Li\(^+\) conductivity of tungsten bronze
Li\(_{x}\)Sr\(_{1-0.5x}\)Ta\(_2\)O\(_6\) studied by neutron diffraction analysis†

Hyeon-Dong Han,a Maxim Avdeevb,c and Young-Il Kima,∗a

The crystal structures of tetragonal tungsten bronze, Li\(_{x}\)Sr\(_{1-0.5x}\)Ta\(_2\)O\(_6\) (x = 0.08, 0.17, 0.25) were investigated by neutron diffraction analysis, focusing on the geometry of the oxide framework as well as the Li distribution. The Rietveld refinement and Fourier mapping of nuclear density indicated that Li atoms are distributed in the pentagonal and rectangular channels of the tungsten bronze lattice, which provide 15-fold and 12-fold coordinated cavities, respectively. These cavities are interconnected to form a three-dimensional network, which can serve as the Li\(^+\) conduction pathway in Li\(_{x}\)Sr\(_{1-0.5x}\)Ta\(_2\)O\(_6\). It is proposed that the rhombic faces of the 12-coordinated polyhedra (distorted cuboctahedra) act as the bottleneck for long-range Li\(^+\) migration.

1. Introduction

Tungsten bronze type structures possess unique 1-dimensional channels running along the crystal c-axis, which is promising for the insertion/exchange of small cations such as Li\(^+\). In the tetragonal tungsten bronzes (TTBs), three types of c-directional channels are found: the ab unit area (∼12.4 × 12.4 Å\(^2\)) contains four pentagonal channels, two quadrangular channels, and four triangular channels, with 15, 12, and 9-coordinated cavities, respectively (Fig. 1). The ionic conductivity of tungsten bronzes has been reported from several different phases such as A\(_{0.0}(\text{M}, \text{Nb})_3\)O\(_6\) (A = Sr, Ba; M = Mg, Ti), Pb\(_{5-}\)K\(_{(1-x)}\)Li\(_{(1-x)}\)Ta\(_{10}\)O\(_{30}\), Ba\(_{0.22}\)Ta\(_{0.72}\), and Na\(_{1-x}\)H\(_x\)W\(_x\)O\(_{6}\)yH\(_2\)O. In the position of mobile Li\(^+\) or H\(^+\) has been estimated diversely depending on the composition, triangular channel in Pb\(_{5-}\)K\(_{(1-x)}\)Li\(_{(1-x)}\)Ta\(_{10}\)O\(_{30}\) and Pb\(_{5-}\)Li\(_{(1-x)}\)Ta\(_{10}\)O\(_{30}\), and pentagonal channel in Na\(_{0.8}\)Na\(_{0.4}\)Nb\(_{1-x}\)O\(_{6}\). Recently, lithiation of the TTB oxide β-SrTa\(_2\)O\(_6\) was accomplished by a solid state ion exchange of Sr\(^{2+}\) → 2Li\(^+\). The ionic conductivity of Li\(_{x}\)Sr\(_{1-0.5x}\)Ta\(_2\)O\(_6\) as a function of Li content, 0 < x < 0.31, was highest for x = 0.17 (σ = 10^{-5} Ω^{-1} cm^{-1} at 540 K). The scanning and transmission electron microscopic studies strongly suggested that the Li\(^+\)/Sr\(^{2+}\) diffusion in Li\(_{x}\)Sr\(_{1-0.5x}\)Ta\(_2\)O\(_6\) occurred along the channel direction (c-axis). As the Sr\(^{2+}\) ions in β-SrTa\(_2\)O\(_6\) occupy the pentagonal and tetragonal channels, it can be conjectured that Li\(^+\) ions enter either or both of the above sites, although the distribution of Li\(^+\) has not been definitely judged for Li\(_{x}\)Sr\(_{1-0.5x}\)Ta\(_2\)O\(_6\).

For better understanding the cation exchange process and the ionic transport in Li\(_{x}\)Sr\(_{1-0.5x}\)Ta\(_2\)O\(_6\), neutron powder diffraction was carried out for three different compositions, x = 0.08, 0.17, and 0.25. The Rietveld refinement and Fourier mapping of the nuclear scattering density were performed, focusing on the Li\(^+\) locations in Li\(_{x}\)Sr\(_{1-0.5x}\)Ta\(_2\)O\(_6\). It is shown that the 12-coordinate cavities inside the quadrangular channel of Li\(_{x}\)Sr\(_{1-0.5x}\)Ta\(_2\)O\(_6\) are capped with six rhombic faces, the size of which varies along the progress of the lithiation, possibly impacting on the activation barrier of the ion hopping.

2. Experimental

The tungsten bronze oxide β-SrTa\(_2\)O\(_6\) was prepared via a solid state reaction using SrCO\(_3\) (Alfa Aesar, 99.95%) and Ta\(_2\)O\(_5\) (Alfa Aesar, 99.95%), with a final heating temperature of 1673 K. For preparing Li\(_{x}\)Sr\(_{1-0.5x}\)Ta\(_2\)O\(_6\) (x = 0.08, 0.17, and 0.25), a mixture of polycrystalline Li\(_2\)CO\(_3\) (Aldrich, 99.99%) and β-SrTa\(_2\)O\(_6\) was heated to 873 K in air for 12 h. After heating, the sample was rinsed with distilled water, and dried in air at 328 K for 12 h. The Li content measurement of the product sample was controlled by varying the Li : Sr ratio in the starting reactant mixture. The chemical analysis, lattice constants, and ionic conductivity of Li\(_{x}\)Sr\(_{1-0.5x}\)Ta\(_2\)O\(_6\) were reported in a previous work.

Powder neutron diffraction (ND) was measured for Li\(_{x}\)Sr\(_{1-0.5x}\)Ta\(_2\)O\(_6\) (x = 0.08, 0.17, and 0.25) in the powder diffractometer, Echidna, at the Australian Nuclear Science Technology Organisation’s OPAL facility. The ND data was recorded using 2 g of powder sample loaded in a vanadium can, with λ = 2.4395 Å over the 2θ range, 10–164°, at a step size 0.05°. The...
Rietveld refinement and Fourier map calculation were carried out using the GSAS-EXPGUI software suite.21,22

3. Results and discussion

Fig. 2 shows the ionic conductivity of Li\textsubscript{x}Sr\textsubscript{1−0.5x}Ta\textsubscript{2}O\textsubscript{6} as a function of \(x\), measured in the temperature range 298–540 K. The above data were acquired in the dry N\textsubscript{2} atmosphere and represent the Li+ conductivity of Li\textsubscript{x}Sr\textsubscript{1−0.5x}Ta\textsubscript{2}O\textsubscript{6}. Notably, the maximal δ\textsubscript{Li} occurred around \(x = 0.17\), which was interpreted as the compromise between structural and compositional factors. The increase of Li content in Li\textsubscript{x}Sr\textsubscript{1−0.5x}Ta\textsubscript{2}O\textsubscript{6} accompanied the contractions of the \(ab\)-dimension and hence the cross-sectional area of the potential Li pathways. That is, the increase of carrier concentration was likely counteracted by the decrease of carrier mobility.

Although the previous study by synchrotron X-ray diffraction (XRD) determined the crystal symmetry and lattice constants of Li\textsubscript{x}Sr\textsubscript{1−0.5x}Ta\textsubscript{2}O\textsubscript{6}, the detailed information on Li occupancy could not be obtained mainly due to its insignificant scattering power. As a complementary approach, neutron powder diffraction was employed here. The neutron scattering length (\(b\)) of Li is of comparable magnitude to those of other elements contained in Li\textsubscript{x}Sr\textsubscript{1−0.5x}Ta\textsubscript{2}O\textsubscript{6},23,24 which makes the ND data useful for the structural study.

It was supposed that Li\textsubscript{x}Sr\textsubscript{1−0.5x}Ta\textsubscript{2}O\textsubscript{6} had quite similar structures to that of β-SrTa\textsubscript{2}O\textsubscript{6} and therefore the neutron Rietveld refinements of Li\textsubscript{x}Sr\textsubscript{1−0.5x}Ta\textsubscript{2}O\textsubscript{6} used a structure model based on β-SrTa\textsubscript{2}O\textsubscript{6} (Fig. 1).20 In practice, the Rietveld refinement of Li\textsubscript{x}Sr\textsubscript{1−0.5x}Ta\textsubscript{2}O\textsubscript{6} was conducted in a semi-constrained...
Table 1 Atomic parameters of Li0.08Sr0.96Ta2O6 obtained from neutron Rietveld refinement.

<table>
<thead>
<tr>
<th>Atom</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Uiso (Å²)</th>
<th>occ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sr1</td>
<td>4c</td>
<td>0.997(1)</td>
<td>0.001(2)</td>
<td>0.25</td>
<td>0.001<sup>a</sup></td>
</tr>
<tr>
<td>Sr2</td>
<td>4c</td>
<td>0.3487(8)</td>
<td>0.1859(9)</td>
<td>0.25</td>
<td>0.015<sup>b</sup></td>
</tr>
<tr>
<td>Sr3</td>
<td>4c</td>
<td>0.3374(8)</td>
<td>0.1869(1)</td>
<td>0.75</td>
<td>0.015<sup>b</sup></td>
</tr>
<tr>
<td>Ta1</td>
<td>4b</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0015<sup>c</sup></td>
</tr>
<tr>
<td>Ta2</td>
<td>8d</td>
<td>0.0735(4)</td>
<td>0.2080(4)</td>
<td>0.4985(9)</td>
<td>0.0174(9)</td>
</tr>
<tr>
<td>Ta3</td>
<td>8d</td>
<td>0.2860(4)</td>
<td>0.4242(4)</td>
<td>0.5049(9)</td>
<td>0.0174(9)</td>
</tr>
<tr>
<td>O1</td>
<td>4c</td>
<td>0.9824(8)</td>
<td>0.4721(8)</td>
<td>0.75</td>
<td>0.0174(9)</td>
</tr>
<tr>
<td>O2</td>
<td>4c</td>
<td>0.0528(9)</td>
<td>0.2195(10)</td>
<td>0.25</td>
<td>0.0174(9)</td>
</tr>
<tr>
<td>O3</td>
<td>4c</td>
<td>0.3121(9)</td>
<td>0.1914(8)</td>
<td>0.75</td>
<td>0.0174(9)</td>
</tr>
<tr>
<td>O4</td>
<td>4c</td>
<td>0.1344(6)</td>
<td>0.0621(6)</td>
<td>0.468(1)</td>
<td>0.027(1)</td>
</tr>
<tr>
<td>O5</td>
<td>4c</td>
<td>0.2726(8)</td>
<td>0.4143(10)</td>
<td>0.75</td>
<td>0.0174(9)</td>
</tr>
<tr>
<td>O6</td>
<td>8d</td>
<td>0.2234(5)</td>
<td>0.2743(5)</td>
<td>0.4767(8)</td>
<td>0.002(1)</td>
</tr>
<tr>
<td>O7</td>
<td>8d</td>
<td>0.0006(6)</td>
<td>0.3463(6)</td>
<td>0.5385(9)</td>
<td>0.019(1)</td>
</tr>
<tr>
<td>O8</td>
<td>8d</td>
<td>0.3414(6)</td>
<td>0.0066(6)</td>
<td>0.5361(9)</td>
<td>0.019(1)</td>
</tr>
<tr>
<td>O9</td>
<td>8d</td>
<td>0.0334(6)</td>
<td>0.6021(6)</td>
<td>0.468(1)</td>
<td>0.027(1)</td>
</tr>
<tr>
<td>O10</td>
<td>8d</td>
<td>0.4335(7)</td>
<td>0.3337(6)</td>
<td>0.530(1)</td>
<td>0.027(1)</td>
</tr>
</tbody>
</table>

^a Space group Pnam (Z = 10),^b Sr site corresponds to quadrangular cavity (A1 in Fig. 1);^c Fixed.^d Occupancy factors (occ) for Sr1, Sr2, and Sr3 sites represent the combined contribution from Sr and Li, and are expressed in terms of the neutron scattering length of Sr.

Fig. 4 Lattice evolution upon the Li[⁺]/Sr^{2⁺} ion exchange in β-SrTa2O6: (a) a, b parameters, (b) c parameter, and (c) unit cell volume.

Fig. 5 Effective neutron scattering lengths (b_{eff}) evaluated for Sr/Li sites, A1 and A2, in Li_xSr_{1-x}Ta2O6 (x = 0, 0.08, 0.17, and 0.25).

The coherent neutron scattering lengths of Li and Sr are −1.90 fm and 7.02 fm, respectively. Therefore, either the Li population or the Sr vacation will only decrease the nuclear density for a given site (A1 or A2). Fig. 5 shows the effective neutron scattering lengths (b_{eff}) for the A1 and A2 sites, where b_{eff} = 7.02 × occ(Sr) − 1.90 × occ(Li). With the increase of x in Li_xSr_{1-x}Ta2O6, the b_{eff}(A1) decreased more rapidly than b_{eff}(A2). It implies that the Sr^{2⁺} → 2Li[⁺] exchange occurred more frequently in the quadrangular channel than in the pentagonal channel, and also that Li[⁺] preferred the A1 site. Such a result is reasonable when considering the small size of Li[⁺]. In fact, there were several cases where Li[⁺] occupied even the 9-coordinated A3 site within the triangular channel.^{9,12,13}

The orthorhombic distortion of β-SrTa2O6 was lessened by the Li/Sr exchange, and this can also be attributed to the size effect. The A1 site of β-SrTa2O6 is somewhat smaller than Sr^{2⁺}. As a quick indicator, the bond valence sum (BVS) for Sr, when located at the A1 site of β-SrTa2O6, is calculated to be 2.53 valence units²⁰ and the corresponding value becomes even larger in Li_xSr_{1-x}Ta2O6. On the other hand, Li is grossly...
underbonded at the A1 site in Li$_{0.5}$Sr$_{1.5}$Ta$_2$O$_6$ with BVS values of ≈0.5. Therefore, it is presumed that the Li/Sr mixing and disorder on the A1 site could alleviate the orthorhombic distortion. In this respect, it is noteworthy that Li$_{0.25}$Sr$_{0.75}$Ta$_2$O$_6$ may have rather complex local structures. In particular, it is highly probable that Li is displaced from the ideal A1 site, and/or that the A1-centered polyhedra are distinctly relaxed depending on the cation occupancy (Sr, Li, or vacancy).

To examine whether it is legitimate to rule out the occupation of the A3 site by Li, Fourier nuclear density calculation was employed. Table 2 lists the most prominent peaks from the observed (ρ_{obs}) and difference ($\rho_{\text{diff}} = \rho_{\text{obs}} - \rho_{\text{calc}}$) profiles for Li$_{0.08}Sr_{0.92}Ta_2O_6$, Li$_{0.17}Sr_{0.83}Ta_2O_6$, and β-SrTa$_2O_6$. Fig. 6 shows the two-dimensional contour diagrams of ρ_{diff} taken for the ab-plane with $z = 1/4$ which corresponds to the c-axial height of the A1, A2, and A3 sites. In each of the above four phases, the maximum and minimum values of ρ_{diff} were significantly smaller than the respective ρ_{obs} values. This supports the reliability of the Rietveld analysis. Particularly the absence of the notable minima (negative peak) around the A3 site strongly indicates that Li resides mostly on A1 or A2 sites.

Based on the Rietveld refinement, the Li$^+$ conduction pathways in Li$_{1-x}$Sr$_{1.5}$Ta$_2$O$_6$ can be proposed as follows. Both A1 and A2 sites are partially filled with Li and Sr, while the A1 site has the greater vacancy fraction than A2 (Fig. 5). Apparently the Li$^+$ hopping may occur along the c-axis, that is, between A2 sites through a pentagonal window or between A1 sites through a quadrangular window. But such a migration is not likely to extend to a long range due to the presence of intervening Sr. On the other hand, the A1 and A2 sites also share faces with each other in the ab-plane. Each A1 site is capped with six pseudo-rhombic faces, four of which are shared by A2-centered polyhedra. Meanwhile, each A2 site is immediately surrounded by two A1 sites and three A3 sites on the ab-plane. Therefore, a three-dimensional network of Li$^+$ pathway can be suggested as shown in Fig. 7a, where all the A1 and A2 sites are interconnected with one another. Here, the pseudo-rhombic faces of the A1-centered polyhedra are considered to be potential bottlenecks for the Li$^+$ migration.

Fig. 7b compares the window sizes, represented by the two diagonal lengths, of the rhombic faces adjoining A1 and A1 sites (along ⟨001⟩), and those adjoining A1 and A2 sites (along ⟨120⟩ or ⟨210⟩). In β-SrTa$_2$O$_6$ and Li$_{0.08}$Sr$_{0.92}$Ta$_2$O$_6$, the four faces between A1 and A2 sites were similar in size and were more distorted than those between A1 sites. However, in the phases with $x = 0.17$ and 0.25, the A1-centered polyhedra (distorted cuboctahedra) were formed with more irregular shapes. In any case, the rhombic windows, either the A1–A2 or A1–A3 types, were smaller than the pentagonal window between two A2 sites. This implies that the Li$^+$ hopping should be faster in the c-
direction than in the ab-plane. However, it should be reminded that the long range Li$^+$ migration in Li$_{x}$Sr$_{1-x/0.5}$Ta$_2$O$_6$ will necessarily include the hopping between A1 and A2 sites. As the Li content in Li$_{x}$Sr$_{1-x/0.5}$Ta$_2$O$_6$ increases, the A1–A2 window gets smaller, which seems to be in part responsible for the decrease of the overall Li$^+$ mobility. Moreover, the increase of Li content concurrently removes the vacancy of the A1/A2 sites, for instance, from Li$_{0.08}$Sr$_{0.96}$Ta$_2$O$_6$ ($x = 0.08$) to Li$_{0.25}$Sr$_{0.75}$Ta$_2$O$_6$ ($x = 0.25$). In this regard, the observed variation of v_{11} in Li$_{x}$Sr$_{1-x/0.5}$Ta$_2$O$_6$ can be explained by taking into account the carrier concentration, site availability, and the activation of carrier migration. It is suggested that the ionic conductivity of the TTB phase would be optimized far below the full occupation of the A1 and A2 sites, and also by using a composition that can provide enlarged windows for the A1-centered cavities.

4. Conclusions

Neutron Rietveld and Fourier map analyses were employed to examine the intracrystalline structure of TTB Li$_{x}$Sr$_{1-x/0.5}$Ta$_2$O$_6$, from which a three-dimensional Li$^+$ pathway is suggested. A close examination indicated that the A1 sites, which have the distorted cuboctahedral environments, play an essential role for the long-range Li$^+$ migration within Li$_{x}$Sr$_{1-x/0.5}$Ta$_2$O$_6$. The increase of x in Li$_{x}$Sr$_{1-x/0.5}$Ta$_2$O$_6$ leads to the higher carrier concentration, but accompanies an adverse structural effect on the Li$^+$ mobility. Particularly, in the region of $x > 0.17$, the increase of Li$^+$ concentration is more than offset by the combined effect of two factors: the distortion of the rhombic window of the A1-centered polyhedra and the annihilations of the vacancy sites.

Fig. 7 (a) Two-dimensional connectivity among the A1 and A2 cavities in the TTB lattice and (b) window sizes of the A1-centered polyhedra, represented by the diagonal lengths of the rhombic faces. In (a) open pentagons and squares represent the vertical channels running along c-axis.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the Yeungnam University Research Grant (2016A380034).

References

19 H. D. Han, C. S. Park, B.-K. Min, Y. Paik, W. Jung and Y. I. Kim, Tungsten bronze Li⁺ conductor Li₁₀Sr₁₋₀.₅₇Ta₂O₆ (0 < x ≤ 0.31) prepared by solid state ion exchange, J. Alloys Compd., 2017, 726, 913–921.

24 Coherent neutron scattering lengths (b in fm) are −1.90 (Li), 7.02 (Sr), 6.91 (Ta), and 5.803 (O).
