Novel Eu\(^{3+}\)-activated Ba\(_2\)Y\(_5\)B\(_5\)O\(_{17}\) red-emitting phosphors for white LEDs: high color purity, high quantum efficiency and excellent thermal stability\(^\ddagger\)

G. Annadurai,\(^a\) Balaji Devakumar,\(^a\) Heng Guo,\(^{ab}\) R. Vijayakumar,\(^a\) Bin Li,\(^a\) Liangling Sun,\(^a\) Xiaoyong Huang,\(^{ab}\)*\(^\ddagger\) Kai Wang\(^{kb}\) and Xiao Wei Sun\(^{kb}\)

Eu\(^{3+}\)-activated Ba\(_2\)Y\(_5\)B\(_5\)O\(_{17}\) (Ba\(_2\)Y\(_{5-x}\)Eu\(_x\)B\(_5\)O\(_{17}\); \(x = 0.1–1\)) red-emitting phosphors were synthesized by the conventional high temperature solid-state reaction method in air atmosphere. Powder X-ray diffraction (XRD) analysis confirmed the pure phase formation of the as-synthesized phosphors. Morphological studies were performed using field emission-scanning electron microscopy (FE-SEM). The photoluminescence spectra, lifetimes, color coordinates and internal quantum efficiency (IQE) as well as the temperature-dependent emission spectra were investigated systematically. Upon 396 nm excitation, Ba\(_2\)Y\(_{5-x}\)Eu\(_x\)B\(_5\)O\(_{17}\) showed red emission peaking at 616 nm which was attributed to the \(5D_0 \rightarrow 7F_2\) electric dipole transition of Eu\(^{3+}\) ions. Meanwhile, the influences of different concentrations of Eu\(^{3+}\) ions on the PL intensity were also discussed. The optimum concentration of Eu\(^{3+}\) ions in the Ba\(_2\)Y\(_{5-x}\)Eu\(_x\)B\(_5\)O\(_{17}\) phosphors was found to be \(x = 0.8\). The concentration quenching mechanism was attributed to the dipole–dipole interaction and the critical distance \((R_c)\) for energy transfer among Eu\(^{3+}\) ions was determined to be 5.64 Å. The asymmetry ratio \([(\vec{5}D_0 \rightarrow 7F_2)/(\vec{5}D_0 \rightarrow 7F_1)]\) of Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) phosphors was calculated to be 3.82. The fluorescence decay lifetimes were also determined for Ba\(_2\)Y\(_{5-x}\)Eu\(_x\)B\(_5\)O\(_{17}\) phosphors. In addition, the CIE color coordinates of the Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) phosphors \((x = 0.653, y = 0.345)\) were found to be very close to the National Television System Committee (NTSC) standard values \((x = 0.670, y = 0.330)\) of red emission and also showed high color purity \((-94.3\%)\). The corresponding internal quantum efficiency of the Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) sample was measured to be 47.2%. Furthermore, the as-synthesized phosphors exhibited good thermal stability with an activation energy of 0.282 eV. The above results revealed that the red emitting Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) phosphors could be potential candidates for application in near-UV excited white light emitting diodes.

1. Introduction

In recent times, scientific research has been focused on new illumination sources to meet the demands of energy conservation and environmental issues.\(^1\) Solid-state lighting (SSL) is a major revolution in the lighting industry.\(^2\) Among SSLs, inorganic phosphor-converted white light-emitting diodes (pc-WLEDs) are found to prevail in the lighting market owing to an extensive range of applications in versatile fields, such as flat panel displays, WLEDs, bio-markers, solid state lasers, sensors, and high energy radiation detectors.\(^3–18\) In particular, WLEDs have attracted much attention due to their better performance such as high luminous efficiency, long operational lifetime, high rendering indices, compactness, low-cost, energy saving and environmental protection to surpass traditional incandescent and fluorescent lamps.\(^11,13\)

The most currently used WLEDs are fabricated by the combination of InGaN-based blue LED chips with the yellow emitting Y\(_3\)Al\(_5\)O\(_{12}:\)Ce\(^{3+}\) (YAG:Ce\(^{3+}\)) phosphors.\(^13\) However, there exist some drawbacks in its practical application, such as poor color rendering index \((R_a < 80)\), and the high correlated color temperature \((\text{CCT} \sim 7750 \text{ K})\) owing to the lack of a red spectral component in the visible region.\(^11\) In order to obtain high-efficiency WLEDs with appropriate CCT, high CRI and better color stability, alternative method is proposed, which combines the near-ultraviolet (n-UV) LED chips with a mixture of red, green and blue emitting phosphors.\(^9\) There are some commercial BaMgAl\(_{10}\)O\(_{17}:\)Eu\(^{2+}\) (blue), SrSi\(_2\)O\(_5\)N\(_2\):Eu\(^{2+}\) and Ba\(_2\)SiO\(_3\):Eu\(^{2+}\) (green) phosphors, but a high-efficiency, low-cost red-emitting phosphor is still needed.\(^2,5,16\) The red-emitting phosphors are an essential component for creating high-quality white light.
Currently, the lanthanide-activated sulfide and nitride (e.g., Y2O3:Eu3+, SrGa2S4:Eu2+, CaS:Eu2+, Sr2SiN2:Eu2+ and CaAl2SiN4:Eu3+) red phosphors are extensively being used for WLEDs. However, the commercially available red-emitting sulfide phosphors are chemically unstable with low luminous efficiency. Meanwhile, the nitride based phosphors have critical synthesis conditions, such as high temperature (>1800 °C) and high pressure (0.5 MPa N2 pressure). The search for non-toxic and highly efficient host materials has attracted researchers. Therefore, it is an urgent task to investigate new red-emitting phosphors for WLEDs with high efficiency, excellent thermal stability and high color purity, which can be excited by n-UV LEDs.

Rare earth ions activated inorganic materials have attractive optical properties because of their distinctive intra-configurational f → f transitions. Among all the rare earth ions, Eu3+ ion is the most often used red-emitting activator and exhibits a series of characteristic sharp emissions ascribed to the electronic transitions of 5D0 → 7Fj (j = 0, 1, 2, 3, and 4). Furthermore, the Eu3+ ion is expected to be one of the most hopeful species that offers optical devices in the red color region and numerous investigations have been executed in different host materials such as silicates and phosphates for the WLEDs application.

As an essential member of the family of luminescent materials, rare earth ions activated borate compounds have been widely investigated, due to their special structure, low sintering temperature, good physical and chemical stability, low cost, excellent optical damage threshold, large band gap, and strong absorption in the n-UV region. Recently, blue-emitting Ba2Y5B5O17:Ce3+ (ref. 31) and green-emitting Ba2Y5B5O17:Tb3+ (ref. 32) phosphors have been reported. Zhang et al. investigated the Ce3+/Tb3+/Eu3+ tri-doped Ba2Y5B5O17 multi-color emitting phosphors.

The searching of high-performance red-emitting phosphors for WLEDs, we have systematically investigated in detail luminescence properties of Eu3+ activated Ba2Y5B5O17 red emitting phosphors. To the best of our knowledge, the elaborated spectroscopic properties of Eu3+ singly doped Ba2Y4.2B0.8O17 and its potential application in WLEDs have not yet been reported. The phosphors showed intense red emission peaking at 616 nm under a 396 nm excitation. The Ba2Y4.2Eu0.8B0.8O17 phosphor was found to show the highest emission intensity with internal quantum efficiency (IQE) of 47.2%. Moreover, the Ba2Y4.2Eu0.8B0.8O17 phosphor also exhibited good thermal stability and high color purity of red emission. The obtained results suggest that the Ba2Y5B5O17:Eu3+ phosphor has potential application for n-UV-pumped WLEDs.

2. Experimental

2.1. Materials and synthesis

Polycrystalline samples of Ba2Y5.3-xEu4.7B0.8O17 (x = 0–0.1) phosphors were synthesized using conventional high temperature solid-state reaction method. Stoichiometric amounts of starting materials BaCO3 (Analytical Reagent, A.R.), Y2O3 (99.99%), H3BO3 (A.R.) and Eu2O3 (99.99%) were weighed, and ground using an agate mortar and pestle to form homogeneous mixtures. The obtained mixtures were then transferred into an alumina crucible and pre-heated at 450 °C for 4 h in air. After that, the samples were reground and sintered in air at 1200 °C for 8 h. Finally, the as-prepared samples were gradually cooled down to room temperature in the furnace and were re-ground into homogeneous powder for further measurements.

2.2. Measurements and characterization

The crystalline phase formation of as-synthesized samples were identified by the powder X-ray diffraction (XRD) patterns using Bruker D8 advance powder diffractometer operated at 40 kV and 40 mA with CuKz radiation (λ = 1.5406 Å). The measurements were carried out in the diffraction angle (2θ) ranging from 10 to 80° with a scanning step of 0.02°. The structural parameters of Ba2Y4.2B0.8O17 and Ba2Y4.2Eu0.8B0.8O17 were refined by the Rietveld refinement method using FullProf_Suite program. The morphology and elemental mapping analyzes of the phosphors were performed using a field-emission scanning electron microscope (FE-SEM; MAIA3 TESCAN). The photoluminescence (PL) and photoluminescence excitation (PLE) spectra as well as the decay curves were recorded using Edinburgh F55 spectrofluorometer equipped with a 150 W continuous wavelength Xenon lamp and a pulsed Xenon lamp as the excitation source. The IQE of sample was measured by employing a barium sulfate coated integrating sphere attached to the Edinburgh F55 spectrophotometer. All the above measurements were carried out at room temperature. Furthermore, the temperature-dependent PL spectra of the phosphors within the temperature range from 303 to 483 K were obtained on the same instrument with a temperature controlling system.

3. Results and discussion

3.1. Phase identification

The XRD patterns of the Ba2Y5.3-xEu4.7B0.8O17 (x = 0, 0.1, 0.4, 0.6, 0.8, and 1.0) phosphors are shown in Fig. 1(a). All the observed diffraction peaks of the as-obtained samples were well consistent with the Powder Diffraction File (PDF No. 00-056-0113) for Ba2Y4.2B0.8O17, and also matched well with the reference data. No other phase or impurity were noticed in the compositions, and the result distinctly suggested that the as-prepared samples were in single phase and Eu3+ doping did not significantly influence the crystalline structure of the host due to the similar valence and ionic radius of Eu3+ and Y3+ [Eu3+ (r = 1.07 Å), Y3+ (r = 1.02 Å)]. In the meantime, a small shift in the diffraction peaks were observed after increasing Eu3+ content, (depicted in Fig. 1(b)) because of the ionic radius between Y3+ and Eu3+ [Y3+ (r = 1.02 Å), Eu3+ (r = 1.07 Å)]. According to previous report, the Ba2Y4.2B0.8O17 crystallizes as an orthorhombic structure with the space group Pbnm (no. 60). In order to investigate the crystal structure, the structural parameters of Ba2Y4.2B0.8O17 and Ba2Y4.2Eu0.8B0.8O17 were refined by the Rietveld refinement method using FullProf_Suite program. The obtained, calculated and difference of XRD patterns were shown in Fig. 2(a) and (b). The structural parameters are listed in Table 1. All of the observed
diffraction peaks showed a good agreement between observed and calculated patterns. The results reveals that Ba$_2$Y$_5$B$_5$O$_{17}$ crystallizes as an orthorhombic structure with space group $Pbcn$ (no. 60), and its lattice parameters were determined to be $a = 17.4486(8)$ Å, $b = 6.64715(29)$ Å and $c = 13.0128(6)$ Å and V = 1509.28(19) Å3. The refinement factors finally converged to $R_p = 2.54\%$, and $R_{wp} = 3.67\%$, which was shown in Table S1 (ESI†).

Similarly, the refinement results conrns that the cell parameters of Ba$_2$Y$_4.2$Eu$_{0.8}$B$_5$O$_{17}$, $a = 17.45484(18)$ Å, $b = 6.66655(9)$ Å, $c = 13.06909(18)$ Å and V = 1519.813(34) Å3, the refinement factors finally converged to $R_p = 1.99\%$, and $R_{wp} = 2.70\%$. The atomic coordinates were provided in the Table 2. Furthermore, the unit cell structure of Ba$_2$Y$_5$B$_5$O$_{17}$ is depicted in Fig. 3.

As reported previously, the Ba$_2$Y$_5$B$_5$O$_{17}$ host lattice contains two crystallographically independent, fully occupied Y$^{3+}$ sites. Specifically, a distorted octahedron and a distorted capped trigonal prism around Y$_3$ and Y$_4$ site. The two Y$^{3+}$ sites are shared with Ba$^{2+}$, namely, Ba$_1$/Y$_1$ with a majority Ba (CN = 10) and Y$_2$/Ba$_2$ with a majority Y (CN = 7), respectively. All of the boron atoms are three-coordinated by oxygen, making slightly distorted trigonal planar units.$^{31-33}$

3.2. Morphology analysis

Fig. 4(a) and (b) depicts the FE-SEM micrographs of the Ba$_2$Y$_4.2$Eu$_{0.8}$B$_5$O$_{17}$ phosphors. The as-obtained micrographs exposed that the particles were agglomerated with irregular morphology. The estimated size of the particles could be in micrometer range which is suitable practical application for WLEDs.34 Meanwhile, the elemental mapping results also suggested that the Eu were evenly distributed throughout the entire particles, as indicated in Fig. 4(c). The remaining mapping images of Ba, Y, B, and O was provided in Fig. S1 (ESI†).

3.3. Photoluminescence properties

Fig. 5 shows the PLE and PL spectra of the Ba$_2$Y$_4.2$Eu$_{0.8}$B$_5$O$_{17}$ phosphors. The excitation spectrum was monitored at 616 nm corresponding to $^5D_0 \rightarrow ^7F_2$ transition of Eu$^{3+}$. The PLE spectrum consisted of two parts namely a broad excitation band in the wavelength range from 230 to 310 nm, and a series of sharp PLE peaks located between 315 to 550 nm. It can be clearly noted that the broad band centered at 277 nm was assigned to the O$^{2-} \rightarrow$ Eu$^{3+}$ charge transfer band (CTB), corresponding to the electron transfer from the completely filled 2p orbital of O$^{2-}$.

![Fig. 1](image1.png)
(a) XRD patterns of as-prepared Ba$_2$Y$_{5-x}$Eu$_x$B$_5$O$_{17}$ ($x = 0, 0.1, 0.4, 0.6, 0.8$ and 1.0) phosphors. (b) Magnified XRD patterns for Ba$_2$Y$_{5-x}$Eu$_x$B$_5$O$_{17}$ ($x = 0, 0.1, 0.4, 0.6, 0.8$ and 1.0) phosphors.

![Fig. 2](image2.png)
(a) Rietveld refinement of observed, calculated and difference of the powder XRD patterns of (a) Ba$_2$Y$_5$B$_5$O$_{17}$ and (b) Ba$_2$Y$_4.2$Eu$_{0.8}$B$_5$O$_{17}$.

![Fig. 3](image3.png)
Unit cell structure of Ba$_2$Y$_5$B$_5$O$_{17}$

![Fig. 4](image4.png)
(a) FE-SEM micrographs of the Ba$_2$Y$_4.2$Eu$_{0.8}$B$_5$O$_{17}$ phosphors. The as-obtained micrographs exposed that the particles were agglomerated with irregular morphology. The estimated size of the particles could be in micrometer range which is suitable practical application for WLEDs. Meanwhile, the elemental mapping results also suggested that the Eu were evenly distributed throughout the entire particles, as indicated in (c). The remaining mapping images of Ba, Y, B, and O was provided in Fig. S1 (ESI†).

![Fig. 5](image5.png)
(a) PLE and (b) PL spectra of the Ba$_2$Y$_4.2$Eu$_{0.8}$B$_5$O$_{17}$ phosphors. The excitation spectrum was monitored at 616 nm corresponding to $^5D_0 \rightarrow ^7F_2$ transition of Eu$^{3+}$. The PLE spectrum consisted of two parts namely a broad excitation band in the wavelength range from 230 to 310 nm, and a series of sharp PLE peaks located between 315 to 550 nm. It can be clearly noted that the broad band centered at 277 nm was assigned to the O$^{2-} \rightarrow$ Eu$^{3+}$ charge transfer band (CTB), corresponding to the electron transfer from the completely filled 2p orbital of O$^{2-}$.
ions to the empty states of 4f orbital of Eu$^{3+}$ ions. In addition, the several sharp excitation peaks, associated with the typical intra-configurational 4f-4f forbidden transitions of Eu$^{3+}$ ions, were found with peaks positioned at 321 nm ($^7F_0 \rightarrow ^5H_4$), 364 nm ($^7F_0 \rightarrow ^5D_4$), 383 nm ($^7F_0 \rightarrow ^5L_6$), 396 nm ($^7F_0 \rightarrow ^5L_6$), 418 nm ($^7F_0 \rightarrow ^5D_4$), 466 nm ($^7F_0 \rightarrow ^5D_2$) and 537 nm ($^7F_0 \rightarrow ^5D_1$). Among all the sharp PLE peaks, the strongest excitation peak located at 396 nm matches well with the n-UV LED chip for WLEDs applications. The PL spectrum of Ba$_2$Y$_4.2$Eu$_{0.8}$B$_5$O$_{17}$ phosphor ($\chi_{ex} = 396$ nm) exhibited the well-known emission characteristics of Eu$^{3+}$ in the spectral region from 500 nm to 750 nm. The sharp emission peaks at 580, 592, 616, 650 and 705 nm can be assigned to the transitions from the excited state 5D_0 to ground state 7F_2 and 7F_0 (J = 0, 1, 2, 3 and 4) levels of Eu$^{3+}$ ions.26,28 From this spectrum, it can be ascertained that the intensity of electric dipole (ED) $^5D_0 \rightarrow ^7F_2$ transition at around 616 nm was much higher than that of the magnetic dipole (MD) $^5D_0 \rightarrow ^7F_1$ transition at around 592 nm. When the Eu$^{3+}$ ion is situated at the crystallographic site with inversion symmetry, the $^5D_0 \rightarrow ^7F_1$ (MD) transition is dominant while in a site without inversion symmetry, the $^5D_0 \rightarrow ^7F_2$ (ED) transition will be dominant.27,28 The above result suggested that the local symmetry of Eu$^{3+}$ sites belong to the non-centrosymmetric in Ba$_2$Y$_2$B$_5$O$_{17}$ host lattice.

Table 1: Crystal structure data of Ba$_2$Y$_5$B$_5$O$_{17}$ and Ba$_2$Y$_4.2$Eu$_{0.8}$B$_5$O$_{17}$ from the Rietveld refinement

| Atom | x | y | z | Occ. | U_{100} (Å2) | Wyck.
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba</td>
<td>0.33581</td>
<td>0.02396</td>
<td>0.18393</td>
<td>0.90943</td>
<td>-0.00532</td>
<td>8d</td>
</tr>
<tr>
<td>Y1</td>
<td>0.33581</td>
<td>0.02396</td>
<td>0.18393</td>
<td>0.90943</td>
<td>-0.00532</td>
<td>8d</td>
</tr>
<tr>
<td>Y2</td>
<td>0.5</td>
<td>0.41124</td>
<td>0.75</td>
<td>0.8</td>
<td>0.01275</td>
<td>4c</td>
</tr>
<tr>
<td>Eu</td>
<td>0.5</td>
<td>0.41124</td>
<td>0.75</td>
<td>0.8</td>
<td>0.01275</td>
<td>4c</td>
</tr>
<tr>
<td>Y3</td>
<td>0.18165</td>
<td>0.04629</td>
<td>0.41451</td>
<td>1</td>
<td>-0.02461</td>
<td>8d</td>
</tr>
<tr>
<td>Y4</td>
<td>0.01607</td>
<td>0.76051</td>
<td>0.47887</td>
<td>1</td>
<td>0.0088</td>
<td>8d</td>
</tr>
<tr>
<td>B1</td>
<td>0.15138</td>
<td>0.52964</td>
<td>0.40624</td>
<td>1</td>
<td>-0.09</td>
<td>8d</td>
</tr>
<tr>
<td>O1</td>
<td>0.19532</td>
<td>0.38533</td>
<td>0.41003</td>
<td>1</td>
<td>-0.072</td>
<td>8d</td>
</tr>
<tr>
<td>O2</td>
<td>0.14487</td>
<td>0.7102</td>
<td>0.40012</td>
<td>1</td>
<td>0.01301</td>
<td>8d</td>
</tr>
<tr>
<td>O3</td>
<td>0.08387</td>
<td>0.45757</td>
<td>0.49893</td>
<td>1</td>
<td>0.0003</td>
<td>8d</td>
</tr>
<tr>
<td>B2</td>
<td>0.69329</td>
<td>0.58445</td>
<td>0.77545</td>
<td>1</td>
<td>-0.06048</td>
<td>8d</td>
</tr>
<tr>
<td>O4</td>
<td>0.67945</td>
<td>0.4438</td>
<td>0.75562</td>
<td>1</td>
<td>0.0293</td>
<td>8d</td>
</tr>
<tr>
<td>O5</td>
<td>0.61289</td>
<td>0.3519</td>
<td>0.8842</td>
<td>1</td>
<td>-0.00301</td>
<td>8d</td>
</tr>
<tr>
<td>O6</td>
<td>0.69615</td>
<td>0.58683</td>
<td>0.91213</td>
<td>1</td>
<td>-0.03713</td>
<td>8d</td>
</tr>
<tr>
<td>O7</td>
<td>0.94229</td>
<td>0.89496</td>
<td>0.5666</td>
<td>1</td>
<td>0.0122</td>
<td>8d</td>
</tr>
<tr>
<td>O8</td>
<td>0.0274</td>
<td>0.26356</td>
<td>0.67037</td>
<td>1</td>
<td>-0.055</td>
<td>8d</td>
</tr>
<tr>
<td>O9</td>
<td>0.5</td>
<td>0.94764</td>
<td>0.25</td>
<td>1</td>
<td>-0.04744</td>
<td>4c</td>
</tr>
<tr>
<td>B3</td>
<td>0.0</td>
<td>0.63778</td>
<td>0.25</td>
<td>1</td>
<td>-0.09</td>
<td>4c</td>
</tr>
</tbody>
</table>

Table 2: The atomic coordinations, occupancies and isotropic displacement parameters as determined by Rietveld refinement for Ba$_2$Y$_2$Eu$_{0.8}$B$_5$O$_{17}$

3.4. Concentration quenching and energy transfer of Ba$_2$Y$_5$–Eu$_2$B$_5$O$_{17}$ phosphors

The PL spectra of Ba$_2$Y$_5$–Eu$_2$B$_5$O$_{17}$ (0.1 ≤ x ≤ 1.0) phosphors with different Eu$^{3+}$ concentrations under 396 nm excitation were shown in Fig. 6(a). The shapes and peak positions of the PL spectra remained unchanged with different concentration of Eu$^{3+}$ ions, except for the PL intensity (see Fig. 6(b)). The inset of Fig. 6(a) illustrates the dependence of PL intensity of various Eu$^{3+}$ concentrations under $\chi_{ex} = 396$ nm. It can be seen that the PL intensity enhanced with the amount of Eu$^{3+}$ until it reached a maximum intensity at x = 0.8, followed by a gradual decrease with a further increase in Eu$^{3+}$ ion content owing to the concentration quenching effect.33 In general, the concentration quenching phenomenon commonly takes place as a consequence of exchange interaction, radiation re-absorption or multipole–multipole interaction. In addition, the non-radiative energy transfer mechanism among Eu$^{3+}$ ions is strongly dependent on the critical transfer distance (R_c), which was calculated by using the concentration quenching method. The R_c can be calculated according to the equation proposed by Blasse39:

$$ R_c = 2 \left(\frac{3V}{4\pi x_c N} \right)^{1/3} $$

where V represents the volume of the unit cell, x_c is the critical concentration of Eu$^{3+}$ ions, and N is the number of host cations in the unit cell. In the case of Ba$_2$Y$_5$–Eu$_2$B$_5$O$_{17}$ phosphors, the values of V, x_c and N were 1509.28 Å3, 0.8 and 20, respectively,32,33 and thus the R_c was determined to be 5.64 Å. The short-distance exchange interaction becomes ineffective when the critical distance is larger than 5 Å. The radiation re-absorption is unlikely to take place as there is no overlap between PL and PLE spectra in the present case. Therefore, the concentration quenching mechanism of Eu$^{3+}$ ions in Ba$_2$Y$_2$B$_5$O$_{17}$ system was dominated by the multipole–multipole interaction. There are three types of electric multipole interactions, including dipole–dipole (d–d), dipole–quadrupole (d–q)
or quadrupole–quadrupole (q–q). Based on Dexter’s theory,40 the emission intensity (I) per activator ion can be determined by the following equation:

$$I_x = k \left[1 + \beta(x)q^3 \right]^{-1}$$

(2)

where I/x represents the emission intensity per activator concentration, x stands for the Eu$^{3+}$ ions concentration; k and β are constants for the given host under the same excitation conditions; q is a function of multipolar interaction, and $q = 6, 8$ and 10 corresponds to d–d, d–q or q–q interactions, respectively.41 The above mentioned equation can be rearranged further by assuming $\beta(x) \gg 1$.42

$$\log \left(\frac{I}{x} \right) = K' - \frac{\theta}{3} \log(x)$$

(3)

where $K' = \log k - \log \beta$. The dependence of $\log(I/x)$ on $\log(x)$, as shown in Fig. 7, which was found to be linear and the slope was determined to be -1.91369. Therefore, the value of θ can be calculated as ~5.74, which approximately equals to 6, indicating that the non-radiative energy transfer mechanism among the Eu$^{3+}$ ions can be ascribed to d–d interaction in Ba$_2$Y$_5$$_xEu_{1-x}B_5O_{17}$ phosphors.

Generally, the ED transition $^5D_0 \rightarrow ^7F_2$ is a hypersensitive transition as this type of transition is very sensitive to the local environment, while the MD transition $^5D_0 \rightarrow ^7F_1$ is insensitive to the local environment at Eu$^{3+}$ site.38,43 Meanwhile, the ratio of integrated emission intensity (asymmetry ratio (R)) of ED ($^5D_0 \rightarrow ^7F_2$) to MD ($^5D_0 \rightarrow ^7F_1$) transitions can be used to evaluate the site symmetry around the Eu$^{3+}$ ions. In general, the high value of $R > 1$ indicates that the local symmetry around Eu$^{3+}$ ion is non-centrosymmetric.44 Fig. 8 shows the plot of integrated emission intensity ($[^5D_0 \rightarrow ^7F_2]/[^5D_0 \rightarrow ^7F_1]$) ratio values on different Eu$^{3+}$ concentrations. The R values decreased with increasing Eu$^{3+}$ ion concentration. The calculated R values were found to be 4.36, 4.16, 4.02, 3.95, 3.89, 3.83, 3.80, 3.82, 3.80 and 3.83 for different concentration of (0.1 $\leq x \leq 1.0$) Eu$^{3+}$ activated phosphors, indicating that Eu$^{3+}$ occupied the distorted cation sites with non-centrosymmetric.$^4^4$ Particularly, the calculated R value (3.82) of Ba$_2$Y$_{4.2}$Eu$_{0.8}$B$_5$O$_{17}$ phosphors was found to be practically better than several previous Eu$^{3+}$-doped red phosphors, as shown in Table 3. The lack of an inversion center the Eu$^{3+}$ ion is favorable in achieving a bright red phosphor with high color purity.36
3.5. PL decay curves of Ba$_2$Y$_{5-x}$Eu$_x$B$_5$O$_{17}$ phosphors

Fig. 9 illustrates the room-temperature PL decay curves of Ba$_2$Y$_{5-x}$Eu$_x$B$_5$O$_{17}$ phosphors with different Eu$^{3+}$ concentrations (0.1 $\leq x \leq 1.0$) under excitation at 396 nm and monitored at 616 nm. All the decay curves can be fitted well based on a first-order exponential decay function as given by the following equation:

$$I(t) = I_0 + A \exp(-t/\tau)$$ \hspace{1cm} (4)

where $I(t)$ and I_0 are the luminescence intensities at time t and $t = 0$, respectively; A is a constant, and τ represents the characteristic decay lifetime for the exponential component.9,13 According to eqn (4), the calculated lifetime values of the 5D$_0$ emitting level of Eu$^{3+}$ ions in Ba$_2$Y$_{5-x}$Eu$_x$B$_5$O$_{17}$ (0.1 $\leq x \leq 1.0$) phosphors were 1.347, 1.365, 1.388, 1.426, 1.461, 1.484, 1.519, 1.546, 1.580 and 1.593 ms, respectively. Obviously, the PL lifetime values slightly increased with increasing various Eu$^{3+}$ concentrations, which can be attributed to energy migration between Eu$^{3+}$ ions.13,45–47

3.6. The CIE chromaticity coordinates of Ba$_2$Y$_{4.2}$Eu$_{0.8}$B$_5$O$_{17}$

Fig. 10 presents the CIE chromaticity diagram of Ba$_2$Y$_{4.2}$Eu$_{0.8}$B$_5$O$_{17}$ phosphors under excitation at 396 nm. According to the PL spectrum, the CIE coordinates were calculated as (0.653, 0.345), which was much closer to the NTSC standard red light (0.670, 0.330) than that of the commercial red-emitting phosphor Y$_2$O$_2$:Eu$^{3+}$ (0.637, 0.327) and better than other Eu$^{3+}$ activated phosphors Na$_3$Sc$_2$(PO$_4$)$_3$:0.35Eu$^{3+}$ (0.642, 0.353) Ca$_{0.6}$Eu$_{0.1}$TiO$_3$ (0.630, 0.370) CaLa$_{0.65}$Eu$_{0.35}$B$_7$O$_{13}$ (0.611, 0.388).9,48,49 Furthermore, to better understand the red emission of the Eu$^{3+}$-activated Ba$_2$Y$_{4.2}$Eu$_{0.8}$B$_5$O$_{17}$ phosphors, the color purity was calculated according to the following expression:9,50

$$\text{Color purity} = \frac{\sqrt{(x-x_i)^2 + (y-y_i)^2}}{\sqrt{(x_d-x_i)^2 + (y_d-y_i)^2}} \times 100\%$$ \hspace{1cm} (5)

where (x, y), (x_i, y_i) and (x_d, y_d) refers the color coordinates of emission light, the equal energy point and color coordinates of
the dominant wavelength points, respectively. In the present work, \((x = 0.653, y = 0.345)\), \((x_i = 0.310, y_i = 0.316)\), and \((x_d = 0.675, y_d = 0.324)\). According to eqn (5), the color purity of Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) red phosphors was determined to be around 94.3%. We can find that the Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) phosphor showed strong red emission intensity with good CIE chromaticity coordinates and eminent color purity. In addition, the IQE is an essential parameter for practical application. The IQE of the optimized phosphor was measured using an integrating sphere. The IQE value can be calculated according to the equation:

\[
\eta_{\text{IQE}} = \frac{\int L_S \, d\lambda}{\int E_R \, d\lambda - \int E_S \, d\lambda}
\]

where \(L_S\) is the luminescence emission spectrum of the sample, \(E_S\) is the spectrum of the light used for exciting the sample, and \(E_R\) is the spectrum of the excitation light without the sample in the sphere, respectively (see Fig. 11). Under the excitation of 396 nm, the IQE of Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) red-emitting phosphor was determined to be 47.2%, which was higher than the commercial Y\(_2\)O\(_2\)S:Eu\(_{3+}\) phosphors (IQE: 35%). These results suggest that the Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) phosphor could be a promising red phosphor for n-UV-based WLEDs.

3.7. Thermal stability of the Eu\(_{3+}\)-activated Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) phosphors

The thermal stability of phosphor is one of the essential parameter to find potential application in the high-power WLEDs. Fig. 12(a) shows the PL spectra of Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) phosphors recorded at various temperatures ranging from 303–483 K under excitation at 396 nm. The spectra clearly indicated that the PL intensity decreased with increasing temperature owing to thermal quenching effect. Generally, the PL intensity of phosphors at 423 K with respect to that at room temperature (303 K) is utilized to assess the thermal stability. It is evident that the PL intensity decreased to 68.7% at 423 K in comparison with that of its initial PL intensity at room temperature (303 K), as shown in Fig. 12(b). To better understand the temperature

Table 3: Asymmetry ratio \((R)\) of \((5D_0 \rightarrow 7F_2) / (5D_0 \rightarrow 7F_1)\) transitions of Eu\(_{3+}\) activated different red phosphors

<table>
<thead>
<tr>
<th>Red phosphors</th>
<th>Asymmetry ratio ((R)) ((5D_0 \rightarrow 7F_2) / (5D_0 \rightarrow 7F_1))</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba(2)Sr(4)O({9.8})Eu({0.2})B(5)O({17})</td>
<td>3.82</td>
<td>This work</td>
</tr>
<tr>
<td>NaSrB(2)O({9}) : 7% Eu(_{3+})</td>
<td>2.73</td>
<td>5</td>
</tr>
<tr>
<td>Ba(_2)CaZn(2)Si(6)O({17}) : 0.9Eu({3+})</td>
<td>2.36</td>
<td>6</td>
</tr>
<tr>
<td>Li(6)Y(BO(4))({3}) : 0.5% Eu({3+})</td>
<td>1.71</td>
<td>7</td>
</tr>
<tr>
<td>BaTa(2)O({5}) : 30% Eu(_{3+})</td>
<td>1.40</td>
<td>8</td>
</tr>
<tr>
<td>Na(_3)Sc(_2)(PO(_4))(3) : 0.35 Eu({3+})</td>
<td>1.37</td>
<td>9</td>
</tr>
</tbody>
</table>
effect on the PL intensity of the phosphors, the activation energy was calculated according to the Arrhenius equation, which can be illustrated below:

\[
I(T) = \frac{I_0}{1 + c \exp\left(-\frac{\Delta E_a}{kT}\right)}
\]

where \(I_0\) and \(I(T)\) stand for the initial PL intensity and the PL intensity at different given temperature \(T\), \(\Delta E_a\) represents the activation energy for thermal quenching, \(c\) is a constant for the host, and \(k\) is the Boltzmann constant (8.629 \times 10^{-5} \text{ eV K}^{-1}\).

The value of \(\Delta E_a\) can be estimated through the eqn (8) which is modified by the eqn (7) as follows:

\[
\ln\left[\frac{I_0}{I(T)} - 1\right] = \frac{\Delta E_a}{kT} + \ln c
\]

The plot of \(\ln[\frac{I_0}{I(T)} - 1]\) versus \(1/kT\) yielded a straight line, as illustrated in Fig. 12(c). The slope of the fitting line is around \(-0.282\) and thus the activation energy \(\Delta E_a\) was determined to be 0.282 eV for Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) phosphors, which was higher than the other Eu\(^{3+}\) activated Na\(_3\)Sc\(_2\)(PO\(_4\))\(_3\), Ca\(_3\)La(GaO)\(_3\)(BO\(_3\))\(_4\) and BaZrGe\(_3\)O\(_9\):Eu\(^{3+}\) red phosphors (\(\Delta E_a\): 0.23, 0.25 and 0.175 eV).\(^{53-55}\) This high activation energy suggested that the obtained phosphors have good thermal stability and thus they are suitable for applying in WLEDs.

4. Conclusion

In summary, Eu\(^{3+}\)-activated Ba\(_2\)Y\(_{5-x}\)Eu\(_x\)B\(_5\)O\(_{17}\) (0.1 \(\leq x \leq 1.0\)) red emitting phosphors have been synthesized by a high-temperature solid-state reaction. Under excitation at 396 nm, the Ba\(_2\)Y\(_{5-x}\)Eu\(_x\)B\(_5\)O\(_{17}\) phosphors exhibited intense red emission at 616 nm due to the electric dipole transition \(^{5}D_0 \rightarrow ^{7}F_2\) of Eu\(^{3+}\). The optimum concentration of Eu\(^{3+}\) in the Ba\(_2\)Y\(_{5-x}\)Eu\(_x\)B\(_5\)O\(_{17}\) phosphor was determined to be \(x = 0.8\). The corresponding concentration quenching mechanism was evidenced to be d–d interaction. Meanwhile, the Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) red phosphor also exhibited impressive thermal stability, which showed about 68.7% at 423 K of its initial emission intensity at room temperature 303 K. As a result, the optimal Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) phosphor presented significant red emission intensity, excellent color purity with color coordinates (0.653, 0.345) and the IQE of 47.2%. These results imply that the Ba\(_2\)Y\(_{4.2}\)Eu\(_{0.8}\)B\(_5\)O\(_{17}\) phosphors can serve as potential red emitting phosphors for n-UV pumped WLEDs.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51502190, 61674074, 51402148 and 61405089), National Key Research and Development Program of China administrated by the Ministry of Science and Technology of China (No. 2016YFB0401702), Shenzhen Peacock Team Project (No. KQTDS201603011203005), Shenzhen Innovation Project (No. JCYJ20160301113537474, JCYJ20160301113537471, JCYJ2015030114530223), Distinguished Young Scholar of Natural Science Foundation of Guangdong (No. 2017B030306010), Foshan Innovation Project (No. 2014IT100072), the start-up fund from Southern University of Science and Technology of China (No. 2014003) and the National Natural Science Foundation of China (No. 51702191).
Science and Technology, and the Open Fund of the State Key Laboratory of Luminescent Materials and Devices (South China University of Technology, No. 2017-skllmd-01).

References

21 X. Huang, Nat. Photonics, 2014, 8, 748.
38 X. Huang, B. Li, H. Guo and D. Chen, Dyes Pigm., 2017, 143, 86–94.
47 L. Mengting and J. Baoxiang, J. Rare Earths, 2015, 33, 231–238.
54 J. Liang, P. Du, H. Guo, L. Sun, B. Li and X. Huang, Dyes Pigm., 2018, 157, 40–46.