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Isomer-controlled [70]fullerene bis-adducts can achieve high performance as electron-acceptors in
organic photovoltaics (OPVs) because of their stronger absorption intensities than [60]fullerene
derivatives, higher LUMO energy levels than mono-adducts, and less structural and energetic disorder
than random isomer mixtures. Especially, attractive are cis-1 isomers that have the closest proximity of
addends owing to their plausible more regular close packed structure. In this study, propylene-tethered
cis-1 bismethano[70]fullerene with two methyl, ethyl, phenyl, or thienyl groups were rationally designed
and prepared for the first time to investigate the OPV performances with an amorphous conjugated
polymer donor (PCDTBT). The cis-1 products were found to be a mixture of two regioisomers, o-1-
a and a-1-B as major and minor components, respectively. Among them, the cis-1 product with two
ethyl groups (Et,-cis-1-[70]PBC) showed the highest OPV performance, encouraging us to isolate its a-
1-a isomer (Ety-a-1-a-[70]PBC) by high-performance liquid chromatography. OPV devices based on Et,-
cis-1-[70]PBC and Et,-a-1-a-[70]PBC with PCDTBT showed open-circuit voltages of 0.844 V and
0.864 V, respectively, which were higher than that of a device with typical [70]fullerene mono-adduct,
[70]PCBM (0.831 V) with a lower LUMO level. However, the short-circuit current densities and resultant
power conversion efficiencies of the devices with Et,-cis-1-[70]PBC (9.24 mA cm™2, 4.60%) and Ety-a-1-
a-[70]PBC (6.35 mA cm 2, 3.25%) were lower than those of the device with [70]JPCBM (10.8 mA cm 2,
5.8%) due to their inferior charge collection efficiencies. The results obtained here reveal that cis-1 [70]
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Introduction

Organic photovoltaic (OPV) devices have attracted scientific and
industrial attention due to their advantages of low cost, light-
weight, flexibility, and solution processing.'” The photoactive
layer generally comprises a blend film with a bulk hetero-
junction (BHJ) structure of electron-donating conjugated poly-
mers and electron-accepting organic semiconductors. Fullerene
derivatives have been widely utilized as electron-acceptors®
because of their reversible reduction behaviors, outstanding
electron affinities, and excellent electron-transporting proper-
ties originating from their small reorganization energies of
electron transfer,® whereas non-fullerene electron acceptors,
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exhibiting high power conversion efficiencies (PCEs), have
recently emerged as alternatives.”

PCEs of OPV devices are determined by the product of short-
circuit current density (Jsc), open-circuit voltage (Voc), and fill
factor (FF); therefore, all three factors should be increased to
achieve a high PCE."? [70]Fullerene derivatives such as [6,6]-
phenyl-C,;-butyric acid methyl ester ([70]JPCBM) are preferen-
tially employed in high-performance OPVs instead of [60]
fullerene derivatives owing to the former's better light-
harvesting ability in the visible region, which improves Jsc.'""*
The higher solubility of [70]fullerene derivatives than those of
[60]fullerene derivatives is beneficial for device fabrication
processes. Another strategy for developing high-performance
acceptors is the use of fullerene bis-adducts."** By increasing
the number of addends from one to two, the degree of -
conjugation is reduced and the energy level of the lowest
unoccupied molecular orbital (LUMO) is raised. Since Vo is
generally proportional to the energy difference between the
LUMO of the electron-acceptor and the highest occupied
molecular orbital (HOMO) of the electron-donor,"* the rise in
the LUMO energy of electron-acceptors improves Voc. Bis-[6,6]-
phenyl-Cg;-butyric acid methyl ester (bis-[60]JPCBM),"* indene-

This journal is © The Royal Society of Chemistry 2018
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Ceo bis-adduct ([60]ICBA),** and indene-C,, bis-adduct ([70]
ICBA)* are successful examples of fullerene bis-adduct accep-
tors in OPVs. However, even if both the addends are identical
and symmetric and additions are limited to occur at [6,6]-
bonds, there are 8 possible regioisomers of [60]fullerene bis-
adducts. Furthermore, [70]fullerene bis-adducts have 38
possible regioisomers'® because a [70]fullerene cage has four
different types of non-equivalent [6,6]-bonds, i.e., -, B-, v-, and
d-type bonds (Fig. 1a),"”* although the differences in reactivity
(o> B > v > d) and steric hindrance reduce the number of bis-
adduct regioisomers actually obtained.** Due to different
structural and electronic properties of each regioisomer,
disorders in molecular packing and energy levels are found in
BH] films while using the regioisomer mixture, which may
deteriorate Jsc and FF of BHJ OPV devices.'>'*'* Therefore, the
development of regioisomer-controlled acceptors is effective for
improving OPV device performance, which has been proven by
various examples of regioisomer-free [60]fullerene bis-
adducts.>**

Regioisomer-controlled [70]fullerene bis-adducts are ex-
pected to be high-performance acceptors for BHJ OPVs, as is
evident from the above argument. However, the number of
reports that demonstrate this is limited**?* compared to the
case of regioisomer-free [60]fullerene bis-adducts.>** This is
due to the synthetic difficulty originating from the formation of
a complicated mixture containing multiple regioisomers of [70]
fullerene bis-adducts. In a pioneering work by Wong and
coworkers,* a single regioisomer of [70]ICBA, i.e., o-7-¢ isomer
(Fig. 1b),*® in which two indene units were attached at a-bonds
belonging to different hemispheres with an angle of “2 o'clock”,
was carefully isolated from the regioisomer mixture by high-
performance liquid chromatography (HPLC). The regioisomer
pure o-7-0/-[70]ICBA exhibited better OPV device performance
than the [70]ICBA regioisomer mixture. We devised tether-
directed bis-functionalization of [70]fullerene with an
ethylene-bridged indene dimer (1,2-bis(3-indenyl)ethane, BIE)
as reactant to selectively obtain a relatively close substituent
pattern, ie., cis-2 (a-2-ot) type isomer (Fig. 1b),** in which two
indene units were attached at a-bonds of hexagons next to each
other.*® Note here that steric hindrance between the addends
would inhibit the formation of such a close substitution pattern

(b)

Fig. 1
names for [70]fullerene bis-adduct patterns.
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a-1-a (cis-1)
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(a) Structure of [70]fullerene. a-, B-, y-, and 3-type [6,6]-bonds are represented by red, blue, green and orange lines. (b) Examples of
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if the tether-directed effect was absent.”**” The OPV based on
BIE-[70]fullerene bis-adduct isomer with cis-2 configuration,
cis-2-[70]BIEC and poly(3-hexylthiophene) showed a remarkable
PCE of 4.2%, which was higher than those with the regioisomer
mixture of BIE-[70]fullerene bis-adduct (2.2%), BIE-[70]
fullerene mono-adduct (2.2%), BIE-[60]fullerene bis-adduct
isomer with cis-2 configuration (2.8%), and even [70]PCBM
(3.8%). This result has encouraged us to use cis-1 isomers of [70]
fullerene bis-adducts having the closest proximity of two
addends on a [70]fullerene cage because of their plausible
regular close packing in the BH]J structure with conjugated
polymers.

Recently, Echegoyen et al. succeeded in synthesizing a bis-
methano[70]fullerene derivative with cis-1 configuration, ie.,
attached to [6,6]-bonds in the same hexagon, through a tether-
directed remote functionalization method.'>*' They conducted
a reaction between [70]fullerene and 1,3-dibenzoylpropane bis-
p-toluenesulfonyl hydrazone (Ph,-PBTH) as addend precursor,
yielding propylene-tethered cis-1 bismethano[70]fullerene with
two phenyl groups (Ph,-cis-1{70]PBC, Scheme 1). Ph,-cis-1-PBC
was further separated to o-1-o and a-1-B isomers (Fig. 1b) by
preparative thin layer chromatography and their structures were
fully characterized. However, the photovoltaic properties of
these tethered bis-adducts of [70]fullerene were not evaluated.
In this study, for the first time, we utilized propylene-tethered
cis-1 bismethano[70]fullerene as an electron-accepting mate-
rial in OPV devices. Bis-adducts with methyl, ethyl, phenyl and
thienyl groups (Scheme 1) were designed as substituents based
on theoretical calculations on the degree of molecular packing
(i.e., packing density) and prepared for investigating the
substituent effects on film structures and photovoltaic proper-
ties of blend films with an amorphous conjugated polymer
donor, poly[N-9’-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-
thienyl-2’,1’,3"-benzothiadiazole)] (PCDTBT).*>**

Results and discussion

Densely packed fullerenes in blend films are advantageous over
loosely packed ones because the former provides films with
higher electron mobilities than the latter.”” This helps achieve
higher performance for fullerene acceptor-based OPV devices.

a-2-o
1) (cis-2)
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NNHTs

R,-cis-1-[70]PBC

Scheme 1 Synthesis of R,-cis-1-[70]PBC.

In addition, well-packed fullerenes at the donor-acceptor
interface facilitate charge dissociation.**** Therefore, optimized
structures for solid systems of propylene-tethered bismethano
[70]fullerenes with various substituents, i.e., Ry-o-1-0-[70]PBC
(R = methyl (Me), ethyl (Et), i-propyl (iPr), cyano (CN), phenyl
(Ph), thienyl (Th), and pyridyl (Py)) (Fig. S17), were calculated
using periodic boundary conditions on MOPAC to sort the
suitable substituents. Volumes of one molecule (V;) and of
a unit cell (V) were obtained based on the optimized structures
(Table 1 and Fig. S21). The unit cells included four molecules
and the degree of molecular packing was defined as 4V,/V.*
Among alkyl-substituted bis-adducts (R = Me, Et, iPr), the ethyl-
substituted one showed the smallest V (5170 A%) and highest

Table 1 Volumes of one molecule (Vp), volumes of a unit cell (V), and
packing degrees

Fullerene Vo (bohr® per molecule)® Vv (A%? Packing degree®
Me,-2-1-a-[70]PBC 5660 5220 0.643
Ety-0-1-0-[70]PBC 6210 5170 0.712
iPry-0-1-0-[70]PBC 6240 5550 0.667
CN,-a-1-a-[70]PBC 5890 5200 0.672
Ph,-u-1-a-[70]PBC 6870 6170 0.660
Thy-0-1-0-[70]PBC 6230 5520 0.670
Py,-a-1-0-[70]PBC 7400 6860  0.639
[70]PCBM 6190 5380 0.683

“ Estimated by DFT at RB3LYP/6-31G(d) level. ” Calculated after
optimizations of fullerene solid systems under periodic boundary
conditions at PM6-D3 based on MOPAC. All unit cells contain 4
molecules. ¢ Defined as 4V,/V.

18318 | RSC Adv., 2018, 8, 18316-18326
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NNHTs ~ MeONa,
pyridine
e
R

R = Me, Et, Ph, Th
R,-PBTH

Ry-c-1 -70]PBC

degree of packing (0.712), suggesting high potential as an
electron-accepting material in OPV devices. The packing degree
of Et,-a-1-0-[70]PBC was higher than that of [70]PCBM (0.683,
Table 1). The packing degree of iPr,-a-1-0-[70]PBC (0.667) was
slightly higher than that of Me,-a-1-0-[70]PBC (0.643). However,
the insulating alkyl chain of iPr,-0-1-0-[70]PBC was longer than
that of Me,-a-1-0-[70]PBC. Overall, Et,-o-1-¢-[70]PBC and Me,-o-
1-0-[70]PBC were chosen as synthetic targets. In propylene-
tethered bismethano[70]fullerenes with aromatic substituent
groups (R = Ph, Th, Py), the phenyl- and thienyl-substituted
ones possessed higher packing degrees (0.660 and 0.670,
respectively) than the pyridyl one (0.639). Thus, Ph,-a-1-0-[70]
PBC and Th,-a-1-a-[70]PBC were selected. Although CN,-a-1-o-
[70]PBC exhibited a higher packing degree (0.672), synthetic
difficulty impeded the attempt.

Propylene-tethered c¢is-1 bismethano[70]fullerene with
methyl, ethyl, or thienyl groups (R,-cis-1{70]PBC (R = Me, Et,
Th)) was synthesized using the method used for Ph,-cis-1-[70]
PBC (Scheme 1).'* The reaction between [70]fullerene and
addend precursor, 1,3-dicarbonylpropane bis-p-toluenesulfonyl
hydrazone (R,-PBTH) yielded a crude product, which was puri-
fied by silica gel chromatography using CS, as eluent and then
preparative HPLC with a Buckyprep column using toluene as
eluent. Only three [70]fullerene-based fractions, i.e., unreacted
pristine [70]fullerene, R,-cis-1-[70]PBC, and multiple adducts,
were eluted during HPLC. The overall yields of R,-cis-1-[70]PBC
with Me, Et, and Th groups were 5.2%, 28%, and 17%, respec-
tively. Analyses of the HPLC traces revealed that the cis-1
products consisted of two regioisomers, a-1-o. as the major

This journal is © The Royal Society of Chemistry 2018
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Table 2 Composition ratios, solubilities, and LUMO energy levels of fullerenes

Fullerene Ratio of a-1-o. isomer® (%) Solubility? (g mL ™) LUMO (eV)
Me,-cis-1{70]PBC 67 3.6 —
Et,-cis-1-70]PBC 78 11.6 —3.67
Ph,-cis-1-{70]PBC 68 13.8 —3.67
Thy-cis-1-{70]PBC 60 5.8 —3.66
Et,-0-1-0-{70]PBC >99 6.2 —3.65
[70]PCBM — 62.9 —-3.70

“ Estimated by the peak area ratio in HPLC traces. > Measured in ODCB at room temperature. © LUMO = —e(4.80 + E,) eV; E, is the first reduction
potential of fullerenes vs. ferrocene/ferrocenium (Fc/Fc') couple. ¢ Not determined due to the low solubility.

component (60-78%) and a-1-B as the minor one (Table 2 and
Fig. S3, ESIt). This was consistent with the previous result for
Ph,-cis-1-[70]PBC (¢-1-0.: o-1-B = 78:22).'%" Owing to the
difference in the reactivities of [6,6]-bonds in the [70]fullerene
cage (o > B >y > d), the first reaction occurred mainly at an o-
bond. In addition, the short propylene chain limited the second
reaction site to the «- or B-bond on the same hexagon. The
structures of R,-cis-1-[70]PBC (R = Me, Et, Th) were character-
ized by 'H-NMR and high-resolution mass spectrometry
(Experimental section). UV-vis absorption spectra of R,-cis-1-
[70]PBC (R = Me, Et, Ph, Th) showed similar absorption shapes
and intensities as those of [70]PCBM (Fig. S4, ESI{).

Solubility tests of R,-cis-1-[70]PBC (R = Me, Et, Ph, Th) in
a standard organic solvent for OPV device fabrication, ie., o-
dichlorobenzene (ODCB), were carried out at room temperature
(Table 2). The solubility of Me,-cis-1-[70]PBC (3.6 ¢ mL™") was
found to be unsatisfactory for film formation by the spin-
coating technique. Considering the low solubility and
theoretically-predicted undesirable loose packing (vide supra),
the properties of Me,-cis-1-[70]PBC were not examined subse-
quently. The bis-adduct with thienyl groups, Th,-cis-1-[70]PBC,
exhibited solubility (5.8 mg mL ") somewhat being higher than
that of Me,-cis-1-[70]PBC and was used for OPV device fabrica-
tion (vide infra). Other bis-adducts, Et,-cis-1-[70]PBC and Ph,-
cis-1{70]PBC, possessed solubilities (11.6 and 13.8 mg mL ",
respectively) sufficient for solution processes, whereas they were
much lower than that of a widely used [70]fullerene mono-
adduct acceptor, [70]PCBM (62.9 mg mL ™).

Electrochemical properties of R,-cis-1{70]PBC (R = Et, Ph,
Th) containing o-1-a (60-78%) and a-1-f isomers were evaluated
by cyclic voltammetry (CV) and differential pulse voltammetry
(DPV) measurements (Fig. S5, ESIt). The LUMO energy levels
determined from the electrochemical data are listed in Table 2
together with that of [70]JPCBM. The LUMO levels of R,-cis-1-[70]
PBC were 30-40 mV higher than that of [70]PCBM, which was
desirable for photovoltaic application, improving Voc."” To gain
insight into the electronic structures of R,-cis-1-[70]PBC, we
performed DFT calculations of a-1-o. isomers using the RB3LYP/
6-31G(d) model. LUMO levels were obtained after geometry
optimization, as illustrated in Fig. 2. The theoretical LUMO
levels of R,-a-1-a-[70]PBC (R = Et, Ph, Th) were similar (—2.90,
—2.87, and —2.90 V, respectively) and significantly higher than
that of [70]PCBM (—3.06 V), which agreed with those obtained
from electrochemical measurements (Table 2). The orbital

This journal is © The Royal Society of Chemistry 2018

distributions of the HOMOs and LUMOs of the fullerene bis-
adducts were primarily found only in the [70]fullerene cage
and delocalized throughout the entire cage (Fig. 2). Theoretical
calculations of R,-¢-1-B-[70]PBC contained in R,-cis-1-[70]PBC
as minor component (22-40%) showed similar LUMO energy
levels and orbital distributions as those of Ry-a-1-a-[70]PBC
(Fig. S6, ESIT).

To investigate the photovoltaic properties of R,-cis-1-[70]PBC
(R = Et, Ph, Th) containing o-1-¢. and «-1-B isomers as major
and minor components, OPV devices with the ITO/PEDOT:PSS/
PCDTBT : fullerene/TiO,/Al configuration were fabricated. The
detailed device fabrication process is described in the Experi-
mental section. The average current density-voltage character-
istics and photovoltaic parameters are shown in Fig. 3a and
Table 3, respectively. Since the solubility of Th,-cis-1-[70]PBC in
ODCB was lower than those of Et,-cis-1-[70]PBC and Ph,-cis-1-
[70]PBC (Table 2), the optimized weight ratio of fullerene
derivative in a mixed solution with PCDTBT was lower in
PCDTBT : Th,-cis-1-[70]PBC ([PCDTBT] : [fullerene] = 1:1 (w/

E (eV)
1 -2.87
LUMO -2.90 -2.90 3.0
-3-- N » —J
2 %99y 2 - 2 o
Fia D% w00l Zaoss w0 ‘9
'Q‘J:
49
-41
,; J“;‘J % ‘a‘a‘ ij““ . &)
B o 9 19
g " ;:
_5.- L
= -5.38 -5.39
HOMO 5_41 — S—
i -5.59
Et,-a-1-a- Phy-a-1-a- Th,-a-1-a- a-
-6+ [70]PBC [70]PBC [70]PBC  [70]PCBM

Fig.2 Optimized geometries, HOMO/LUMO orbital distributions, and
energy levels of Ety-a-1-0-[70]PBC, Phsy-a-1-0-[70]PBC, Thy-a-1-a-
[70]PBC, and a-isomer of [70]JPCBM by DFT calculations using
RB3LYP/6-31G(d) model.
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(@) Current density—voltage curves and (b) photocurrent action spectra of OPV devices based on PCDTBT : Et,-cis-1-[70]PBC (blue),

PCDTBT : Ph,-cis-1-[70]PBC (green), PCDTBT : Th,-cis-1-[70]PBC (brown), and PCDTBT : [70]PCBM (black). The convolution of the spectral
response in (b) with the photon flux of the AM 1.5G spectrum provided the estimated Jsc values of 8.82, 3.85, 1.98, and 10.8 mA cm~2,

respectively.

w)) than in PCDTBT : Et,-cis-1-[70]PBC and PCDTBT : Ph,-cis-1-
[70]PBC (1 : 3 (w/w)) (Table 3).

The OPV device with Et,-cis-1-[70]PBC revealed a significantly
higher PCE of 4.60% than those with Ph,-cis-1-[70]PBC (1.20%)
and Th,-cis-1-[70]PBC (0.59%) (Table 3). Jsc (3.81 and 2.13 mA
cm %) and FF (0.364 and 0.327) of the devices with Ph,-cis-1{70]
PBC and Th,-cis-1-[70]PBC were remarkably lower than those of
the Et,-cis-1-[70]PBC-based device (9.24 mA cm™> and 0.590).
Reflecting the inferior J5c values, the incident photon-to-current
efficiencies (IPCEs) of devices with Ph,-cis-1-[70]PBC and Th,-
cis-1-[70]PBC were significantly lower than those of the Et,-cis-1-
[70]PBC-based device over the entire visible region (Fig. 3b).
Although PCDTBT : Et,-cis-1-[70]PBC film exhibited higher
absorption than PCDTBT : Ph,-cis-1-{70]PBC and
PCDTBT : Th,-cis-1-[70]PBC in the region 430-530 nm (Fig. S7,
ESIY), the difference in absorption intensity could not explain
the significant difference in the IPCE values. Additionally, X-ray
diffraction (XRD) measurements of all blend films displayed no
significant signals, reflecting the amorphous nature of
PCDTBT.

To search for a reason regarding poor OPV performances of
the devices with Ph,-cis-1-[70]PBC and Th,-cis-1-[70]PBC, the

blend film structures of photoactive layers were examined with
an optical microscope. As shown in Fig. 4, aggregates with sizes
of tens of micrometers were formed in PCDTBT : Ph,-cis-1-[70]
PBC and PCDTBT : Th,-cis-1-{70]PBC. Similar large aggregates
were absent in PCDTBT : Et,-cis-1-[70]PBC, suggesting that the
aggregates did not consist of PCDTBT but fullerenes in the
blend films. Atomic force microscopy (AFM) visualized that the
film surface roughnesses of PCDTBT : Ph,-cis-1-[70]PBC and
PCDTBT : Th,-cis-1-[70]PBC (rms = 2.3 and 1.9 nm, respectively)
at sites other than the aggregate were much larger than that of
PCDTBT : Et,-cis-1{70]PBC (rms = 0.59 nm) (Fig. S8, ESI{).
These results suggested that Ph,-cis-1-[70]PBC and Th,-cis-1-[70]
PBC had strong cohesive natures even in the blend film with
amorphous PCDTBT. Bicontinuous network structures of donor
and acceptor domains were poorly formed in PCDTBT : Ph,-cis-
1-[70]PBC and PCDTBT : Th,-cis-1-[70]PBC, resulting in inferior
Jsc and FF values.

To investigate the diffusion efficiency of excitons generated
in the polymer domain to the polymer—fullerene interface, we
measured the steady-state photoluminescences of the blend
films (Fig. S9, ESIt). The emission from PCDTBT was quenched
efficiently (>98%) in PCDTBT : Et,-cis-1-[70]PBC, PCDTBT : Ph,-

Table 3 OPV device parameters,® electron mobilities (ue),? thicknesses, and surface roughnesses (rms)¢ of PCDTBT : fullerene films

[PCDTBT] : Jsc Thickness e rms
Fullerene [fullerene] (w/w) (mAcem™®) Vo (V) FF PCE (%) (nm) (10*em*v's™Y)  (nm)
Et,-cis-1-[70] 1:3 9.24 £ 0.09 0.844 £ 0.005 0.590 £ 0.006  4.60 £ 0.05 75 0.59 0.59
PBC
Ph,-cis-1-[70] 1:3 3.81+0.07 0.866 + 0.006 0.364 + 0.004 1.20 £ 0.03 577 — 2.3
PBC
Thy-cis-1-[70] 1:1 2.13 +£0.08 0.787 £ 0.002  0.327 £ 0.003 0.59 +0.03  50¢ — 1.9
PBC
Ety-0-1-0-[70] 1:2 6.35+0.04 0.864 + 0.005 0.593 + 0.005 3.25 + 0.06 529 0.51 0.78
PBC
[70]PCBM 1:4 10.8 = 0.06  0.831 + 0.004 0.618 + 0.003 5.55+0.05 91 6.9 0.35

“ The data represent the average values with standard deviations from ten independent devices. > Measured by SCLC. ¢ Measured by AFM. ¢ Film
thicknesses at sites without fullerene aggregates. ¢ Not determined because the inhomogeneous film thickness due to the large aggregate formation

hampered the accurate mobility estimations.
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(c) PCDTBT:Th,-cis-1-[701PBC

Fig. 4 Optical microscopy images of (a) PCDTBT : Et,-cis-1-[70]PBC, (b) PCDTBT : Ph,-cis-1-[70]PBC, and (c) PCDTBT : Th,-cis-1-[70]PBC on

ITO/PEDOT:PSS substrates. Scale bars represent 50 um.

cis-1-[70]PBC, and PCDTBT : Th,-cis-1-[70]PBC. This result sug-
gested that Ph,-cis-1-[70]PBC and Th,-cis-1-[70]PBC molecules
also existed outside the large aggregates and that most of the
excitons generated by polymer absorption were quenched by
fullerene molecules scattered across the polymer domain.
However, such quenching did not lead to efficient photocurrent
generation because of poor formation of an effective electron-
transporting pathway to the electrode.

As expected, V¢ of the OPV with Et,-cis-1-[70]PBC (0.844 V)
was slightly higher than that with a prevalent high-performance
[70]fullerene acceptor, [70]PCBM (0.831 V) (Table 3), as the
result of the elevated LUMO level of Et,-cis-1-[70]PBC by bis-
functionalization. However, Jsc and FF of the PCDTBT : Et,-
cis-1-[70]PBC-based device (9.24 mA cm > and 0.590) were
slightly lower than those of the PCDTBT : [70]PCBM-based one
(10.8 mA cm ™2 and 0.618), irrespective of the comparable light-
harvesting efficiency (Fig. S7t). The lower Jsc and FF led to the
inferior PCE of PCDTBT : Et,-cis-1-[70]PBC (4.60%) relative to
that of PCDTBT : [70]PCBM (5.55%). The smoother film surface
of PCDTBT:[70]PCBM (rms = 0.35 nm) than that of
PCDTBT : Et,-cis-1-[70]PBC (rms = 0.59 nm) indicated the
formation of a more suitable bicontinuous donor-acceptor
network structure in PCDTBT : [70]PCBM (Fig. S10, ESIT). More
importantly, the electron mobility of PCDTBT : Et,-cis-1-[70]
PBC (5.9 x 10" % cm? V' s ) estimated by space-charge-limited
current (SCLC) measurement was much lower than that of
PCDTBT : [70]PCBM (6.9 x 10" * cm® V' s7') (Table 3). The
plausible lower charge collection efficiency of PCDTBT : Et,-cis-
1-[70]PBC than PCDTBT : [70]PCBM as a consequence of the

This journal is © The Royal Society of Chemistry 2018

difference in the electron mobilities resulted in the inferior OPV
device performance.

The lower OPV performances of devices with R,-cis-1-[70]PBC
(R = Et, Ph, Th) than that with [70]PCBM might be due to
inhomogeneity of R,-cis-1-[70]PBC containing two regioisomers,
i.e., o-1-o and a-1-B. Disorders of molecular packing structures
and electronic properties caused by regioisomer inhomogeneity
may decrease electron mobility in fullerene domains. To shed
light into the regioisomer effect on film structure and OPV
performance, the major a-1-o. isomer was further isolated from
the Et,-cis-1-[70]PBC isomer mixture, which had showed the
highest PCE among the R,-cis-1-[70]PBC isomer mixtures (R =
Et, Ph, Th), using preparative HPLC technique with a 5PBB
column (Fig. S11(a), ESIT). Collection of the minor a-1-p isomer
could not be conducted because of the low composition ratio (-
1-0.: a-1-B = 78 : 22, Table 2) in Et,-cis-1-[70]PBC that made it
difficult to obtain sufficient amount of the «-1-f isomer for OPV
device fabrication. The purity of the isolated a-1-o0 isomer
sample (denoted as Et,-a-1-0-[70]PBC) was estimated by HPLC
trace and found to be >99% (Fig. S11(b), ESI{).* The solubility
test in ODCB at room temperature revealed that Et,-o-1-0-[70]
PBC possessed lower solubility (6.2 ¢ mL™") than Et,-cis-1-[70]
PBC (11.6 g mL ™", Table 2). The highly symmetrical substitution
structure of Et,-0-1-a-[70]PBC (Scheme 1) may have enhanced
its tendency to form insoluble aggregates. The optical and
electrochemical properties of Et,-a-1-0-[70]PBC were almost
identical to those of Et,-cis-1{70]PBC, reflecting the high
content of Et,-a-1-a-[70]PBC in Et,-cis-1-[70]PBC (Fig. S12, ESIf).

The OPV device based on PCDTBT : Et,-a-1-0-[70]PBC blend
film was fabricated by the same procedure as the device with

RSC Adv., 2018, 8, 18316-18326 | 18321
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(a) Current density—voltage curves and (b) photocurrent action spectra of OPV devices based on PCDTBT : Et,-a-1-0.-[70]PBC (red) and

PCDTBT : Et,-cis-1-[70]PBC (blue). The convolution of the spectral responses in (b) with the photon flux of the AM 1.5G spectrum provided the

estimated Jsc values of 5.81 and 8.82 mA cm™2, respectively.

PCDTBT : Et,-cis-1-[70]PBC. The optimized weight ratio of
fullerene in mixed solution with PCDTBT ([PCDTBT] : [Et,-a-1-
a-[70]PBC] = 1 : 2 (w/w)) was lower than PCDTBT : Et,-cis-1-[70]
PBC ([PCDTBT] : [Et,-cis-1-[70]PBC] = 1: 3 (w/w)) (Table 3) on
account of the lower solubility of Et,-o-1-a-[70]PBC. PCE of the
OPV device with Et,-o-1-a-[70]PBC was lower (3.25%) than that
with Et,-cis-1{70]PBC (4.60%) (Fig. 5a and Table 3). Although
Voc and FF of the PCDTBT : Et,-a-1-0-[70]PBC-based device
(0.864 V and 0.593) were rather comparable to those of the
PCDTBT : Et,-cis-1-[70]PBC-based one (0.844 V and 0.590), Jsc of
the former (6.35 mA cm™ ) was significantly lower than that of
the latter (9.24 mA cm™ ). Consistently, IPCE of the former
device was lower than that of the latter over the entire visible
region (Fig. 5b). The slightly decreased absorption intensity of
PCDTBT : Et,-0-1-0-[70]PBC relative to that of PCDTBT : Et,-cis-
1-[70]PBC (Fig. S13(a), ESIT) was one of the reasons for inferior
Jsc- The decrease in film thickness (Table 3) owing to the lower
solubility of Et,-a-1-a-[70]PBC was compatible with the decrease
in the absorption intensity of PCDTBT : Et,-a-1-a-[70]PBC.
Although the efficient fluorescence quenching of PCDTBT in
the blend film with Et,-a-1-0-[70]PBC (Fig. S13(b)t) indicated
high efficiency of exciton diffusion to the donor-acceptor
interface, the optical microscopy image visualized the existence

Fig. 6 Optical microscopy image of PCDTBT : Et,-a-1-a-[70]PBC on
ITO/PEDQOT:PSS substrate. Scale bar represents 50 pm.

18322 | RSC Adv., 2018, 8, 18316-18326

of micrometer-sized aggregates in PCDTBT : Et,-o-1-a-[70]PBC
(Fig. 6). The film surface roughness of PCDTBT : Et,-a-1-0-[70]
PBC (rms = 0.78 nm) at sites other than the aggregate (Fig. 514,
ESIT) was larger than that of PCDTBT : Et,-cis-1-[70]PBC (rms =
0.59 nm) (Fig. S8, ESIt). These results indicate a poorly devel-
oped donor-acceptor bicontinuous network structure.
Furthermore, despite the regioisomerically pure structure of
Et,-0-1-0-[70]PBC, the SCLC electron mobility of PCDTBT : Et,-
0-1-a-[70]PBC (5.1 x 10> em”® V' s ') was not improved rela-
tive to that of PCDTBT : Et,-is-1-[70]PBC (5.9 x 10> cm® V"
s™') and was one order magnitude lower than that of
PCDTBT : [70]PCBM (6.9 x 10 * cm®V "' s~ %) (Table 3). In sharp
contrast with the BIE-[70]fullerene bis-adducts,*® the
regioisomer isolation of Et,-o-1-a-[70]PBC from Et,-cis-1-[70]
PBC deteriorated the OPV device performance because of
decrease in its solubility and higher tendency to form its
aggregates.

Conclusion

cis-1 Bis-adduct fullerenes were utilized as electron acceptors in
OPV devices for the first time. Propylene-tethered cis-1 bisme-
thano[70]fullerenes (R,-cis-1-[70]PBC) with two methyl, ethyl,
phenyl, and thienyl groups were designed rationally and
prepared to examine the substitution effect on the film structures
and OPV performances of the blend films with an amorphous
polymer, PCDTBT. R,-cis-1-[70]PBC with ethyl groups (Et,-cis-1-
[70]PBC) showed the highest PCE (4.60%) as a result of good
miscibility with PCDTBT. Owing to the elevated LUMO level, Vo
of the PCDTBT : Et,-cis-1{70]PBC-based device (0.844 V) was
slightly higher than that of the PCDTBT : [70]PCBM-based one
(0.831 V). The device performance of PCDTBT : Et,-cis-1-[70]PBC
was inferior to that of PCDTBT : [70]PCBM (PCE = 5.55%) due to
lower electron mobility and charge collection efficiency. Isolation
of the a-1-o isomer (Et,-0-1-0-[70]PBC) from the corresponding
isomer mixture, Et,-cis-1{70]PBC was also conducted, but PCE of
the OPV device decreased (3.25%) despite removing the inho-
mogeneity of structure and electronic properties of the fullerene
bis-adducts. The decreased solubility and enhanced aggregation

This journal is © The Royal Society of Chemistry 2018
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behavior of Et,-a-1-0-[70]PBC relative to Et,-cis-1-[70]PBC resulted
in deteriorated OPV performance. These results obtained suggest
that the optimization of substituent structure, considering their
solubility, aggregation, and electron mobility as well as packing
density, are indispensable for taking full advantage of regioiso-
merically pure cis-1 bis-adducts of [70]fullerene as electron-
accepting materials. This model study provides important
information for further research to modulate the fundamental
properties of [70]fullerene bis-adduct materials, which will play
a key role in making advance of OPV devices.

Experimental

Instruments

"H NMR and "*C NMR spectra were measured with a JEOL JNM-
EX400 NMR spectrometer. High-resolution mass spectra were
measured on a JEOL JMS-700 MStation spectrometer. Attenu-
ated total reflectance (ATR) FT-IR spectra were recorded on
a ThermoFisher Scientific Nicolet 6700 FT-IR. Purification of
fullerene derivatives was conducted by Shimadzu Prominence
Modular HPLC with Nacalai Tesque Buckyprep (20 x 250 mm);
eluent, toluene; flow rate, 10 mL min~'; temperature, 40 °C;
detection, 330 nm. Regioisomer separation of Et,-cis-1-[70]PBC
was conducted by Shimadzu Prominence Modular HPLC with
Nacalai Tesque Cosmosil 5PBB (20 x 250 mm); eluent, toluene;
flow rate, 10 mL min™"; temperature, 40 °C; detection, 330 nm.
UV-vis absorption spectra were obtained on a Perkin Elmer
Lambda 900 UV/vis/NIR spectrometer. Cyclic voltammetry (CV)
and differential pulse voltammetry (DPV) measurements were
performed using an ALS 630A electrochemical analyzer in an o-
dichlorobenzene/acetonitrile mixture (v/v = 5:1) containing
0.1 M tetrabutylammonium hexafluorophosphate (Bu,NPF) as
a supporting electrolyte. Optical micrographs were recorded
using KH-7700 (Hirox). Atomic force microscopy (AFM) analyses
were carried out with an Asylum Technology MFP-3D-SA in the
AC mode. X-ray diffraction (XRD) analyses of film samples were
performed with a Rigaku SmartLab 9 kW using Cu Ka radiation.
Samples for the X-ray measurements were prepared by spin-
coating the polymer : fullerene solution on the glass
substrate. Steady-state fluorescence spectra were recorded on
a HORIBA NanoLog-TCSPC.

Photocurrent-voltage characteristics were measured by
Keithley 2400 SourceMeter under a nitrogen atmosphere and
simulated solar light (100 mW ¢cm ™2, AM1.5) with OTENTO-SUN
III solar simulator (Bunkoukeiki). Photocurrent action spectra
were recorded with CEP-2000RR (Bunkoukeiki). Current-
voltage characteristics of the electron- and hole-only devices for
space-charge-limited current (SCLC) measurements were con-
ducted using Keithley 2400 SourceMeter under a nitrogen
atmosphere.

Materials

Ph,-cis-1-[70]PBC and PCDTBT were prepared according to the
reported procedure.’®*® Nonane-3,7-dione,” heptane-2,6-
dione,® and 1,5-di(thiophen-2-yl)pentane-1,5-dione**
prepared by the reaction between N',N°-dimethoxy-N',N’-

were
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dimethylglutaramide and the corresponding Grignard reagent.
C50 (98.0%) and phenyl C,;-butyric acid methyl ester ([70]PCBM,
>99.0%) were purchased from MTR Ltd. and American Dye
Source, Inc, respectively. All other solvents and chemicals were
of reagent-grade quality, purchased commercially, and used
without further purification unless otherwise noted.

Synthesis

1,3-Dipropionylpropane bis-p-toluenesulfonyl hydrazone
(Et,-PBTH). In a 100 mL two-neck flask, a mixture of nonane-
3,7-dione (1.40 g, 8.97 mmol) and p-toluenesulfonyl hydrazone
(H,NNHTs, 4.02 g, 21.1 mmol) in methanol (45 mL) was
refluxed overnight. The mixture was evaporated and recrystal-
lized from MeOH. The product as white solid (2.02 g, yield: 46%)
was obtained. "H NMR (400 MHz, CDCl;, ppm): 6 7.88 (d, 4H, J
= 8.3 Hz); 6 7.30 (d, 4H, J = 8.3 Hz); 6 7.20 (br, 2H); 6 2.42 (s, 6H);
6 2.21-2.09 (m, 8H); 6 1.71 (m, 2H); 6 0.97 (t, 6H, ] = 7.6 Hz). °C
NMR (100 MHz, CDCl,, ppm): 6 143.97, 135.37, 128.37, 125.97,
29.16, 27.98, 24.29, 21.70, 21.06, 12.02. IR (ATR, cm™%): ¥ax
3188, 2919, 2818, 1598, 1403, 1327, 1166, 1089, 1015, 926, 810,
666, 568. HRMS (ESI) m/z caled for [C,3H3,N,0,S, — H|™
491.1792, found 491.1789. Melting point: 164-166 °C.

1,3-Diacetylpropane bis-p-toluenesulfonyl hydrazone (Me,-
PBTH). The target compound was synthesized by the same
procedure for Et,-PBTH using heptane-2,6-dione instead of
nonane-3,7-dione. The product as white solid (0.68 g, yield:
16%) was obtained. "H NMR (400 MHz, CDCl;, ppm): 6 7.81-
7.66 (m, 4H); 6 7.38-7.19 (m, 6H); 6 2.47 (s, 6H); 6 2.42 (s, 6H);
6 2.05-1.71 (m, 6H). *C NMR (100 MHz, CDCl;, ppm): 6 135.19,
130.70, 129.78, 128.09, 39.50, 29.16, 21.82, 18.58. IR
(ATR, cm ™ Y): vpay 3217, 2959, 1597, 1402, 1285, 1145, 1073,
1019, 922, 814, 668, 549. HRMS (APCI) m/z caled for
[C,1H,N,40,S, + H]' 465.1625, found 465.1609. Melting point:
138-140 °C.

1,3-Dithenoylpropane bis-p-toluenesulfonyl hydrazone (Th,-
PBTH). The target compound was synthesized by the same
procedure for Et,-PBTH using 1,5-di(thiophen-2-yl)pentane-1,5-
dione instead of nonane-3,7-dione. The product as pale yellow
solid (1.00 g, yield: 76%) was obtained. '"H NMR (400 MHz,
CDCl, ppm): 6 8.23 (br, 2H); 6 7.80 (m, 4H); 6 7.19 (m, 6H);
66.96 (d, 2H, J = 3.9 Hz); 6 6.84 (t, 2H, ] = 4.4 Hz); 6 2.53 (t, 2H, ]
= 8.3 Hz); 6 2.30 (m, 4H); 6 1.18 (s, 6H). >*C NMR (100 MHz,
CDCl;, ppm): 6 151.35, 144.49, 141.67, 134.82, 129.74, 128.56,
128.37, 127.38, 126.79, 27.14, 22.50, 21.68. IR (ATR, cmY): ¥max
3216, 2965, 2924, 1598, 1434, 1391, 1338, 1163, 1086, 1040, 918,
812, 708, 666, 596. HRMS (ESI) m/z caled for [C,;H,sN,0,4S, +
H]" 601.1066, found 601.1054. Melting point: 197-198 °C.

Et,-cis-1{70]PBC. In a dried 500 mL two-neck flask, C;,
(0.21 g, 0.25 mmol), anhydrous pyridine (0.61 mL), MeONa
(0.13 g, 2.4 mmol), and Et,-PBTH (0.13 g, 0.26 mmol) were
dissolved in dry toluene (180 mL) and stirred at 70 °C for 2 days.
The mixture was evaporated and short-passed by silica gel
column chromatography using CS, as the eluent. The residue
was subjected to preparative HPLC with Buckyprep column and
the product as brown solid (0.068 g, yield: 28%) was obtained.
Et,-cis-1-[70]PBC consists of the a-1-o and o-1-f isomers with
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the ratio of 78 : 22 (HPLC peak area ratio). "H NMR (400 MHz, o-
dichlorobenzene-d,, ppm): 6 2.55 (m, 6H); ¢ 2.49 (m, 6H); § 2.27
(m, 4H); 6 2.27 (m, 4H); 6 1.95 (m, 16H); 6 1.79 (m, 1H); 6 1.57
(m, 1H); 6 1.16 (m, 1H); 6 1.02 (t, 21H, ] = 7.4 Hz); 6 0.79 (t, 3H, ]
= 7.6 Hz). >*C NMR (100 MHz, o-dichlorobenzene-d,, ppm):
0 155.59, 152.03, 151.24, 151.10, 150.96, 150.72, 150.39, 149.50,
149.18, 148.96, 148.84, 148.45, 148.25, 148.07, 147.94, 147.72,
147.43, 147.16, 146.72, 146.22, 146.08, 145.94, 145.81, 145.51,
145.33, 144.58, 144.48, 144.22, 144.02, 143.81, 143.69, 143.45,
143.14, 142.96, 142.60, 142.30, 141.45, 141.33, 141.21, 140.85,
139.74, 139.32, 139.15, 138.83, 71.83, 69.40, 65.46, 36.68, 35.99,
34.47, 28.28, 27.08, 20.14, 19.48, 18.93, 12.69. IR (ATR, cm )
Vmax 3003, 2897, 1429, 1380, 867, 691, 677, 643, 594, 524, 510.
HRMS (APCI) m/z caled for [C,oHye — H]|" 961.1017, found
961.1009. Melting point: >300 °C.

Et,-o-1-a-[70]PBC. Et,-cis-1-[70]PBC (0.068 g) was subjected
to preparative HPLC with 5PBB column and regioisomerically
pure Et,-o-1-0-[70]PBC as brown solid (0.058 g, yield: 85%) was
obtained. '"H NMR (400 MHz, o-dichlorobenzene-d,, ppm):
6 2.56 (m, 2H); ¢ 2.47 (m, 2H); 6 1.94 (m, 4H); 6 1.12 (m, 2H);
41.02 (t, 6H, ] = 7.4 Hz); ">*C NMR (100 MHz, o-dichlorobenzene-
ds, ppm): 6 155.58, 152.02, 151.22, 150.92, 150.71, 150.37,
149.10, 148.95, 148.36, 148.24, 148.06, 147.93, 147.71, 147.44,
147.15, 146.71, 146.25, 145.99, 145.50, 144.48, 144.01, 143.68,
143.44, 143.13, 142.90, 142.24, 141.44, 141.20, 140.79, 139.73,
139.30, 139.13, 138.82, 132.68, 71.72, 69.39, 34.40, 28.27, 27.06,
19.46, 12.67. IR (ATR, cm ™ 1): vyax 3009, 2847, 1491, 1409, 894,
628, 604, 531, 518, 505. HRMS (APCI) m/z caled for [CoH, + H]®
963.1168, found 963.1151. Melting point: >300 °C.

Me,-cis-1{70]PBC (R = Me). In a dried 200 mL two-neck
flask, C;o (0.20 g, 0.24 mmol), anhydrous pyridine (1.3 mL),
MeONa (0.14 g, 2.5 mmol), and Me,-PBTH (0.13 g, 0.28 mmol)
were dissolved in anhydrous o-dichlorobenzene (80 mL) and
stirred at 150 °C for 2 days. The mixture was evaporated and
short-passed by silica gel column chromatography using CS, as
the eluent. The residue was subjected to preparative HPLC with
Buckyprep column and the product as brown solid (0.012 g,
yield: 5.2%) was obtained. Me,-cis-1-[70]PBC consists of the o-1-
o and o-1-B isomers with the ratio of 67 : 33 (HPLC peak area
ratio). *H NMR (400 MHz, CDCl;, ppm): 6 2.13-1.96 (m, 6H);
4 1.81 (s, 6H). No clear signal was observed in *C NMR spec-
trum. IR (ATR, cm ™ '): vpay 2928, 2901, 1428, 1359, 1131, 671,
579. HRMS (ESI) m/z caled for [C,,H,, + H]" 935.0861, found
935.0834. Melting point: >300 °C.

Th,-cis-1-[70]PBC (R = Th). In a dried 500 mL two-neck flask,
C5o (0.20 g, 0.24 mmol), anhydrous pyridine (1.4 mL), MeONa
(0.18 g, 3.3 mmol), and Th,-PBTH (0.23 g, 0.38 mmol) were
dissolved in dry toluene (200 mL) and stirred at 100 °C over-
night. The mixture was evaporated and the residue was purified
by silica gel column chromatography using CS, as the eluent.
The product as brown solid (0.045 g, yield: 17%) was obtained.
Th,-cis-1-[70]PBC consists of the o-1-o and o-1-p isomers with
the ratio of 60 : 40 (HPLC peak area ratio). 'H NMR (400 MHz,
CDCl;/CS, (3/7), ppm): 6 7.44-7.42 (m, 2H); 6 7.34-7.29 (m, 5H);
6 7.23-7.20 (m, 1H); 6 7.12-7.06 (m, 1H); 6 7.01 (t, 3H, J = 4.4
Hz); 6 6.75-6.70 (m, 1H); 6 3.44-3.39 (m, 1H); 6 3.28-3.09 (m,
3H); 6 3.00-2.80 (m, 4H); 6 1.90-1.77 (m, 2H); & 0.93-0.81 (m,

18324 | RSC Adv,, 2018, 8, 18316-18326

View Article Online

Paper

1H). No clear signal was observed in >C NMR spectrum. IR
(ATR, cm™Y): vmax 2920, 2854, 1430, 1232, 903, 731, 698, 645,
630, 585. HRMS(APCI) m/z calcd for [Cg3H,,S, + CI]” 1107.0074,
found 1107.0063. Melting point: >300 °C.

Theoretical calculations

Geometry optimization, electronic structure calculations and
molecular volume estimations for the fullerene compounds were
performed using density functional theory (DFT) at the RB3LYP/
6-31G(d) level. Calculations were carried out using the Gaussian
09 program.®® All structures were fully optimized without any
symmetry restriction. Optimized structures of fullerene deriva-
tives in packed systems were calculated under periodic boundary
conditions at PM6-D3 based on MOPAC. Degree of packing was
calculated by Nv,/V, where N is number of molecules in unit cell,
Vo is volume of a molecule, and V is volume of unit cell.*®

Device fabrications

OPV devices were prepared on patterned indium tin oxide (ITO)
substrates that were cleaned by ultra-sonication in deionized
water, CHCIl;, acetone, and tetramethylammonium hydroxide
aqueous solution for 15 min each, and then deionized water for
25 min, followed by 2-propanol and ethanol for 15 min each.
They were subsequently dried under nitrogen flow, and treated
in a UV-ozone cleaner for 25 min. A thin layer of poly(3,4-
ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)
was spin-coated on substrates at 1000 rpm for 60 s, followed by
4000 rpm for 10 s. The PEDOT:PSS layer was dried at 200 °C for
10 min, and then transferred into a glove box filled with dried
N, gas to coat the active layer. A blended solution of PCDTBT
and fullerene (total concentration, 28 mg mL ' for
PCDTBT : Et,-cis-1-{70]PBC (1 : 3, w/w) and PCDTBT : Ph,-cis-1-
[70]PBC (1 : 3, w/w); 21 mg mL™" for PCDTBT : Et,-0-1-0-[70]
PBC (1:2, w/w); 14 mg mL ' for PCDTBT : Th,-cis-1-70]PBC
(1: 1, w/w); 35 mg mL ™" for PCDTBT : [70]JPCBM (1 : 4, w/w) was
prepared in ODCB and filtered with a 0.45 pm porous filter. The
active layer was spin-coated (at 1500 rpm for 60 s for
PCDTBT : Et,-cis-1-70]PBC, PCDTBT : Et,-0-1-0-{70]PBC,
PCDTBT : Th,-cis-1-[70]PBC and PCDTBT : Ph,-cis-1-[70]PBC; at
1000 rpm for 60 s for PCDTBT : [70]JPCBM) on the top of the
PEDOT:PSS layer and then dried at 70 °C for 1 h. For the
fabrication of the buffer layer, a solution of titanium isoprop-
oxide in ethanol was spin-coated at 4000 rpm for 20 s onto the
ITO/PEDOT:PSS/PCDTBT : fullerene. The samples were dried in
a desiccator at r.t. for 20 min, and finally transferred to an
evaporation chamber for Al deposition (~100 nm) before
extracting their J-V characteristics under AM1.5 conditions.
The electron-only devices for the SCLC measurements were
fabricated as follows. A 50 nm Al film was first thermally deposited
onto the glass substrate. The PCDTBT : fullerene blend film with
the same ratio as in the PSC device was spin-coated at 800 rpm.
Then, the active layer was capped by a 100 nm Al electrode.

Solubility tests

The solubilities of fullerene derivatives were estimated as
follows.>* Saturated solutions of the fullerene materials were

This journal is © The Royal Society of Chemistry 2018
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prepared by adding an excess amount of the fullerenes to
ODCB, followed by sonication at room temperature for 1 min.
Then, the saturated solutions were filtered through
a membrane filter (Cosmonice Filter S, COSMOSIL, pore size:
0.45 pm) to remove the aggregates. The amounts of the
fullerene materials dissolved in the filtrates were determined by
weighing the solid contents that remained after evaporation of
the solvent and thorough drying under vacuum.
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