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iTRAQ-based quantitative proteomic analysis of
dark-germinated soybeans in response to salt
stressT

Yongqi Yin, © Fei Qi, Lu Gao, Shengqi Rao, Zhenquan Yang and Weiming Fang™®

Soybean germination under stressful conditions, especially salt stress, has been verified to be an effective
way of accumulating gamma-aminobutyric acid (GABA) in dark-germinated soybeans. In this study,
a combination of physiological characteristics and isobaric tags for relative and absolute quantitation
(iTRAQ) in a proteomic-based approach was used to investigate the protein changes in dark-germinated
soybeans under salt stress. A total of 201 differentially abundant proteins (DAPs) were identified and
divided into 13 functional groups. Under salt stress, 20 metabolic pathways were significantly enriched in
dark-germinated soybeans. GABA content and antioxidase activity were increased while the growth and
development of soybeans were inhibited by the salt stress. Promoting the synthesis of ROS-scavenging
enzymes, maintaining the protein metabolic balance and re-establishing cellular homeostasis were very
important strategies for growth stimulation in response to salt stress. In summary, these results showed
comprehensive proteome coverage of dark-germinated soybeans in response to salt treatment, and
increased our understanding of the molecular processes involved in plant networks responding to stresses.

1. Introduction

Bean sprouts are among the most traditional, widely consumed
vegetables in some Asian countries. In general, abiotic stresses
are common problems that significantly reduce plant growth,
development and productivity.»* In recent years, however, much
research has been performed focusing on the induction of
functional compound production in bean sprouts under abiotic
stresses® such as light-mediated stress,**® ultraviolet-B radia-
tion,” chemical stress,® hypoxia stress® and salt stress.’®'* The
amounts of functional compounds like y-aminobutyric acid
(GABA) and phenolic antioxidants in bean sprouts obviously
increased under abiotic stresses during germination. GABA is
an inhibitory neurotransmitter in the brains and spinal cords of
mammals.*” It can prevent certain forms of cancer and reduce
the risk of coronary heart disease according to clinical
research.” Salt stress is a common and effective approach to
enhance GABA levels in bean sprouts. GABA accumulation in
soybean sprouts under salt stress was not only caused by the
activation of key synthesizing enzymes in GABA synthetic
pathways but also by their gene expression up-regulation during
dark germination.™ Previous studies were mainly focused on
physiology, biochemistry and specific functional genes in

soybeans under salt stress.*'® However, systematic
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understanding of the molecular metabolic processes of GABA is
still unclear, as are the parallel molecular metabolic networks of
dark-germinated soybeans in response to salt stress.
Proteomic approaches have been widely used to investigate
plant resistance to salt stress. However, the mechanism of plant
responses to salinity depends on the severity, duration of the
stress, the growth conditions and the developmental stage of
the plant, thus novel homeostasis between plant and environ-
ment at the proteome level will be established.'*'” Up until now,
little is known about the salt stress responses of dark-
germinated soybeans at the proteome level.'* Meanwhile,
previous studies concerning proteomics were limited to 2-
dimensional gel electrophoresis (2-DE) analysis. The defects of
a low rate of low abundance protein detection and low repro-
ducibility restricted the full potential of 2-DE in the compre-
hensive analysis of proteomic changes.” In dark-germinated
soybean cotyledons, 72 differentially abundant proteins
(DAPs) were identified through 2-DE analysis, but 62.5% of
these DAPs were involved in seed storage proteins.’* New
methods have been developed for protein analysis with rapid
innovations in proteomics. Recently, the isobaric tags for rela-
tive and absolute quantitation (iTRAQ) method was considered
as a better alternative that provided an accurate quantitation of
DAPs, especially for low abundance proteins.>>*' iTRAQ uses
isotope labeling combined with multidimensional liquid chro-
matography and tandem mass spectrometry, simultaneously
identifying and quantitatively comparing protein abundance by
analyzing the peak intensities of reporter ions.?* Studies have
demonstrated that iTRAQ is an effective method to investigate
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DAPs in soybeans under different stressful physiological
conditions.*?¢ To date, few studies have examined the dark-
germinated soybean proteome under salt stress using iTRAQ
methods.

In the present study, an iTRAQ-based proteomic technique
was applied to investigate the proteome changes and identify
DAPs in dark-germinated soybeans in response to 4 days of
50 mM NaCl treatment. This study provided a new insight into
the physiological and biochemical processes induced by salt
stress in soybeans during dark germination, as well as molec-
ular and functional characterization at the protein level.

2. Experimental

2.1. Plant growth and NacCl treatment

Dry soybean seeds (Glycine max L. cultivar Yunhe) were surface-
sterilized by soaking in 1% (v/v) sodium hypochlorite for
15 min,”” and were then washed and steeped in distilled water at
30 £ 1 °C for 4 h. The soaked seeds were placed in a sprout
machine and germinated in a dark incubator at 30 £ 1 °C. The
control sprouts were sprayed with distilled water every 24 h,*®
while the salt treated sprouts were sprayed with water con-
taining 50 mM Nacl every 24 h. Sprouts were harvested directly
into liquid nitrogen 4 d after sowing until analysis.

2.2. Measurement of fresh weight and content of
malondialdehyde, H,O,, proline, soluble protein and free
amino acids

For the determination of the fresh weight (FW) and dry weight
(DW), 30 soybeans were weighed, followed by oven-drying at
80 °C for 48 h, and then the average weight was calculated. The
extent of lipid peroxidation in terms of malondialdehyde (MDA)
formation was measured based on the method of Madhava and
Sresty.” The H,0, content was determined using a H,O, Assay
Kit (A064, Nanjing Jiancheng Bioengineering Institute, China).
The amounts of proline, soluble protein and free amino acids
were measured according to the method of Mostofa et al.*®

2.3. Measurement of antioxidant activities

The dark-germinated soybeans (1.0 g) were homogenized with
5 mL of 50 mM phosphate buffer (pH 7.0) containing 1 mM
EDTA and 2% PVP at 4 °C. After centrifugation at 4 °C and
12 000g for 20 min, the supernatant was collected and used for
the enzyme activity assays. The superoxide dismutase (SOD),
catalase (CAT), and peroxidase (POD) activities were determined
using an SOD Assay Kit (A001, Nanjing Jiancheng Bioengi-
neering Institute, China), a CAT Assay Kit (A007, Nanjing Jian-
cheng Bioengineering Institute, China), and a Plant POD Assay
Kit (A084-3, Nanjing Jiancheng Bioengineering Institute, China)
respectively, according to the manufacturer’s instructions. The
glutathione peroxidase (GPX) activity was measured following
the method of Drotar et al.*!

2.4. Protein extraction, digestion, and iTRAQ labeling

The total protein in 4 d dark germinated soybeans was extracted
using a P-PER @ Plant Protein Extraction Kit (89803, Thermo
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Scientific) according to the manufacturer’s instructions. The
protein content was determined according to the Pierce™
Coomassie Protein Assay Kit (Thermo Scientific). For each
protein sample, 150 pg of protein was reduced, alkylated, and
trypsin digested following the method of Jin et al.,** and labeled
using the iTRAQ Reagent-8Plex Kit according to the manufac-
turer’s instructions (AB Sciex Inc., MA, USA). Three biological
replicates were performed. After labeling, the samples were
combined and lyophilized.

2.5. MS/MS analysis using an LTQ-Orbitrap XL

The peptide mixture was dissolved in solvent A (2% acetonitrile
in water, pH 10.0), and then fractionated using a Thermo
UHPLC U3000 pump system (Thermo Fisher Scientific, San
Jose, CA) equipped with an ACQUITY UPLC BEH C18 RP column
(2.1 x 100 mm, 1.7 pm; Waters, USA). The peptides were eluted
at a flow rate of 0.2 mL min~ ' with a gradient of 97% buffer A for
12 min and 3-98% solvent B (98% acetonitrile in water, pH 10.0)
for 40 min. The system was then maintained in 98% buffer B for
15 min. The absorbance at 214 nm was monitored and fractions
were collected every 1 min. A total of 12 fractions were collected
and dried in a vacuum concentrator.

Each fraction was lyophilized and dissolved in solvent A (2%
v/v acetonitrile, 0.1% v/v formic acid), and loaded onto
a Thermo Scientific EASY column (2 cm x 100 pm, 5 pm-C18)
and separated using a Thermo Scientific EASY column (75 pm
x 100 mm, 3 um-C18) at a flow rate of 300 nL min"'. Peptide
separation was performed using the following gradient: 0-
100 min from 97% A to 72% A, 100-120 min from 72% A to 45%
A, 120-125 min from 45% A to 2% A, which was maintained for
19 min, 144-145 min from 2% A at 97% A, and 145-160 min of
97% A. MS/MS analysis was performed using an LTQ-Orbitrap
XL mass spectrometer (Thermo Scientific, Bremen, Germany)
according to Jin et al.** Briefly, a full MS survey scan was per-
formed using a mass range of 100-1800 m/z with a resolution of
60 000. High-energy collision dissociation fragmentation was
used for MS/MS, and the five most intense signals in the survey
scan were fragmented. A resolution of 7500 at 200 m/z was used
with an isolation width of 2 m/z, 1 microscan, a maximum ion
accumulation time of 200 ms, and a normalized collision energy
of 40 eV.

2.6. Data analysis and interpretation

The raw MS/MS files were processed using the Proteome
Discoverer 1.4 (Thermo Scientific Inc., Bremen, Germany) and
the MASCOT search engine version 2.3.02 (Matrix Science) and
were compared against the UniProt soybean database (Mar
10th, 2017). The following parameters were used in the search:
trypsin as the digestion enzyme; one missed cleavage allowed;
10 ppm for the peptide ion tolerance and 0.02 Da for the frag-
ment ion tolerance; the lowest and highest charges were +2
and +3, respectively; oxidation at methionine was set as the
potential variable modification, whereas carbamidomethyl at
cysteine was set as the fixed modification. Specifically, an
automatic decoy database search was performed in SEQUEST by
choosing the decoy checkbox in which a random sequence of

This journal is © The Royal Society of Chemistry 2018


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra02996b

Open Access Article. Published on 16 May 2018. Downloaded on 10/18/2025 1:24:19 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

the database is generated and tested for the raw spectra, as well
as the real database. Only peptides identified at the 99%
confidence interval by a SEQUEST probability analysis were
counted as identified. In order to be identified as a significant
DAP, a protein should be quantified with at least one unique
peptide in each experimental replicate, with a p-value smaller
than 0.05 and a fold change greater than 1.5 or less than 0.67.%

Identified proteins were annotated with their biological
functions according to KEGG (http://www.genome.jp/kegg/) and
the literature. Information on the DAPs was obtained from the
Universal Protein Resource (http://www.uniprot.org/). Pathway
enrichment analysis was performed using KOBAS 3.0 (http://
kobas.cbi.pku.edu.cn/).

2.7. Statistical analyses

All experiments in this study were repeated at least three times in
independent experiments. Average values and standard devia-
tions were computed according to the experimental data. One-way
analysis of variance (ANOVA) with Tukey’s test was conducted on
the data, and a p-value of 0.05 was considered to be significant.
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3. Results and discussion

3.1. Growth characteristics of dark-germinated soybeans
under salt treatment

NacCl stress dramatically inhibited the growth and development
of soybeans compared with the control (Fig. 1A). It resulted in
a significant decrease in the DW and FW of non-cotyledons, as
well as in the FW of the whole soybean, in comparison with non-
stressed control treatments (p < 0.05). However, the DW of the
whole soybean and FW of cotyledons did not differ between
those treated with NaCl and the control (Fig. 1B). As indicators
of cell damage, MDA and H,O, content in both organs of dark-
germinated soybeans were significantly enhanced by the stress
of salt (p < 0.05) (Fig. 1C and D). Meanwhile, compared with the
respective control, soluble protein content in sprouts sharply
decreased while the free amino acid content significantly
decreased after germinating for 4 days under NaCl stress
(Fig. 1F and G). The proline level in cotyledons of soybeans was
decreased while in non-cotyledons it was increased, relative to
that of the control (Fig. 1E).
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Fig.1 Effects of NaCl treatment on growth performance and biochemical indices of germinated soybeans. The (A) photograph, (B) fresh weight
and dry weight, (C) MDA content, (D) H,O, content, (E) proline content, (F) soluble protein content and (G) free amino acid content of
germinating soybean plants subjected to NaCl treatment were taken four days after germination. Non-cotyledons: hypocotyl and radicle; CD:
dry weight of cotyledons; NCD: dry weight of non-cotyledons; WD: dry weight of whole germinating soybeans; CF: fresh weight of cotyledons;
NCEF: fresh weight of non-cotyledons; WF: fresh weight of whole germinating soybeans. Each data point represents the mean of three inde-
pendent biological replicates (mean + SE). An asterisk reflects a significant difference between NaCl treatment and the control at p < 0.05 using
Tukey's test.
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Fig. 2 Antioxidant enzyme activity affected by NaCl treatment in germinated soybeans. (A) SOD activity, (B) POD activity, and (C) GPX activity in
different organs of germinating soybeans subjected to NaCl treatments. Each data point represents the mean of three independent biological
replicates (mean =+ SE). An asterisk reflects a significant difference between the NaCl treatment and the control at p < 0.05 using Tukey's test.

3.2. Effects of salt stress on antioxidant enzyme activities

No significant difference was found in the activities of major
antioxidant enzymes (SOD, POD, and GPX) in cotyledons of 4 day
dark-germinated soybeans between NaCl treatment and the
control (Fig. 2). However, in soybean non-cotyledons, the activities
of SOD, POD and GPX were significantly increased (Fig. 2A-C).

3.3. Effects of salt stress on GABA content

The GABA content in cotyledons and non-cotyledons of 4 day
germinated soybeans under salt stress treatment was analyzed.
After germinating for 4 days under NaCl stress, the GABA content
increased significantly in both organs. It was 1.56- and 1.71-fold of
the control in cotyledons and non-cotyledons, respectively (Fig. 3).

3.4. iTRAQ analysis and identification of DAPs

The proteins which had both a fold-change of more than 1.50 or
less than 0.67 and a p-value of less than 0.05 were defined as
DAPs. A total of 201 DAPs were identified in all 3 replicates (ESI
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Fig. 3 GABA content in germinated soybeans. Each data point
represents the mean of three independent biological replicates (mean
+ SE). An asterisk reflects a significant difference between NaCl
treatment and the control at p < 0.05 using Tukey's test.
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Table S1t). According to the molecular functions listed on the
UniProt and KEGG websites, the iTRAQ-quantified DAPs in the
salt treatment group were functionally classified into 13 func-
tional classes, ie., defense/stress (8.2%), protein synthesis/
folding (9.9%), energy (7.2%), carbohydrate metabolism
(5.8%), protein destination/storage (6.8%), cell growth/division
(3.7%), signal transduction (0.7%), nucleotide metabolism
(4.1%), transporters (1.7%), secondary metabolism (1.7%),
amino acid metabolism (4.1%), etc. (Fig. 4).

After dark germinating for 4 days under NaCl stress, 119
DAPs showed a significantly increased abundance while 82
DAPs significantly decreased in soybeans (Fig. 5 and 6). The
abundance of most of the defense/stress-related (83.3%),
protein destination/storage-related (90.0%), protein synthesis/
folding-related (62.1%), and carbohydrate metabolism-related
(58.8%) DAPs increased significantly under NaCl treatment,
while most of the secondary metabolism-related (100%) and
energy-related (80.0%) DAPs decreased, compared with the non-
stressed control (Fig. 5 and 6).

In order to analyze the metabolic pathways that responded to
salt stress, DAPs were further investigated using the KEGG
database. Pathway enrichment analysis demonstrated that 20
KEGG pathways were identified under salt stress with a p-value
less than 0.05 as the threshold (Table 1). The top three enrich-
ments of pathways were for ribosome, carbon metabolism and

m Signal transduction 0.7%
u Proteolysis 1.7%

Transporters 1.7%

Secondary metabolism 1.7%
B Amino acid metabolism 4.1%
u Nucleotide metabolism 4.1%
H Defense/Stress 8.2%
® Protein synthesis/folding 9.9%
® Uncharacterized proteins 13.0%
= Energy 7.2%
B Carbohydrate metabolism 5.8%
H Protein destination/storage 6.8%
u Cell growth/division 3.7%

Fig. 4 Functional classifications of DAPs in germinated soybeans
under NaCl stress.

This journal is © The Royal Society of Chemistry 2018
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Fig. 5 Change of DAP abundances in each functional classification.

metabolic pathways and 19, 12 and 30 DAPs were found to be
enriched in these pathways, respectively.

3.5. Discussion

Under NaCl stress, soybeans have performed a complicated
metabolic balance at the cellular, organ, and whole-plant levels.
According to our previous study, GABA content increased
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significantly in soybeans when germinating under 50 mM NaCl
treatment, and after 4 d of germination its content was the
highest.™ Hence, in the current study, morphological, physio-
logical, and proteome changes in 4 day dark-germinated
soybeans under 50 mM NaCl stress were observed. As a salt-
sensitive plant, the growth and development of the soybeans
were inhibited under NaCl treatment, and this was also re-
ported in previous studies.** However, the GABA content in
germinated soybeans was significantly increased by the NaCl
treatment (Fig. 3), which suggested that soybeans can be used
as a good material to produce health-supporting functional
ingredients. The underlying molecular mechanisms of dark-
germinated soybean responses to salt stress need to be dis-
cussed further.

Salt stress often leads to the plant cells producing reactive
oxygen species (ROS), rapidly causing plant toxicity, such as
membrane damage, inactive proteins, nucleic acid attack, and
so on.*® As indicators of membrane damage and ROS levels, the
amounts of MDA and H,0, in salt-stressed soybeans were
dramatically enhanced in the study (Fig. 1C and D). Plants have
evolved a set of regulatory mechanisms, along with ROS-
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Fig. 6 Proteins differentially expressed in response to NaCl treatment in 4 day germinated soybeans. The expression change based on the log 2
transformed expression ratios of proteins was performed using the Gene Cluster 3.0 software. The results were visualized using the JAVA
Treeview software. Protein numbers are same as those shown in Table 1. Proteins were involved in defense/stress (l), carbohydrate metabolism
(1), secondary metabolism (I11), energy (IV), amino acid metabolism (V), signal transduction (VI), cell growth/division (VII), proteolysis (VIII), protein
destination/storage (IX), transporters (X), nucleotide metabolism (XI) and protein synthesis/folding (XII).
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scavenging enzymes and antioxidant protection systems, to
remove the salinity-triggered oxidative damage.*® Proline accu-
mulation is considered to play a pivotal role in plant responses
to salt stress, and it was significantly increased in the non-
cotyledon organs of soybeans (Fig. 1E). Meanwhile, the
increase in activities of ROS-detoxifying enzymes including
SOD, POD and GPX in germinated soybean non-cotyledons was
outlined (Fig. 2), and is similar to those of other soybeans*” and
salt-responsive species.*®* Similarly, the proteome results
showed that the abundance of two SODs [Cu-Zn] (Q7M1R5,
C6SWES) was increased by salt treatment, implying their
significant roles in response to salt stress (ESI Table 17). NaCl
stress significantly enhanced the accumulation of POD
(Q9XFI8) while decreasing the POD (C6TBQ4) abundance, sug-
gesting that different POD members may have different func-
tions in salt stress responses in soybeans, which has also been
reported in radishes under salt stress.*

In addition, from the present iTRAQ data, some defense-
related DAPs were also induced under salt stress conditions,
such as stress responsive alpha-beta barrel domain-containing
protein (C6T5C9), low-temperature-induced 65 kDa protein
(K7LDT9), heat shock 70 kDa protein (P26413) and stress-
induced protein SAM22 (P26987). Cellular dehydration can be
caused by the decreased water potential of a salt solution.
Dehydrins and late embryogenesis abundant (LEA) proteins
were among the most ubiquitous dehydration stress-responsive
plant proteins.*" In this way, the increase in the levels of two late
embryogenesis abundant (LEA) proteins (K7LDT9, 11L849) and
two dehydrins (A1KR24, Q39805) under salt stress in the present
study might contribute to the enhancement of salt tolerance in
dark-germinated soybeans. An enhanced accumulation of
dehydrin and LEA proteins was also found in salt-treated
plants.*** The abundance changes in these DAPs under salt
stress implied that the defense system in dark-germinated
soybeans was provoked by the NaCl treatment.
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The metabolic balance between protein synthesis and
degradation played an important role in the plants’ responses
to environmental stimuli.** In translation, the ribosome is the
major site where the synthesis of a polypeptide chain takes
place, and the ribosomal protein species play a role in trans-
lation, ribosomal structure and biogenesis.*> In the present
study, the analysis showed that the biggest enrichment of
a pathway was in the ribosome and 19 DAPs were found to have
been enriched in the pathway (Table 1). The current proteomic
analysis showed that ribosomal proteins displayed significant
changes in abundance under salt treatment, the species of
which mainly belonged to five types with 26 S, 30 S, 40 S, 50 S
and 60 S (ESI Fig. S17). 11 of these ribosomal protein species
were increased in abundance. It has been demonstrated that
seed storage proteins (SSPs) not only function as storage
reserves, but also play additional key roles.** Under stress
conditions, almost all of the SSPs were assigned to [B-con-
glycinin subunits and glycinin was mobilized and its composi-
tion and abundance changed.*”*®* An obvious trend was
observed where most of the DAPs involved in protein destina-
tion and storage (18/20, 90%) suffered a marked increase in
abundance. In general, SSPs in soybean cotyledons can be
mobilized to provide carbon and nitrogen for soybean growth
and development during germination, especially when the
organic compounds could not be synthesized via photosyn-
thesis in a dark artificial environment. However, our results
showed that the dry weight of cotyledons increased dramatically
under salt stress, compared with the control (Fig. 1B). This may
be reasonably attributed to the germinating soybeans inhibiting
use of SSPs for growth under NaCl stress. These results poten-
tially implied that dark germinated soybeans cope with salt
stress by promoting protein synthesis and suppressing protein
degradation to maintain the protein metabolic balance, which
was similar to the results of a previous study.*” Beyond that, two
of the four eukaryotic translation initiation factors, associated

Table 1 Pathway enrichment analysis of differentially abundant proteins in germinated soybeans under NaCl treatment

Pathway Pathway ID Input number p-value
Ribosome gmx03010 19 7.06 x 10 '
Carbon metabolism gmx01200 12 1.70 x 1077
Metabolic pathways gmx01100 30 3.51 x 10°°
Carbon fixation in photosynthetic organisms gmx00710 4 0.0011
Biosynthesis of secondary metabolites gmx01110 16 0.0016
Phagosome gmx04145 4 0.0029
RNA transport gmx03013 5 0.0032
Biosynthesis of amino acids gmx01230 6 0.0034
Beta-alanine metabolism gmx00410 3 0.0050
Citrate cycle (TCA cycle) 2gmx00020 3 0.0058
Pentose phosphate pathway gmx00030 3 0.0065
Galactose metabolism gmx00052 3 0.0067
Photosynthesis gmx00195 3 0.0117
Glycolysis/Gluconeogenesis gmx00010 4 0.0123
Fructose and mannose metabolism gmx00051 3 0.0125
Purine metabolism gmx00010 4 0.0153
Sulfur metabolism gmx00230 2 0.0203
Pyruvate metabolism gmx00920 3 0.0218
Protein processing in the endoplasmic reticulum gmx00620 4 0.0425
Alanine, aspartate and glutamate metabolism gmx04141 2 0.0465
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with protein biosynthesis pathways, were induced by salt
treatment.

Metabolism represents the basic physiological processes
that maintain cell living. In response to NaCl stress, the DAPs
were involved in the carbohydrate, nucleotide, amino acid,
energy and secondary metabolisms. In the present study, those
pathways, such as carbon metabolism, biosynthesis of
secondary metabolites, biosynthesis of amino acids, the citrate
cycle (TCA cycle) and purine metabolism, were significantly
enriched under salt stress (Table 1). In the present study,
abundance changes of several enzymes were observed during
salt stress, where enzymes were involved in the TCA cycle
including  dihydrolipoyllysine-residue  succinyltransferase,
pyruvate dehydrogenase E1 component subunit, acetyl-CoA
carboxylase and malate dehydrogenases. However, most of the
abundances of those enzymes remaining from TCA cycle-related
DAPs decreased under salt stress, which was in agreement with
the proteomic findings of salt-stressed radishes.* Moreover, V-
type proton ATPase, ATP synthase subunit alpha and ATP syn-
thase subunit beta were critical to glycolysis and the TCA cycle.
NacCl treatment decreased the abundance of all of the proteins
identified above, which indicated that glycolysis and the TCA
cycle suffered repression to some extent under salt stress. In
addition, the abundance of all of these secondary metabolism-
related protein species was strikingly decreased by salt stress. It
was known that tubulin played a key role in division and growth
of plant cells. Our results demonstrated that the abundances of
tubulin alpha chain (I1K2I1) and tubulin beta chain (I1K7]4,
I1LDR2) were all decreased by salt treatment, while the abun-
dance of tubulin-specific chaperone A (C6T5I8) increased.
These indicated that NaCl treatment inhibited plant growth of
dark-germinated soybeans, which fully explained the reduced
sprout length and the inhibited growth performance. Generally,
the differential regulation of metabolism suggested that it
might be managed by complex regulatory mechanisms to cope
with salt stress in dark germinated soybeans.

4. Conclusions

In the present study, physiological changes were determined in
dark germinated soybeans treated with 50 mM NacCl for up to 4
days. Accumulation of GABA in sprouts was enhanced by the
salt stress, while the growth and development of soybeans were
suppressed. Meanwhile, an iTRAQ-based proteomic technique
was applied to compare the abundance of proteins in untreated
and salt-stressed soybeans. The results showed that 201 DAPs
were identified, and classified into 13 categories. Compared
with the water treatment, 20 KEGG pathways were significantly
enriched in soybeans under salt stress. Based on the results of
the physiological and proteomic analyses, it was suggested that
the dark germinated soybeans resisted salt stress through the
induction of synthesis of ROS-scavenging enzymes and antiox-
idants. Promoted protein synthesis and suppressed protein
degradation to maintain the protein metabolic balance were
required for survival and growth of soybeans under salt stress.
Meanwhile, our analysis indicated that carbohydrate, nucleo-
tide and amino acid metabolism, energy supply and cell

This journal is © The Royal Society of Chemistry 2018
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division were required to re-establish cellular homeostasis
under salt stress. Our physiological and proteomic analyses of
dark germinated soybeans under salt stress will benefit the
understanding of the response process to salt stress of
soybeans.
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