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One-pot synthesis of chiral alcohols from alkynes
by CF3SOzH/ruthenium tandem catalysis¥
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A practical one-pot synthesis of chiral alcohols from readily available alkynes via tandem catalysis by the
combination of CF3SOsH and a fluorinated chiral diamine Ru(i) complex in aqueous CFsCH,OH is
described. Very interestingly, the combination of fluorinated catalysts and solvent exhibits a positive
fluorine effect on the reactivity and enantioselectivity. A range of chiral alcohols with wide functional
group tolerance was obtained in high yield and excellent stereoselectivity under simple and mild conditions.
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Pot-economic reactions as alternatives to traditional multistep
synthetic procedures have received great attention. The signif-
icant benefits of a one-pot reaction include simple starting
materials and minimum isolation/purification processes. The
direct conversion of alkynes into alcohols is of great importance
because of the readily available alkynes as well as the valuable
alcohols. However, the one-pot conversion of alkynes into
alcohols through a tandem hydration/reduction process is still
challengeable because of the conflict of extrinsic reaction
conditions and the incompatible nature of the catalysts.> The
first one-pot asymmetric synthesis of chiral alcohols from
alkynes via hydration/asymmetric transfer hydrogenation (ATH)
was reported by Xiao's group. In their process, formic acid was
used as a solvent for the hydration step at 100 °C, and then the
ATH was conducted at neutral conditions by adding a large
amount of NaOH (Scheme 1).*> After that, Sun and co-workers
described the same conversion catalyzed by the combination
of salen-Co®" and a chiral ruthenium complex with the aid of
H,S0,.* However, it is not applicable for electron-deficient
alkynes. Subsequently, the similar transformation with homo-
geneous bimetallic catalysts like Au-Ru® and Au-Rh® has also
been realized. In addition, the heterogeneous bimetallic cata-
lytic systems like core-shell micellar supported Co/porphyrin
and chiral rhodium/diamine complexes,” large-pore meso-
porous silica supported Au/carbene and chiral ruthenium/
diamine dual complexes® were also applied in this trans-
formation. Despite these achievements, it is highly desirable to
develop simple, efficient, and compatible catalytic systems
under mild conditions for the conversion of alkynes into chiral
alcohols from both a practical standpoint and an environ-
mental point of view.
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In 2016, a Markovnikov-type alkyne hydration under simple
conditions, using 20 mol% trifluoromethanesulfonic acid
(CF3SO;H) as the catalyst and 2,2,2-trifluoroethanol (CF;CH,-
OH) as the solvent was developed by Li and coworkers.’ It was
reported the CF;SO;~ could be counter anion of chiral Ru/
diamine complexes, which were used as privileged catalysts
for the AH or ATH of ketones.'>'*

We reason that the conversion of alkynes into chiral alcohols
will be realized by tandem catalysis with CF;SO;H and chiral
Ru/diamine complexes as the catalysts. Most importantly, it not
only makes the catalytic systems simple, but also cleverly avoids
the incompatible problem of different catalysts in one-pot
reaction. To continue our interest in asymmetric synthesis of
chiral alcohols,> we describe an easy operation process for
a pot-economic synthesis of chiral alcohols from readily avail-
able alkynes via tandem catalysis under simple conditions,
using CF;SO;H catalyzed hydration of alkynes in CF;CH,OH,
followed by ATH with fluorinated chiral diamine Ru(u) complex
as the catalyst and sodium formate as the hydrogen source.

Initially, the hydration of phenylacetylene (2a) was carried
out with 20 mol% CF;SOzH as the catalyst and 2 mL of CF;-
CH,OH as the solvent in the presence of 2 equiv. of H,0.? As
monitored by gas chromatography (GC), 2a was converted to
acetophenone quantitatively at 40 °C for 6 h.** Then, 0.5 mol%
(S,S)-1a, 5 equiv. of HCOONa, and 2 mL of H,0 were added.

hyclradl (o] OH

ydration )j\/ . ATH /k/ .
A Ar R——ar R
hydration ATH ref
HCOOH, 100 °C Rh/diamine 3
Salen-Co*/H;S04 Ru/diamine 4
IPrAuNTf, Ru/diamine 5
IPrAuClI Rh/diamine 6
Core-shell micellar supported Co-porphyrin Rh/diamine 7
large-pore mesoporous silica supported IPrAuBF, Ru/diamine 8
CF3S03H (20 mol%), H0O (2 equiv), CF3CH,OH Ru/diamine  This work

Scheme 1 One-pot conversion of alkynes into chiral alcohols.
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Table 1 Optimization of the reaction conditions®
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Table 2 Substrate Scope®

1) CF3SO03H (20 mol %) -

, 1) CF3SO3H (20 mol %)

OH

22 H,0 (2 equiv) o H20 (2 equiv) !
4 CF5CH,0H, 40°C, 6 h N | = CF3CH,0H, 40°C, 6-48 h Z | R
2) Cat., HCOONa X 2) (S,S)-1h (0.5 mol %) X
H,0, 50°C, 24 h B HCOONa (5 equiv) 3
2a ' ' 3a H,0, 50°C, 24 h
Entry Cat. Hydrogen source Yield (%) e (%) terminal alkynes:
OH OH OH OH
1 (S,5)1a HCOONa (5 equiv.) 41 93 Ej/k /@A /@A /@A
2 (S,5)-1b HCOONa (5 equiv.) <5 — Me - nPr
3 (8,8)-1¢ HCOONa (5 equiv.) 80 87 3a: 95% yield 3b: 83% yield 3¢: 84% yield 3d: 74% yield
4 (8,8)-1d HCOONa (5 equiv.) 83 96 o7% ee 98% ee 93% ee 95% ee
5 (S,S)—le HCOONa (5 equiv.) 78 79 OH F  OH OH OH
6 (S,5)1f HCOONa (5 equiv.) 79 94 F
7 (8,5)-1g HCOONa (5 equiv.) 84 94 o .
. e
Sb (5,5)-1h HCOONa (5 equ%v') 95 o7 3e: 77% yield 310 82% yield 3g:> 80% yield 3h:> 90% yield
9 (S,5)-1h HCOONa (5 equiv.) 24 95 92% ee 90% ee 99% ee 91% ee
10° (S,5)-1h HCOOH/NEt; (5:2) 0 —
11¢ (S S)-1h HCOOH/NE; (1.1:1) 46 95 ¢l oH OH OH . oH
Cl r
I (8,8)1d: R = 3-CF3CgH,4 cl cl
C,/RU\N C,/RU\N SOR (S,S)-1e: R = 4-CF3CgH, 31> 88% yield 3):> 85% yield 3k:> 79% yield 31> 78% yield

HzN\)\Ph

H,N \)\Ph (S,S)-1f: R = 3,5-(CF3),CgHa
(S,S)1g: R = 3,4,5-F3CeHa

Ph (S,S)-1h: R = C¢Fs
(S,S)-1a: Ar = p-cymene
(S,S)-1b: Ar = mesitylene

% Reaction conditions: phenylacetylene (2a; 5 mmol), CF;SO;H (20
mol%), H,O (2 equiv.), CF;CH,OH (2 mL), 40 °C, 6 h; then 0.5 mol%
catalyst, hydrogen source (5 equiv.), and H,O (2 mL) were added, 50
°C, 24 h. The yield was determined by GC with an internal standard
gmesitylene). The ee values were determined by HPLC analysis.

Hexafluoro-2-propanol (HFIP) was used as a solvent. € 0.5 mL of
HCOOH/NEt; mixture was used, the data in the brackets are molar ratio.

The subsequent ATH was conducted at 50 °C for 24 h,
affording the desired (S)-1-phenylethanol (3a) in 41% yield and
93% ee (Table 1, entry 1). Next, the chiral ruthenium/diamine
complexes including 1b-1h were screened. Interestingly, it
was found that a fluorine effect on the reactivity and enan-
tioselectivity was observed in this tandem reaction.* For
example, the fluorinated chiral diamine Ru(n) complexes 1c-
1h exhibit high reactivity and excellent enantioselectivity
(entries 3-8). Among which, the best yield and ee value were
provided by the chiral N-pentafluorobenzenesulfonyl-1,2-
diphenylethylenediamine Ru(u) complex (S,S)-1h, giving 3a
in 95% yield and 97% ee (entry 8). Then, other fluorinated
alcohols like hexafluoro-2-propanol (HFIP) could also give the
desired product in 95% ee but with only 24% yield (entry 9).
Finally, other hydrogen sources were also examined. For
example, no desired product was detected using an acidic
HCOOH-NEt; azeotrope (molar ratio F/T = 5/2) as hydrogen
source (entry 10). By contrast, 3a was obtained in 46% yield
and 95% ee using slightly basic HCOOH-NEt; mixture (molar
ratio F/T = 1.1/1) as hydrogen source (entry 11)."* Based on
above results, the optimal reaction conditions were set as
follow: 20 mol% CF3;SO;H coupled with 0.5 mol% (S,S)-1h as
the catalysts, 5 equiv. of HCOONa as the hydrogen source, and
CF;CH,0H/H,O0 (v/v = 1: 1) as the solvent (entry 8).
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87% ee 92% ee 86% ee 92% ee

@*ONQ* Son

3n:%9 66% yield
86% ee

30: 89% yield
88% ee

m:>° 76% yield
92% ee

internal alkynes:

OH OH OH OH
©/’\v/ ©/'\V/\\ ©)\/N/\ ©/’\,Ph

3p:® 67% yield 3q:° 74% yield 3r:° 67% yield 3s:° 64% yield
76% ee 89% ee 81% ee 82% ee
diethynylbenzenes:
3tf OH  g,f
72% yield 75% yield

83% ee, 76% de 99% ee, 80% de

other alkynes:

“ Reaction conditions: alkyne (5 mmol), CF3SO;H (20 mol%), H,O (2
equiv.), CF;CH,OH (2 mL), 40 °C, 6 h, then add 0.5 mol% (S,S)-1h,
HCOONa (5 equiv.), H,O (2 mL), 50 OC 24 h, isolated yield, the ee
values were determined by HPLC ana1y51s b Condltlons were 70 °C
and 12 h for hydration step. “ HFIP was used as a solvent.

¢ Conditions were 70 °C and 48 h for hydration step. ¢ Conditions
were 40 °C and 48 h for hydration step./ CF;80;H (40 mol%), H,O (4
equiv.), CF3CH,OH (2 mL), 70 °C, 48 h, then add 1 mol% (S,S)-1h,
HCOONa (10 equiv.), H,O (2 mL), 50 °C, 48 h.

Having established a compatible catalytic system for the one-
pot conversion of alkynes into chiral alcohols, the scope of
various alkynes was then investigated. As summarized in Table
2, the internal aromatic alkynes were examined first. For
examples, the reaction of phenylacetylene derivatives 2b-2e

This journal is © The Royal Society of Chemistry 2018
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1) CF3SO3H (20 mol %) OH
E = H20 (2 equiv) &
CF3CH,0H, 70°C, 12 h
2) (S,S)-1h (0.5 mol %)

HCOONa (5 equiv)

3g:2529
H,0, 50°C, 24 h

86% yield, 99% ee

2g:240¢g

Scheme 2 Gram-scale reaction.

bearing electron-donating groups (Me, Et, n-Pr, MeO) per-
formed smoothly under the optimized conditions, giving the
corresponding chiral alcohols 3b-3e in 74-95% yield and 92—
98% ee. By contrast, in the case of electron-deficient phenyl-
acetylene derivatives 2f-2n bearing electron-withdrawing
groups (F, Cl, Br, NO,), the hydration step requires higher
temperature and longer time. Due to poor solubility of 4-bro-
mophenylacetylene (2m) and 4-nitrophenylacetylene (2n) in
CF;CH,OH, the HFIP was used instead. In addition to phenyl-
acetylene derivatives, the 2-ethynylnaphthalene (20) could also
be converted to alcohol 30 in 89% yield and 88% ee successfully.
Next, the internal aromatic alkynes 2p-2s were also subjected to
this tandem reaction, and the corresponding alcohols 3p-3s
were isolated with 64-74% yield and 76-89% ee. Most impor-
tantly, the direct conversion of 1,3-diethynylbenzene (2t) and
1,4-diethynylbenzene (2u) into chiral diols 3t and 3u was ach-
ieved, with high yield, good enantiomeric excess (ee) and dia-
stereomeric excess (de). Finally, the alkynes like 3-
ethynylpyridine (2v), 2-ethynylthiophene (2w), 3-phenyl-
propargyl alcohol (2x), and methyl phenylpropiolate (2y) were
also attempted, but no desired product was obtained with this
catalytic system.

To further demonstrate the potential application of this one-
pot tandem process, a gram scale reaction with 3-fluo-
rophenylacetylene (2g) as the substrate was conducted. As
shown in Scheme 2, the chiral alcohol 3g was obtained in 86%
yield and 99% ee, which demonstrates its suitability for large-
scale reaction.

Very interestingly, the reactivity and enantioselectivity of this
asymmetric tandem reaction could be enhanced by fluorinated
catalysts and solvents (Table 1). As shown in Scheme 3, in the
hydration step, the intermediate vinyl carbocation A could be
stabilized by the fluorinated solvent (CF;CH,OH), which makes
the hydration reaction proceed smoothly under mild condi-
tions. By contrast, no reaction occurs if CF;CH,OH replaced by
C,H5;OH.? In the ATH step, the (S,S)-1h containing fluorinated

CF3SO3H
CF3CH,0H

O
® HoO
R| —— >
[Ar/\/ ] Ar)K/R
A B

stabilized by CF3CH,OH
F
F F

(S,S)-1h > ©| 5 OH
HCOONa X
—_— > A Ru— B (—= R
CF3CH,0OH/H0 RAK__H | 0 F
| N 3
I YPh
O~y 2

Ph

Scheme 3 Reaction pathway and transitional state.
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aryl moiety gives better yield and ee value, it may be ascribe to
the positive fluorine effect between the fluorinated solvent and
catalyst.*

In summary, we have developed a simple and efficient
compatible catalytic system, using a fluorine-containing
Br@nsted acid (CF3SO3;H) coupled with a fluorinated chiral
diamine Ru(un) complex as catalysts, and fluorinated alcohol
(CF3CH,OH) as a solvent, which exhibits positive fluorine effect
on the reactivity and enantioselectivity for the conversion of
alkynes into chiral alcohols. Furthermore, the gram-scale reac-
tion demonstrates its potential application.
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