added to the 10 solution, the singlet at δ 6.18 ppm disappeared and a new singlet appeared at δ 10.26 ppm that was attributed to aldehyde protons (–CHO). These results suggest that 1O was hydrolyzed to afford compound 4 in the presence of HSO_3^- in acetonitrile, similar phenomena were also found in other reported probes.⁶⁸⁻⁷⁰

The mass spectra of **10** and $10 + HSO_3$ ⁻ more directly evidenced the reaction. As depicted in Fig. 10B, the peaks of 1O at 926.1658 m/z for $[10 + Na]^+$ (calcd 926.1659) and 904.1836 m/z for $[10 + H]$ ⁺ (calcd 904.1852) disappeared after 4.3 equiv. HSO_3^- added, and two new peaks appeared at $m/z = 759.1340$ for compound 4, (calcd $C_{39}H_{26}F_6N_4O_2S_2$ [M – H]⁻: 759.13216) and 160.0401 for compound 5 (calcd for $C_9H_7NO_2$ [M – H]⁻: 160.03976). Therefore, the enhanced fluorescence and color change of 10 in recognizing HSO_3^- was due to the cleavage of imine bond in 10 that generated aldehyde and amine, e.g. compound 4 and 3-aminocoumarin 3, as depicted in Scheme 3.

4. Conclusion

In summary, a novel photochromic chemosensor, a diarylethene bearing a quinoline-linked 3-aminocoumarin group (1O), was designed and synthesized. It exhibited typical photochromism and fluorescent switching properties and high selectivity to Cd^{2+} and HSO_3^- . 10 showed a straightforward response for the selective detection of Cd²⁺, \sim 126 nm red

shifted emission peak and up to 24.9-fold enhanced fluorescence intensity, accompanied by a notable fluorescent color change from dark cyan to golden yellow. The competitive experiments suggest that such selective fluorescent response of 10 to Cd^{2+} is not interfered by other competing metal cations including Zn^{2+} . The binding stoichiometry between 10 and Cd^{2+} was determined to be 1 : 1. Similarly, it was found that $\mathrm{HSO_3}^-$ was able to enhance the fluorescence emission of 10 in acetonitrile up to 135.5-fold and caused a notable fluorescence color change from dark cyan to bright cyan due to the hydrolysis of the C $=N$ bond in 1O that produced an aldehyde and amine. These results suggest that the diarylethene derivative has a great application potential as a fluorescent sensor of both Cd^{2+} and HSO_3^- .

Conflicts of interest

There are no conflicts of interest to declare.

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (21363009, 21662015), the "5511" science and technology innovation talent project of Jiangxi, the key project of Natural Science Foundation of Jiangxi Province (20171ACB20025), the Science Funds of Natural Science Foundation of Jiangxi Province (20171BAB203014, 20171BAB203011).

References

- 1 L. Zhang, W. Hu, L. Yu and Y. Wang, Chem. Commun., 2015, 51, 4298–4301.
- 2 Z. Shi, Q. Han, L. Yang, H. Yang, X. Tang, W. Dou, et al., Chem.–Eur. J., 2015, 21(1), 290–297.
- 3 S. F. Zhou, J. J. Wang, L. Gan, X. J. Han, H. L. Fan, L. Y. Mei, J. Huang and Y. Q. Liu, J. Alloys Compd., 2017, 721, 492–500.
- 4 R. Kumar, T. Bhuvana and A. Sharma, RSC Adv., 2017, 7, 42146–42158.
- 5 J. N. Hao and B. Yan, Chem. Commun., 2015, 51, 7737–7740.
- 6 Y. Lv, L. Wu, W. Shen, J. Wang, G. Xuan and X. Sun, J. Porphyrins Phthalocyanines, 2015, 19, 769–774.
- 7 C. D. Klaassen, J. Liu and B. Diwan, Toxicol. Appl. Pharmacol., 2009, 238, 215–220.
- 8 X. Y. Xu and B. Yan, Sens. Actuators, B, 2016, 222, 347–353.
- 9 Y. Luo, D. Tang, W. Zhu, Y. Xu and X. Qian, J. Mater. Chem. C, 2015, 3, 8485–8489.
- 10 V. N. Mehta, J. V. Rohit and S. K. Kailasa, New J. Chem., 2016, 40, 4566–4574.
- 11 Agency for Toxic Substances and Disease Registry, 4770 Buford Hwy NE, Atlanta, GA 30341, http:// www.atsdr.cdc.gov/cercla/07list.html.
- 12 A. Sil, A. Maity, D. Giri and S. K. Patra, Sens. Actuators, B, 2016, 226, 403–411.
- 13 J. J. Park, Y. H. Kim, C. Kim and J. Kang, Tetrahedron Lett., 2011, 52, 2759–2763.
- 14 H. Li, Anal. Chim. Acta, 2015, 897, 102–108.
- 15 J. Y. Noh, I. H. Hwang, H. Kim, E. J. Song, K. B. Kim and C. Kim, Bull. Korean Chem. Soc., 2013, 34, 1985.
- 16 M. Li, W. Feng, H. Zhang and G. Feng, Sens. Actuators, B, 2017, 243, 51–58.
- 17 G. Xu, H. Wu, X. Liu, R. Feng and Z. Liu, Dyes Pigm., 2015, 120, 322–327.
- 18 D. P. Li, Z. Y. Wang, X. J. Cao, J. Cui, X. Wang, H. Z. Cui, J. Y. Miao and B. X. Zhao, Chem. Commun., 2016, 52, 2760– 2763. Open Access Article. Published on 21 June 2018. Downloaded on 10/5/2024 5:40:05 AM. This article is licensed under a [Creative Commons Attribution-NonCommercial 3.0 Unported Licence.](http://creativecommons.org/licenses/by-nc/3.0/) **[View Article Online](https://doi.org/10.1039/c8ra03443e)**
	- 19 Y. Zhang, L. Guan, H. Yu, Y. Yan, L. Du, Y. Liu, M. Sun, D. Huang and S. Wang, Anal. Chem., 2016, 88, 4426–4431.
	- 20 J. Xu, J. Pan, X. Jiang, C. Qin, L. Zeng, H. Zhang and J. Zhang, Biosens. Bioelectron., 2016, 77, 725–732.
	- 21 W. L. Wu, Z. Y. Wang, X. Dai, J. Y. Miao and B. X. Zhao, Sci. Rep., 2016, 6, 25315.
	- 22 G. Wang, H. Chen, X. Chen and Y. Xie, RSC Adv., 2016, 6, 18662–18666.
	- 23 L. He, W. Lin, Q. Xu and H. Wei, ACS Appl. Mater. Interfaces, 2014, 6, 22326–22333.
	- 24 L. Yuan, W. Lin, K. Zheng, L. He and W. Huang, Chem. Soc. Rev., 2013, 42, 622–661.
	- 25 A. V. Leontiev and D. M. Rudkevich, J. Am. Chem. Soc., 2005, 127, 14126–14127.
	- 26 Y. Sun, C. Zhong, R. Gong, H. Mu and E. Fu, J. Org. Chem., 2009, 74, 7943–7946.
	- 27 Q. Sun, W. Zhang and J. Qian, Talanta, 2017, 162, 107–113.
	- 28 Y. Chen, X. Wang, X. Yang, Y. Zhong, Z. Li and H. Li, Sens. Actuators, B, 2015, 206, 268–275.
	- 29 W. Chen, Q. Fang, D. Yang, H. Zhang, X. Song and J. Foley, Anal. Chem., 2015, 87, 609–616.
	- 30 J. Xu, J. Pan, X. Jiang, C. Qin, L. Zeng, H. Zhang, et al., Biosens. Bioelectron., 2016, 77, 725–732.
	- 31 M. J. Peng, X. F. Yang, B. Yin, Y. Guo, F. Suzenet, D. En and Y. W. Duan, Chem.–Asian J., 2014, 9, 1817–1822.
	- 32 L. Tan, W. Lin, S. Zhu, L. Yuan and K. Zheng, Org. Biomol. Chem., 2014, 12, 4637–4643.
	- 33 L. M. Zhu, J. C. Xu, Z. Sun, B. Q. Fu, Q. Q. Qin, L. T. Zeng, et al., Chem. Commun., 2015, 5, 1154–1156.
	- 34 X. Liu, Q. Yang, W. Chen, L. Mo, S. Chen, J. Kang, et al., Org. Biomol. Chem., 2015, 13, 8663–8668.
	- 35 S. Yu, X. Yang, Z. Shao, Y. Feng, X. Xi, R. Shao, et al., Sens. Actuators, B, 2016, 235, 362–369.
	- 36 J. Xu, J. Pan, X. Jiang, C. Qin, L. Zeng, H. Zhang, et al., Biosens. Bioelectron., 2016, 77, 725–732.
- 37 D. P. Li, Z. Y. Wang, X. J. Cao, J. Cui, X. Wang, H. Z. Cui, J. Y. Miao and B. X. Zhao, Chem. Commun., 2016, 52, 2760– 2763.
- 38 F. Sa, W. T. Vong, T. M. Chan and C. W. K. Lam, Clin. Chim. Acta, 2010, 411, 909.
- 39 M. A. Hamilton, P. W. Rode, M. E. Merchant and J. Sneddon, Microchem. J., 2008, 88, 52–55.
- 40 Y. X. Zuo, J. K. Xu, F. X. Jiang, X. M. Duan, L. M. Lu, G. Ye, C. C. Li and Y. F. Yu, J. Electroanal. Chem., 2017, 794, 71–77.
- 41 Y. Yue, F. Huo, C. Yin, J. O. Escobedo and R. M. Strongin, Analyst, 2016, 141, 1859–1873.
- 42 T. Kowada, H. Maed and K. Kikuchi, Chem. Soc. Rev., 2015, 44, 4955–4972.
- 43 H. D. Xiao, K. Xin, H. F. Dou, G. Yin, Y. W. Quan and R. Y. Wang, Chem. Commun., 2015, 51, 1442–1445.
- 44 W. W. Qin, W. Dou, V. Leen, W. Dehaen, M. V. D. Auweraer and N. Boens, RSC Adv., 2016, 6, 7806–7816.
- 45 B. Sen, M. Mukherjee, S. Banerjee, S. A. Pal and P. Chattopadhyay, Dalton Trans., 2015, 44, 8708–8717.
- 46 Q. Lin, T. T. Lu, X. Zhu, T. B. Wei, H. Li and Y. M. Zhang, Chem. Sci., 2016, 7, 5341–5346.
- 47 M. Irie, T. Fukaminato and K. Matsuda, Chem. Rev., 2014, 114, 12174–12277.
- 48 W. L. Li, X. Li, Y. S. Xie, Y. Wu, M. Q. Li, X. Y. Wu, et al., Sci. Rep., 2015, 5, 9186.
- 49 G. T. Xu, B. Li, J. Y. Wang, D. B. Zhang and Z. N. Chen, Chem.–Eur. J., 2015, 21, 3318–3326.
- 50 B. Li, H. M. Wen, J. Y. Wang, L. X. Shi and Z. N. Chen, Inorg. Chem., 2015, 54, 11511–11519.
- 51 Y. L. Fu, Y. Y. Tu, C. B. Fan, C. H. Zheng, G. Liu and S. Z. Pu, New J. Chem., 2016, 40, 8579–8586.
- 52 S. Z. Pu, Q. Sun, C. B. Fan, R. J. Wang and G. Liu, J. Mater. Chem. C, 2016, 4, 3075–3093.
- 53 S. J. Xia, G. Liu and S. Z. Pu, J. Mater. Chem. C, 2015, 3, 4023– 4029.
- 54 G. Li, L. L. Ma, G. Liu, C. B. Fan and S. Z. Pu, RSC Adv., 2017, 7, 20591.
- 55 G. Li, D. B. Zhang, G. Liu and S. Z. Pu, Tetrahedron Lett., 2016, 57, 5205–5210.
- 56 X. X. Zhang, R. J. Wang, C. B. Fan, G. Liu and S. Z. Pu, Dyes Pigm., 2017, 139, 208–217.
- 57 F. Duan, G. Liu, P. Liu, C. B. Fan and S. Z. Pu, Tetrahedron, 2016, 72, 3213–3220.
- 58 G. F. Wu, M. X. Li, J. J. Zhu, K. W. C. Lai, Q. X. Tong and F. Lu, RSC Adv., 2016, 6, 100696–100699.
- 59 S. Z. Pu, H. C. Ding, G. Liu, C. H. Zheng and H. Y. Xu, J. Phys. Chem. C, 2014, 118, 7010–7017.
- 60 C. B. Fan, L. L. Gong, L. Huang, F. Luo, R. Krashina, X. F. Yi, et al., Angew. Chem., Int. Ed., 2017, 56, 7900–7906.
- 61 S. Y. Li, D. B. Zhag, J. Y. Wang, R. M. Lu, C. H. Zheng and S. Z. Pu, Sens. Actuators, B, 2017, 245, 263–272.
- 62 S. L. Guo, G. Liu, C. B. Fan and S. Z. Pu, Sens. Actuators, B, 2018, 266, 603–613.
- 63 S. Z. Pu, C. C. Zhang, C. B. Fan and G. Liu, Dyes Pigm., 2016, 129, 24–33.
- 64 H. J. Jia, S. Z. Pu, C. B. Fan, G. Liu and C. H. Zheng, Dyes Pigm., 2015, 121, 211–220.
- 65 H. C. Ding, B. Q. Lia, S. Z. Pu, G. Liu, D. C. Jia and Z. Yu, Sens. Actuators, B, 2017, 247, 26–35.
- 66 E. T. Feng, C. B. Fan, N. S. Wang, G. Liu and S. Z. Pu, Dyes Pigm., 2018, 151, 22–27.
- 67 Z. L. Shi, Y. Y. Tu, R. J. Wang, G. Liu and S. Z. Pu, Dyes Pigm., 2018, 149, 764–773.
- 68 L. Y. Wang, J. J. Ou, G. P. Fang and D. R. Cao, Sens. Actuators, B, 2016, 222, 1184–1192.
- 69 Z. L. Luo, K. Yin, Z. Yu, M. X. Chen, Y. Li and J. Ren, Spectrochim. Acta, Part A, 2016, 169, 38–44.
- 70 S. Erdemir, B. Tabakci and M. Tabakci, Sens. Actuators, B, 2016, 228, 109–116.