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T(H)/A$T(rH) 4 A$T*(rwWC)/
A$T*(wH)/A$T*(rwH) mutagenic tautomerization via
sequential proton transfer: a QM/QTAIM study

Ol'ha O. Brovarets', ab Kostiantyn S. Tsiupa a and Dmytro M. Hovorun *ab

In this study for the first time we have revealed by QM and QTAIM calculations at the MP2/aug-cc-pVDZ//

B3LYP/6-311++G(d,p) level of QM theory the novel routes of the mutagenic tautomerization of three

biologically important A$T DNA base pairs – reverse Watson–Crick A$T(rWC), Hoogsteen A$T(H) and

reverse Hoogsteen A$T(rH) – followed by their rebuilding into the wobble (w) A$T*(rwWC), A$T*(wH) and

A$T*(rwH) base mispairs by the participation of the mutagenic tautomers of the DNA bases (denoted by

asterisk) and vice versa, thus complementing the physico-chemical property of the canonical A$T(WC)

Watson–Crick DNA base pair reported earlier (Brovarets' et al., RSC Adv., 2015, 5, 99594–99605). These

non-dissociative tautomeric transformations in the classical A$T(rWC), A$T(H) and A$T(rH) DNA base pairs

proceed similarly to the canonical A$T(WC) DNA base pair via the intrapair sequential proton transfer

with shifting towards major or minor grooves of DNA followed by further double proton transfer along

the intermolecular H-bonds and are controlled by the plane symmetric and highly stable transition states

– tight ion pairs formed by the A+ nucleobase, protonated by the N1/N7 nitrogen atoms, and T�

nucleobase, deprotonated by the N3H imino group. Comparison of the estimated populations of the

tautomerised states (10�21 to 10�14) with similar characteristics for the canonical A$T(WC) DNA base pair

(10�8 to 10�7) leads authors to the conclusion, that only a base pair with WC architecture can be

a building block of the DNA macromolecule as a genetic material, which is able for the evolutionary self-

development. Among all four classical DNA base pairs, only A$T(WC) DNA base pair can ensure the

proper rate of the spontaneous point errors of replication in DNA.
Introduction

Clarication of the microstructural mechanisms of the muta-
genic tautomerization of the DNA base pairs is a classical
problem of molecular biophysics, biochemistry and structural
biology, which remain topical up to now.1–5 Literature analysis
shows that the so-called tautomeric hypothesis formulated by
Watson and Crick,1 soon aer their discovery of the spatial
architecture of DNA – a macromolecule that is the carrier of the
genetic information,2 represents itself the most vivid theoretical
platform for the conduction of these studies. At that time, this
hypothesis became a real breakthrough in the understanding of
the nature of the origin of the spontaneous point mutations –

transitions and transversions5 – and also involvement in this
biologically important phenomenon of the prototropic
tautomerism of the DNA bases.6,7
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Advances in technology eventually led to numerous as
experimental investigations,8–13 in particular X-ray analysis8,9

and NMR, in particular relaxation dispersion, measure-
ments,10–13 so theoretical examinations14–19 of this discovery.
However, these results do not clarify the physico-chemical
mechanisms of the arising of the rare or mutagenic tauto-
meric forms of the DNA bases20–23 (here and belowmarked by an
asterisk).

It was established for sure that generally accepted mecha-
nism of the double proton transfer (DPT) along intermolecular
H-bonds in the Watson–Crick (WC) (so-called Löwdin's mech-
anism),24–29 wobble (w) base pairs,30,31 biologically important
A$G,32 A$C*,33 G*$T,34 C$T,35 G$G*

syn,
36 A*$Asyn,37 A*$G*

syn,
38

H$C,39,40 H$H39,40 and H$A39,42 base mispairs and also in the
protein–DNA complexes26,43,44 can't be considered as the source
of the mutagenic tautomers formations due to the dynamical
instability of the terminal complexes containing mutagenic
tautomers of the DNA bases.26–29,31–42,44

For the rst time, we have proposed a novel theoretical
approach to the elucidation of the microstructural mechanisms
of the incorporation and replication errors arising at the DNA
replication due to the intrinsic ability of the purine$pyrimidine
(A$T, G$C, G$T and A$C), purine$purine (A$A and G$G) and
RSC Adv., 2018, 8, 13433–13445 | 13433
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pyrimidine$pyrimidine (C$C and T$T) DNA base mispairs to
perform WC 4 w tautomeric transitions via the sequential
proton transfer (PT).45–53 It was revealed that all these non-
dissociative tautomerisations are controlled by the highly
stable, highly polar and zwitterionic transition states of the type
(protonated base)$(deprotonated base). These interconversions
are accompanied by a signicant rebuilding of the base mis-
pairs with Watson–Crick architecture into the mismatches
wobbled towards minor or major grooves of DNA. Moreover, it
was established that these tautomerisation reactions occur non-
dissociatively and are accompanied by the consequent
replacement of the unique patterns of the intermolecular
specic interactions along intrinsic reaction coordinate (IRC).

Thus, in particular, it was found out that the A$T(WC) Wat-
son–Crick DNA base pair exists simultaneously in three other
biologically important hypostasis45 – short-lived wobble A*$T(w)
(population ¼ 5.4 � 10�8), A$T*

O2ðwÞ (9.9 � 10�9) and A$T*(w)
(2.5 � 10�10) H-bonded mismatches, containing mutagenic
tautomers of the nucleotide bases. Their forced separation by
the DNA-polymerase machinery into the monomers with
necessity generates mutagenic tautomers of the DNA bases,
which are long-lived structures causing spontaneous point
mutations – transitions and transversions.53–55

Presented approach claries the microstructural mecha-
nisms of the mutations induced by the classical mutagens, in
particular 2-aminopurine, for which frequencies agree well with
the experimental data.56–61

The aim of the current study is to extend the approach
launched in our previous work for the canonical DNA base
pairs45 to the other classical A$T DNA base pairs – reverse
Watson–Crick A$T(rWC), Hoogsteen A$T(H) and reverse
Hoogsteen A$T(rH).

At this point, the question arises according the urgency of
this investigation.

First, the A$T(rWC), A$T(H) and A$T(rH) DNA base pairs have
a remarkable biological meaning (see works62–79 and the bibli-
ography cited therein). Second, as of today, the mutagenic
tautomerization of these biologically important pairs has not
even mentioned in the literature. Thirdly, we are interested in
the investigation of the evolutionary aspect of the problem, in
particular, why Nature chose precisely Watson–Crick DNA base
pairs for the construction of the genetic material, among which
the A$T(WC) DNA base pair is the most evolutionarily distant,
since it was the rst to appear evolutionary.6,80,81

So, in this regard, we can make an assumption that exactly
the A$T(WC) base pair provides necessary frequency of the
spontaneous point replication errors in DNA, which lies in the
range of 10�9 to 10�11 per nucleotide, incorporated during one
replication cycle.82,83

Such statement of the problem except merely academic value
has also practical assignment, e.g. for the biomolecular elec-
tronics, which are used for the DNA-based carriers of the digital
information,84,85 since it allows, in principle, to understand how
the complementary bases should be modied in order to
suppress the tautomeric instability of their pair. This is
extremely important for increasing of the accuracy of such
molecular devices.86
13434 | RSC Adv., 2018, 8, 13433–13445
As a result of the systematic quantum-mechanical calcula-
tions, we managed to establish the microstructural mecha-
nisms of the mutagenic tautomerisation of the studied A$T DNA
base pairs and to reach the conclusion about a unique place of
the canonical Watson–Crick A$T(WC) DNA base pair among
them. Only this base pair able to provide the necessary rate of
the spontaneous point mutations, which, as it is well known,
are the source of the genome self-development.6,80–83

Computational methods

Geometries of the investigated DNA base pairs and transition
states (TSs) of their mutual tautomeric transformations, as well
as their harmonic vibrational frequencies have been calculated
at the B3LYP/6-311++G(d,p) level of theory,87–91 using
Gaussian'09 package92 followed by the IRC calculations in the
forward and reverse directions from each TS using Hessian-
based predictor-corrector integration algorithm.93 Applied
level of theory has proved itself successful for the calculations of
the similar systems.94–96 A scaling factor that is equal to 0.9668
(ref. 97–100) has been applied in the present work for the
correction of the harmonic frequencies for all DNA base pairs
and TSs of their tautomeric transitions. We have conrmed the
local minima and TSs, localized by Synchronous Transit-guided
Quasi-Newton method,101 on the potential energy landscape by
the absence or presence, respectively, of the imaginary
frequency in the vibrational spectra of the complexes. We
applied standard TS theory for the estimation of the activation
barriers of the tautomeric transformations.102 Electronic energy
calculations have been performed at the MP2/aug-cc-pVDZ level
of theory.103,104

The Gibbs free energy G for all structures was obtained in the
following way:

G ¼ Eel + Ecorr, (1)

where Eel – electronic energy, while Ecorr – thermal correction.
The time s99.9% necessary to reach 99.9% of the equilibrium

concentration of the reactant and product in the system of
reversible rst-order forward (kf) and reverse (kr) reactions can
be estimated by the formula:102

s99:9% ¼ ln 103

kf þ kr
: (2)

The lifetime s of the formedmismatches has been calculated
using the formula (1)/kr, where the values of the reverse kr and
forward kf rate constants for the tautomerisation reactions were
obtained as:102

kf ;r ¼ G
kBT

h
e�

DDGf ;r

RT ; (3)

where quantum tunneling effect has been accounted by Wign-
er's tunneling correction,105 which has been successfully used
for the DPT reactions:33–42

G ¼ 1þ 1

24

�
hni

kBT

�2

; (4)
This journal is © The Royal Society of Chemistry 2018
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Fig. 1 Geometrical structures of the stationary points on the pathways of the tautomerization of the classical A$T DNA base pairs into thewobble
base mispairs via the sequential PT followed by DPT. Electronic DEint (contribution of the total energy of the H-bonds) and Gibbs free DGint

energies of the interaction (MP2/6-311++G(2df,pd)//B3LYP/6-311++G(d,p) level of theory, in kcal mol�1), relative Gibbs free energies DG and
electronic energies DE (in kcal mol�1), imaginary frequencies ni at the TSs of the tautomeric transitions (MP2/aug-cc-pVDZ//B3LYP/6-
311++G(d,p) level of theory in the continuumwith 3¼ 1 at T¼ 298.15 K) are presented below complexes in brackets. Dotted lines indicate AH/B
H-bonds – their lengths H/B are presented in angstroms (for their more detailed physico-chemical characteristics see Table 2); carbon atoms
are in light-blue, nitrogen – in dark-blue, hydrogen – in grey and oxygen – in red.

This journal is © The Royal Society of Chemistry 2018 RSC Adv., 2018, 8, 13433–13445 | 13435
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Fig. 1a (contd.)
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where kB – Boltzmann's constant, h – Planck's constant, DDGf,r –

Gibbs free energy of activation for the tautomerisation reaction
in the forward (f) and reverse (r) directions, ni –magnitude of the
imaginary frequency associated with the vibrational mode at
the TSs.
13436 | RSC Adv., 2018, 8, 13433–13445
Electronic interaction energies DEint have been calculated at
the MP2/6-311++G(2df,pd) level of theory as the difference
between the total energy of the base pair and energies of the
monomers and corrected for the basis set superposition error
(BSSE)106,107 through the counterpoise procedure.108,109
This journal is © The Royal Society of Chemistry 2018
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Fig. 1b (contd.)
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Bader's quantum theory of atoms in molecules
(QTAIM),110–115 using program package AIMAll,116 was applied to
analyse the electron density distribution. The presence of the
bond critical point (BCP), namely the so-called (3,�1) BCP, and
a bond path between hydrogen donor and acceptor, as well as
This journal is © The Royal Society of Chemistry 2018
the positive value of the Laplacian at this BCP (Dr > 0), were
considered as criteria for the H-bond formation.117,118 Wave
functions were obtained at the level of theory used for geometry
optimisation.
RSC Adv., 2018, 8, 13433–13445 | 13437

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8ra01446a


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
A

pr
il 

20
18

. D
ow

nl
oa

de
d 

on
 1

1/
9/

20
25

 7
:1

9:
39

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
The energies of the AH/B conventional H-bonds were
evaluated by the empirical Iogansen's formula:119

EAH/B ¼ 0:33
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dn� 40

p
; (5)

where Dn – magnitude of the frequency shi of the stretching
mode of the H-bonded AH group involved into the AH/B H-
bond relatively the unbound group. The partial deuteration
was applied to minimize the effect of vibrational
resonances.120–122

The energies of the weak CH/O/N H–bonds123,124 were
calculated by the empirical Espinosa–Molins–Lecomte
formula125,126 based on the electron density distribution at the
(3,�1) BCPs of the H-bonds:

EHB ¼ 0.5 V(r), (6)

where V(r) – value of a local potential energy at the (3,�1) BCP.
The energies of the NH/O H-bonds in the TSs of the DPT

tautomerisations containing loosened covalent bridge have
been estimated by the Nikolaienko–Bulavin–Hovorun
formula:127

ENH/O ¼ �2.03 + 225r, (7)

where r – the electron density at the (3,�1) BCP of the H-bond.
The atomic numbering scheme for the DNA bases is

conventional.128
Results and their discussion

In this work based on the results obtained in the pioneering
publication,45 devoted to the novel WC 4 w mutagenic tauto-
merization of the canonical A$T(WC) and G$C(WC) DNA base
Table 1 Energetic (in kcal mol�1) and kinetic (in s) characteristics of the ta
mispairs via the sequential PT followed by DPT obtained at the MP2/aug-
with 3 ¼ 1 under normal conditions (see Fig. 1)

Tautomeric transition ni
a DGb DEc DDGTS

d DD

A$TðrWCÞ4A$T*
O2ðrwWCÞ 66.5 27.71 29.12 32.86 32.

A$T*
O2ðrwWCÞ4A*

C2$TðrwWCÞ 137.7 28.92 29.23 27.43 29.
A$T(rWC) 4 A$T*(rwWC) 132.4 18.56 17.69 26.84 25.
A$T*(rwWC) 4 A*$T(rwWC) 906.3 1.61 1.24 3.00 5.
A$T(H) 4 A$T*(wH) 155.3 21.92 22.94 31.91 31.
A$T*ðwHÞ4A*

C8$TðwHÞ 1136.0 18.95 17.97 18.99 20.

A$TðHÞ4A$T*
O2ðwHÞ 147.1 22.68 22.44 32.46 31.

A$T�
O2ðwHÞ4A�

N7$TðwHÞ 797.1 12.87 12.96 10.90 13.
A$TðrHÞ4A$T*

O2ðrwHÞ 134.0 25.66 26.83 33.03 32.
A$T�

O2ðrwHÞ4A�
C8$TðrwHÞ 1129.2 15.49 14.51 16.09 17.

A$T(rH) 4 A$T*(rwH) 159.0 18.99 18.42 31.15 30.
A$T*ðrwHÞ4A*

N7$TðrwHÞ 727.4 15.34 15.73 13.36 15.

a The imaginary frequency at the TS of the tautomeric transition, cm�1

tautomeric transition (T ¼ 298.15 K). c The electronic energy of the produ
energy barrier for the forward tautomeric transition. e The electronic e
energy barrier for the reverse tautomeric transition. g The electronic ener
reach 99.9% of the equilibrium concentration between the reactant and
product of the tautomerisation reaction, s. j The thermal population of
row of the table.

13438 | RSC Adv., 2018, 8, 13433–13445
pairs, we have investigated for the rst time the microstructural
mechanisms of the mutagenic tautomerisation of the three
other biologically important A$T DNA base pairs62–79 –

A$T(rWC)/A$T(H)/A$T(rH)4 A$T*(rwWC)/A$T*(wH)/A$T*(rwH) –
as their intrinsically inherent property (Fig. 1, Tables 1 and 2).

It was found that the mutagenic tautomerization of each of
these classical base pairs is controlled by the two TSs, repre-
senting itself tight (electronic energy of the bases interaction
�120–129 kcal mol�1) ion pairs (A+ nucleobase, protonated by
the N1/N7 nitrogen atoms)$(T� nucleobase, deprotonated by
the N3H imino group) with plane symmetric (Cs symmetry)
quasi-wobble structure. The term “quasi-wobble” means that
these structures are no longer rWC/H/rH, but are not yet
wobble. Notably, they differ from each other by the shiing
direction of the T� respectively A+ (towards major or minor
groove of DNA) and also by the number of the H-bonds, which
participate in their stabilization, – three or four, – one or two
of them are characterized by the increased ellipticity (Fig. 1,
Table 2). The latter points to the dynamic instability of
these H-bonds.31,97 Thus, the TSA

þ$T�
A$TðrWCÞ4A$T*O2ðrwWCÞ;

TSA
þ$T�

A$TðHÞ4A$T*ðwHÞ and TSA
þ$T�

A$TðrHÞ4A$T*O2ðrwHÞ transition states, in
which the T� deprotonated by the N3H imino group, is shied
towards the minor groove of DNA relatively A+, are stabilized by
the participation of three H-bonds: (A)N6+H/O2�(T) (2.99), (A)
N1+H/O2�(T) (10.16) and (A)C2+H/N3�(T) (1.81 kcal mol�1);
(A)N6+H0$$$O4�(T) (4.76), (A)N7+H/O4�(T) (5.03) and (A)
N7+H/N3�(T) (3.27 kcal mol�1); (A)N6+H0$$$O2�(T) (4.06), (A)
N7+H/O2�(T) (5.05) and (A)N7+H/N3�(T) (3.02 kcal mol�1)
(their energies are presented in brackets), accordingly (Table 2).
At this, in each TS only one H-bond has increased ellipticity (its
value is presented in brackets) – (A)C2+H/N3�(T) (18.55); (A)
N7+H/N3�(T) (35.39); (A)N7+H/N3�(T) (49.28), respectively
(Fig. 1, Table 2).
utomerization of the classical A$T DNA base pairs into the wobble base
cc-pVDZ//B3LYP/6-311++G(d,p) level of QM theory in the continuum

ETS
e DDGf DDEg s99.9%

h si Pj

49 5.15 3.37 6.62 � 10�9 9.58 � 10�10 4.72 � 10�21

29 �1.49 0.06 8.83 � 10�14 1.28 � 10�14 2.91 � 10�42

43 8.29 7.74 1.31 � 10�6 1.90 � 10�7 2.45 � 10�14

08 1.39 3.85 1.08 � 10�11 1.67 � 10�12 1.60 � 10�15

69 9.99 8.75 2.31 � 10�5 3.35 � 10�6 8.39 � 10�17

81 0.04 2.84 5.56 � 10�13 8.04 � 10�14 1.06 � 10�30

63 9.78 9.19 1.62 � 10�5 2.34 � 10�6 2.32 � 10�17

14 �1.97 0.18 2.54 � 10�14 3.68 � 10�15 8.45 � 10�27

94 7.38 6.11 2.81 � 10�7 4.07 � 10�8 1.52 � 10�19

76 0.60 3.25 1.43 � 10�12 2.08 � 10�13 6.61 � 10�31

53 12.17 12.11 9.13 � 10�4 1.32 � 10�4 1.18 � 10�14

73 �1.98 0.01 3.86 � 10�14 5.58 � 10�15 6.65 � 10�26

. b The Gibbs free energy of the product relatively the reactant of the
ct relatively the reactant of the tautomeric transition. d The Gibbs free
nergy barrier for the forward tautomeric transition. f The Gibbs free
gy barrier for the reverse tautomeric transition. h The time necessary to
the product of the tautomerisation reaction, s. i The lifetime of the

the tautomerised structures, which is situated on the right in the rst

This journal is © The Royal Society of Chemistry 2018
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Table 2 Electron-topological, geometrical and energetic characteristics of the intermolecular H-bonds in the investigated DNA base pairs and
TSs of their tautomerization into the wobble base mispairs via the sequential PT followed by DPT obtained at the B3LYP/6-311++G(d,p) level of
QM theory (3 ¼ 1) (see Fig. 1)

Complex AH/B H-bond ra Drb 1003c dA/B
d dH/B

e :AH/Bf EAH/B
g mh

A$T(rWC) N6H/O2 0.024 0.088 5.26 2.962 1.949 172.9 4.38 2.40
N3H/N1 0.039 0.093 6.51 2.887 1.843 177.7 7.55
C2H/O4 0.004 0.014 3.32 3.696 2.872 132.8 0.77*

TSA
þ˙T�

A$TðrWCÞ4A$T *O2ðrwWCÞ N6+H/O2� 0.017 0.073 8.71 2.910 2.083 136.9 2.99 9.34
N1+H/O2� 0.067 0.133 1.76 2.614 1.577 159.6 10.16
C2+H/N3� 0.011 0.034 18.55 3.207 2.561 117.3 1.81*

A$T*
O2ðrwWCÞ O2H/N7 0.058 0.100 4.73 2.682 1.665 179.7 10.35 5.10

C8H/N3 0.013 0.043 2.29 3.131 2.407 123.1 2.21*
TSA$T*O2(rwWC)4A*C2$T(rwWC) N1H/O2 0.040 0.125 4.34 2.761 1.766 159.5 6.91** 5.36
A*C2$T(rwWC) N1H/O2 0.037 0.120 4.38 2.787 1.797 159.5 5.77 5.21

N3H/C2� 0.061 0.033 103.30 2.840 1.758 164.3 12.53
TSA

þ˙T�
A$TðrWCÞ4A$T *ðrwWCÞ N6+H/O2� 0.020 0.067 12.45 3.026 2.057 155.7 2.86 6.11

N6+H/N3� 0.020 0.069 13.99 2.971 2.121 138.4 2.82
N1+H/N3� 0.024 0.081 32.39 2.932 2.035 141.8 2.92
N1+H/O4� 0.034 0.098 5.50 2.805 1.860 148.0 4.45

A$T*(rwWC) N6H/N3 0.030 0.087 7.07 2.682 1.668 170.4 5.76 2.52
O4H/N1 0.059 0.096 5.10 2.955 1.947 167.0 10.21

TSA$T*(rwWC)4A*$T(rwWC) N1H/O4 0.061 0.142 3.32 2.663 1.598 179.3 11.61** 3.78
A*$T(rwWC) N3H/N6 0.044 0.095 6.22 2.844 1.793 174.7 8.53 3.23

N1H/O4 0.035 0.117 3.55 2.832 1.801 177.3 5.82
A$T(H) N6H0/O4 0.023 0.086 3.93 2.972 1.963 170.6 4.18 6.16

N3H/N7 0.041 0.099 5.75 2.853 1.811 175.9 7.39
C8H/O2 0.005 0.016 7.71 3.524 2.835 121.7 0.83*

TSA
þ$T�

A$TðHÞ4A$T*ðwHÞ N6+H0/O4� 0.022 0.091 1.81 2.936 1.948 161.7 4.76 2.09
N7+H/O4� 0.041 0.112 6.15 2.749 1.771 152.5 5.03
N7+H/N3� 0.029 0.097 35.39 2.784 1.951 133.5 3.27

A$T*(wH) O4H/N7 0.052 0.102 4.74 2.717 1.707 178.5 8.99 4.74
C8H/N3 0.012 0.040 2.99 3.149 2.441 121.9 2.08*

TSA$T*(wH)4A*C8$T(wH) N7H/O4 0.047 0.133 2.94 2.678 1.702 153.3 8.55** 3.56
A*C8$T(wH) N7H/O4 0.031 0.109 3.24 2.810 1.861 152.7 5.00 6.08

N3H/C8� 0.035 0.061 4.38 2.975 1.959 161.6 8.30
TSA

þ$T�
A$TðHÞ4A$T*O2ðwHÞ N6+H0/O4� 0.024 0.079 2.31 2.887 2.004 142.4 3.64 6.54

N6+H0/N3� 0.014 0.049 67.29 3.218 2.265 153.9 1.84
N7+H/N3� 0.021 0.076 382.35 3.022 2.099 144.8 2.36
N7+H/O2� 0.042 0.115 3.62 2.688 1.763 143.9 5.72

A$T*
O2ðwHÞ N6H0/N3 0.029 0.086 7.38 2.974 1.953 176.4 5.38 8.23

O2H/N7 0.059 0.100 4.48 2.664 1.657 168.0 10.16
TSA$T*O2(wH)4A*N7$T(wH) N7H/O2 0.067 0.152 3.15 2.615 1.547 176.3 12.95** 9.46
A*
N7$TðwHÞ N3H/N6 0.060 0.092 5.58 2.743 1.663 175.7 10.97 10.35

N7H/O2 0.051 0.145 3.17 2.689 1.641 176.3 8.09
A$T(rH) N6H0/O2 0.022 0.082 4.95 2.994 1.986 170.9 3.90 5.67

N3H/N7 0.041 0.099 5.80 2.856 1.815 176.9 7.34
C8H/O4 0.005 0.017 7.97 3.517 2.825 121.9 0.86*

TSA
þ$T�

A$TðrHÞ4A$T*O2ðrwHÞ N6+H0/O2� 0.016 0.066 0.24 3.064 2.083 161.1 4.06 3.41
N7+H/O2� 0.042 0.114 5.64 2.757 1.757 157.6 5.05
N7+H/N3� 0.028 0.098 49.28 2.758 1.982 128.1 3.02

A$T*
O2ðrwHÞ O2H/N7 0.058 0.100 4.73 2.682 1.665 179.7 9.20 5.10

C8H/N3 0.013 0.043 2.29 3.131 2.407 123.1 2.21*
TSA$T*O2(rwH)4A*C8$T(rwH) N7H/O2 0.043 0.129 3.56 2.698 1.735 151.8 7.70** 4.79
A*
C8$TðrwHÞ N7H/O2 0.029 0.104 3.92 2.829 1.889 151.4 4.61 6.47

N3H/C8� 0.034 0.061 4.31 2.984 1.973 160.5 8.12
TSA

þ$T�
A$TðrHÞ4A$T*ðrwHÞ N6+H0/O2� 0.023 0.078 1.54 2.902 2.011 143.9 3.51 4.80

N6+H0/N3� 0.013 0.045 127.55 3.263 2.318 152.9 1.65
N7+H/N3� 0.023 0.078 82.90 2.987 2.047 146.7 2.64
N7+H/O4� 0.041 0.113 4.62 2.686 1.776 141.6 5.65

A$T*(rwH) N6H0/N3 0.027 0.082 7.62 3.000 1.981 175.7 5.09 7.36
O4H/N7 0.052 0.102 4.48 2.702 1.708 166.4 9.18

This journal is © The Royal Society of Chemistry 2018 RSC Adv., 2018, 8, 13433–13445 | 13439
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Table 2 (Contd. )

Complex AH/B H-bond ra Drb 1003c dA/B
d dH/B

e :AH/Bf EAH/B
g mh

TSA$T*(rwH)4A*N7$T(rwH) N7H/O4 0.070 0.151 2.34 2.603 1.529 175.7 13.76** 8.37
A*
N7$TðrwHÞ N3H/N6 0.062 0.090 5.55 2.731 1.648 174.5 11.26 9.42

N7H/O4 0.055 0.147 2.33 2.671 1.619 175.8 8.61

a The electron density at the (3,�1) BCP of the H-bond, a.u. b The Laplacian of the electron density at the (3,�1) BCP of the H-bond, a.u. c The
ellipticity at the (3,�1) BCP of the H-bond. d The distance between the A and B atoms of the of the AH/B H-bond, Å. e The distance between
the H and B atoms of the AH/B H-bond, Å. f The H-bond angle, degree. g Energy of the H-bond, calculated by Iogansen's,119 Espinose–Molins–
Lecomte125,126 (marked with an asterisk) or Nikolaienko–Bulavin–Hovorun127 (marked with double asterisk) formulas, kcal mol�1. h The dipole
moment of the complex, D.
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Three other TSs� TSA
þ$T�

A$TðrWCÞ4A$T*ðrwWCÞ;
TSA

þ$T�
A$TðHÞ4A$T*O2ðwHÞ and TSA

þ$T�
A$TðrHÞ4A$T*ðrwHÞ; in which the

T� deprotonated by the N3H imino group, is shied towards
major groove of DNA relatively A+, are joined by the participa-
tion of the four H-bonds: (A)N6+H/O2�(T) (2.86), (A)N6+H/
N3�(T) (2.82), (A)N1+H/N3�(T) (2.92) and (A)N1+H/O4�(T)
(4.45 kcal mol�1); N6+H0/O4� (3.64), N6+H0/N3� (1.84),
N7+H/N3� (2.36) and N7+H/O2� (5.72 kcal mol�1); N6+H0/
O2� (3.51), N6+H0/N3� (1.65), N7+H/N3� (2.64) and N7+H/
O4� (5.65 kcal mol�1). Two H-bonds have increased ellipticity
for each of these TSs – (A)N6+H/N3�(T) (13.99) and (A)N1+H/
N3�(T) (32.39); N6+H0/N3� (67.29) and N7+H/N3� (382.35);
N6+H0/N3� (127.55) and N7+H/N3� (82.90), accordingly
(Fig. 1, Table 2).

Values of the Gibbs free energies of activation of the
processes of the dipole-active tautomerization of the investi-
gated A$T DNA base pairs are quite high and lie within the range
27–33 kcal mol�1 under normal conditions (Fig. 1, Table 1).

The A$T*
O2ðrwWCÞ, A$T*(rwWC), A$T*(wH), A$T*

O2ðwHÞ,
A$T*

O2ðrwHÞ and A$T*(rwH) base mispairs, which are the prod-
ucts of the mutagenic tautomerization of classical A$T DNA
base pairs, represent themselves wobble structures with plane
symmetric architecture (Cs symmetry), stabilized by two anti-
parallel intermolecular H-bonds. They are noticeably more
stable than the starting A$T(rWC), A$T(H) and A$T(rH) DNA
base pairs and have quite high relative energies, lying in the
range 19–28 kcal mol�1, and hence – insignicant population
(#1.2 � 10�14 under normal conditions). It is interesting to
note, that these wobble base mispairs are guratively speaking
“terminal stations” on the way of the mutagenic tautomeriza-
tion of the investigated DNA base pairs, since they do not tau-
tomerise further (Fig. 1, Tables 1 and 2).

Really, the A*
N7$TðwHÞ and A*

N7$TðrwHÞ complexes, which are
formed from the A$T*

O2ðwHÞ and A$T*(rwH) base pairs via the
DPT, respectively, return without any barrier into the initial
pairs due to the asynchronous DPT along the intermolecular H-
bonds via the TSA$T*O2(wH)4A*N7$T(wH) and TSA$T*(rwH)

4A*N7$T(rwH), accordingly. The same situation also takes place
for the complex by the participation of the yilidic form20,39,129 of
A – A*

C2$TðrwWCÞ. Two other A*
C8$TðwHÞ and A*

C8$TðrwHÞ
complexes involving yilidic forms of the A DNA base, which are
formed from the A$T*(wH) and A$T*

O2ðrwHÞ by the asynchronous
DPT along the intermolecular H-bonds, one of which (A)C8H/
13440 | RSC Adv., 2018, 8, 13433–13445
N3(T) H-bond is non-canonical,123,124 are short-lived (�0.1 ps),
dynamically-unstable systems. Low-frequency intermolecular
normal vibrations, lying in the range 20–83 cm�1, could not
develop during their lifetimes. From the other side, the lifetime
of the A*$T(rwWC) complex (1.7 ps), which is formed from the
A$T*(rwWC) pair by the asynchronous DPT along the intermo-
lecular H-bonds, is signicantly less than the time (10�9 s)27,28,
spent by the DNA-polymerase for the forced dissociation of the
complementary pairs of the DNA bases into the monomers. As
a result, this complex “slips out of its hands” and canonical
tautomeric status of the A DNA base does not change (Table 1).

Base pairs remain plane symmetric structures during the
entire PT and DPT tautomerization processes along the IRC.
The methyl group of the T DNA base does not change its
orientation during these tautomerization processes via the PT
and DPT. Moreover, the heterocycles of the A and T DNA bases
remain planar, despite their ability for the out-of-plane
bending130–133 (Fig. 1).

Interestingly, that the total energy of the intermolecular H-
bonds only partially contributes to the electron energy of the
monomers interactions among all without any exceptions H-
bonded structures investigated in this work (see Fig. 1). In
particular, in the TSs of mutagenic tautomerization, which are
ion pairs, contribution of the H-bonds into the energy of their
stabilization consist only 10–12% in comparison with the
background of strong electrostatic (Coulomb) interactions. In
other complexes it is much higher – from 67 to 86% (Fig. 1).
These regularities agree well with the previously reported data
for the other H-bonded pairs of nucleotide bases.31–42
Conclusions

So, revealed microstructural mechanisms of the mutagenic
tautomerization of the A$T DNA base pairs provide the gener-
ation of the mutagenic tautomers of only one among two DNA
bases, in particular T DNA base, within the pair of bases.
However, this generation is much more slower in comparison
with the classical A$T(WC) DNA base pair and does not provide
adequate population of the mutagenic tautomers (10�9 to
10�11).

Finally, these results lead us to a conclusion, which is very
interesting from an evolutionary point of view:6,80,81 among all
classical pairs of the DNA bases only theWatson–Crick A$T(WC)
This journal is © The Royal Society of Chemistry 2018
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DNA base pair can pretend on the role of the building block of
the genetic material – DNA macromolecule with antiparallel
strands, able for the self-development during large time
intervals.
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