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ient total synthesis of the
bromotyrosine-derived alkaloid psammaplysene A†

Jingjing Xu, ab Kai Wanga and Jinlong Wu *a

Psammaplysene A, an inhibitor of FOXO1a-mediated nuclear export, has been synthesized by a concise and

improved route from tyrosine-derived acid and amine fragments which were easily constructed using

commercially available p-hydroxybenzaldehyde and tyramine as starting material, respectively. The

strategy provides an efficient access of psammaplysene analogues that can be explored for potential

pharmaceutical or biological activities.
Introduction

PTEN, a tumor suppressor gene, plays an important role in
blocking cell cycle progression, inducing apoptosis, and nega-
tively regulating PI3-K/AKT signaling pathway.1–3 Thus, loss-of-
function mutation in PTEN can result in an unbalance of
stimulatory and inhibitory signals and have been observed in
a large number of cancers at high frequency.4–6 Since discov-
ering small molecules that could directly compensate for PTEN
loss-of-function mutation has been quite difficult, attention has
turned to identify small molecules modulating downstream
targets of such mutation, thus to indirectly compensate for
PTEN mutation. FOXO1a, a member of the Forkhead family of
transcription factors, is a downstream target of PTEN and can
negatively regulate cell survival and cell cycle progression.7,8 As
a result of loss of PTEN phosphatase activity, FOXO1a was
translocated from the nucleus to cytoplasm, leading to
a disturbance of regulation of cell cycle progression.9 When
a high-throughput screen was performed to identify small
molecules able to localize FOXO1a in nucleus, psammaplysene
A (1) was identied as one of the most potent modulators (IC50

¼ 5 mM), along with the closely related psammaplysene B (2) as
the somewhat less active one (IC50 ¼ 20 mM).10 The exact target
of psammaplysene A in the PI3-K/PTEN/AKT signaling pathway
is not known, but small alterations of the basic structure, the
removal of a methyl group to give psammaplysene B (2) for
example, signicantly diminish activity. In addition to inhibi-
tion of FOXO1a nuclear export, psammaplysene A was also
found to have neuroprotective activity by binding to heteroge-
neous nuclear ribonucleoprotein K (HNRNPK), a RNA-binding
protein, to protect against neuronal death.11
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Psammaplysene A (1) and psammaplysene B (2), isolated
from Indian Ocean marine sponge Psammaplysilla sp., are
bromotyrosine alkaloids10,12 formed by combining two
bromotyrosine-derived subunits through amide bonds. Due to
the limited supply of material from marine from sponge
collections, Clardy and co-workers have developed an efficient
synthesis of psammaplysene A and B by amidation between
fragments 3 and 4 (Fig. 1).13,14 Both fragments were synthesized
Fig. 1 Structures of psammaplysene A (1) and B (2) and main retro-
synthetic disconnection.
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from the common starting material, p-iodophenol. The acid
fragments 3 was prepared with the a,b-unsaturated carbonyl
moiety assembled viaHeck reaction, while the amine fragments
4 was synthesized by forming 2-(N,N-dimethylamino)ethyl
moiety via Sonogashira reaction with trimethylsilyl acetylene
followed by desilylative bromination and aminolysis. Although
their synthetic method is very efficient with four steps for
fragment 3 and six steps for fragment 4, the synthesis of
psammaplysene A using Pd-catalyzed cross-coupling reaction
twice is harsh reaction conditions, occurrence of several side
products, and difficulty in recovery and reusability of the cata-
lysts. In addition, some of the catalysts employed are expensive.
To improve such shortcoming, we proposed a new efficient
route to concisely synthesize psammaplysene A without the use
of Pd catalyst.
Scheme 2 Synthesis of the amide fragment (4).
Results and discussion

The retrosynthetic analysis of psammaplysene A is outlined in
Scheme 1, providing the acid and amine fragments, 3 and 4.
These two fragments possess a dibromophenol ring with the
oxygen appended to an 3-aminopropyl group and are distin-
guishable from each other by the substituent at para position of
the phenol ring, i.e. the a,b-unsaturated carbonyl moiety in 3 vs.
the 2-(N,N-dimethylamino)ethyl moiety in 4. The acid building
block 3 could be prepared from commercially available p-
hydroxybenzaldehyde 5 in a simple manner. On the other hand,
the amide building block 4 could be readily accessible from
tyramine 6.

The synthesis of 3 began with p-hydroxybenzaldehyde 5 via
ortho-bromination by using Br2 with NaOAc in HOAc to furnish
dibromoaldehyde 7 in 94% yield.15,16 We initially explored
a route involving Wittig olenation of 7 with the ylide Ph3P]
Scheme 1 Synthesis of the acid fragment (3).

13748 | RSC Adv., 2018, 8, 13747–13749
CHCO2Me prior to O-alkylation; however, no desired olenation
product was observed in reaction mixture. Hence, we turned to
directO-alkylation of 7with N,N-dimethyl-3-chloropropylamine;
however, low conversions were observed under various condi-
tions,17 likely due to the poor nucleophilicity of dibromophenol
with an electron-withdrawing formyl group at para position.
Fortunately, compound 7, aer being protected as glycol acetal,
was readily converted into 8 via O-alkylation with N,N-dimethyl-
3-chloropropylamine in the presence of Cs2CO3 and catalytic
amount of NaI at 80 �C. Subsequent cleavage of the glycol acetal
under acid condition gave the aldehyde 9 (97%), which then
underwent Knoevenagel condensation18 with malonic acid in
Scheme 3 Synthesis of psammaplysene A (1).

This journal is © The Royal Society of Chemistry 2018
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the presence of triethylamine (TEA) and a catalytic amount of
piperidine in toluene at reux to furnish the acid building block
3 (80%).

Scheme 2 depicts the synthesis of the amide building block 4
in four steps starting from tyramine 6 in an approach similar to
the literature precedent.19,20 Reductive methylation of tyramine
6 with aqueous formaldehyde was performed under catalytic
hydrogenation conditions (10% Pd/C) to provide dimethyltyr-
amine 10 in 98% yield. Bromination of 10 with Br2 in the
presence of KBr afforded compound 11 in 81% yield.21 Subse-
quent O-alkylation of 11 with Boc-protected 3-bromopropyl-
amine gave 12 (93%), which was converted into the
dihydrochloride salt of amine 4 upon treatment with 4 MHCl in
methanol.

Finally, the amidation between 3 and 4 were performed by
using DIC with a catalytic amount of DMAP in the presence of
TEA in DCM, leading to the formation of psammaplysene A
(Scheme 3). The spectroscopic data of our synthetic psamma-
plysene A were identical to those reported for the natural
product (1H NMR, 13C NMR, and HRMS).10,13
Conclusions

In summary, we have established an improved and efficient
synthesis of psammaplysene A in 50% overall yield from p-
hydroxybenzaldehyde 5 via Knoevenagel condensation and O-
alkylation as key steps. The two major fragments 3 and 4 were
concisely assembled from commercially available p-hydrox-
ybenzaldehyde 5 in ve steps (59%) and tyramine 6 in four steps
(71%), respectively. Our approach is concise and might be
applied in the synthesis of psammaplysene analogues on gram
scale.
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