Adsorption of tetrakis(4-sulfophenyl)porphyrin onto liposomal surfaces composed of neutral diacylphosphatidylcholine and release by cyclodextrin†

Yuki Tsuchiya, Toshimi Nakaya, Tomoyuki Kakigi, Kouta Sugikawa and Atsushi Ikeda*†

Anionic tetrakis(4-sulfophenyl)porphyrin (TPPS) interacts with liposomal surfaces composed of neutral diacylphosphatidylcholine at high lipid concentrations. TPPS interacted with liposomal surfaces through four contact points. The association constant was obtained to be 9.0×10^5 M$^{-4}$. TPPS was peeled off the liposomal surfaces by the addition of cyclodextrin.

Introduction

The adsorption of compounds such as polymers and nanoparticles onto the cell surface is important in developing drug carriers1–5 and functional materials.6–12 Recently, several groups reported that polyelectrolytic biomacromolecules, such as DNA or nanoparticles with anionic surfaces, were able to adsorb onto liposomal surfaces composed of neutral diacylphosphatidylcholine (PC).1–12 Although the details of the interactions remain unclear, multipoint interactions might exist between the negative charges of these compounds or materials and the positive charge N^+ of the P^-N^+ (phosphorous–nitrogen) dipole of PC.13,14 Recently, we showed that 5,10,15,20-tetrakis(4-sulfophenyl)porphyrin (3) (Fig. 1) interacts with the liposomal surface by formation of one-dimensional self-assembled structures (J-aggregates) under acidic conditions.15,16 In contrast, neutralization of the solution deformed the porphyrin J-aggregates, leading to release of 3 from the liposomal surface.15,16 These interactions are important not only for development of novel functional materials by using liposomes, but also for internalization into cells by endocytosis as the first step of intracellular uptake. In this report, 3 was found to interact with liposomal surfaces composed of neutral lipids at high liposome concentrations without the formation of porphyrin J-aggregates (Scheme 1A). Furthermore, 3 was released from the liposomal surfaces by addition of trimethyl-β-cyclodextrin (TMe-β-CDx) (Fig. 1, Scheme 1B).

![Fig. 1 Compound structures and schematic illustrations of the 3-TMe-β-CDx complex.](https://example.com/fig1.png)

Scheme 1 Schematic illustrations of (A) adsorption of 3 on the liposomal surface, (B) exfoliation of 3 by TMe-β-CDx and (C) no interaction between the 3-TMe-β-CDx complex and a liposome.

Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan

† Electronic supplementary information (ESI) available: Experimental procedures and UV-vis absorption and 1H NMR spectra. See DOI: 10.1039/c8ra01411f
Results and discussion

Interaction between anionic porphyrin and neutral lipid

The interactions between anionic porphyrin 3 and the neutral lipid 1 [1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), Fig. 1] were investigated. Concentration dependent UV-vis absorption spectra of 3 were measured by the addition of liposomes composed of 1 (liposomes-1) (Fig. 2) and the red shift in the Soret band was observed at 20 °C (413 → 415.5 nm, ΔAbs = 2.5 nm). The red shift was not because of the formation of one-dimensional self-assembled structures because: (i) 3 cannot form self-aggregates under neutral conditions because protonation of 3 is essential for self-association, and (ii) the shift value is too small for self-aggregates because the Soret band of the porphyrin J-aggregates displayed a significant red shift to 491 nm.15–18 If sulfo groups of 3 interact with ammonio groups of 1 on the liposomal surface, the addition of cationic lipids in the liposome should facilitate the formation of strong interactions between anionic 3 and the liposomal surface via electrostatic interactions.19–21 Therefore, a cationic lipid (2) was mixed with lipid 1 in the liposomes ([1] : [2] = 7 : 3 (mol mol⁻¹)). As shown in Fig. 2A (blue line), the λₘₐₓ of 3 (419 nm) was red-shifted by 6 nm when compared with the results obtained by 3 alone in the absence of liposomes [Fig. 2A (black line)]. Therefore, the red shift suggests an interaction between 3 and lipid 1. The shifts of Δλₘₐₓ in the Soret band of 3 were plotted against the concentration of 1 in Fig. 2B. We were not able to determine the association constant between 3 and lipid 1 from a curve in Fig. 2B. The association constant determined from 1H NMR spectrum is described below. In contrast, we investigated interactions between cationic porphyrin 4 (Fig. 1) and lipid 1. Although the absorbance of 4 increased because of the light scattering of liposomes-1, no shift of Δλₘₐₓ in the Soret band of 4 was observed (Fig. S1†), indicating that 4 did not interact with the liposomal surface.

Existence of porphyrin on the liposomal surface

C₆₀ is known to act as a quencher in liposomes.22 To confirm that 3 exists on the liposomal surface, we measured fluorescence quenching of 3 by C₆₀ in lipid-membrane-incorporated C₆₀ (LMIC₆₀, Fig. 3). The presence of C₆₀ led to a fluorescence quenching of 48%, indicating that 3 exists in the neighborhood of C₆₀.

Form of porphyrin on the liposomal surface

In the ¹H NMR spectra, 3 gives rise to two peaks arising from the phenyl protons in the ortho and meta positions because of the D₄h symmetry of 3 (Fig. 4A and S2A†). Although the peak assigned to the phenyl protons in the meta position (8.2 ppm) appeared as a sharp doublet, the corresponding peak for the protons in the ortho position (7.7 ppm) was broader and this line-broadening was ascribed to self-aggregation of 3.23,24 In Fig. 4B, the phenyl protons in the ortho positions of 3 were observed as a pronounced broad peak (grey circle).21 In contrast, when 3 interacted with liposome-1, two pairs of phenyl protons in the ortho and meta positions appeared in a 1 : 1 ratio [Fig. 4B (red circles) and S2B†]. The result suggests the following three models for the interaction between 1 and 3: C₄ᵥ, C₂ᵥ, and C₃v symmetries, depending on the interaction on the liposomal surface.
Association constant between anionic porphyrin and neutral lipid

As shown in Scheme 2A, porphyrin 3 interacted with the liposome surface consisted of lipids 1 through four point interactions. Therefore, the equilibrium is defined as (1):

$$3 + 4 \cdot 1 \rightleftharpoons 3 - 4 \cdot 1$$ (1)

The concentrations of free 3 and 3 on the liposomal surface were determined by the peak intensities in Fig. 4B. When these values were substituted into eqn (2), we obtained the association constant (K_a) as 9.0×10^5 M$^{-1}$.

$$K_a = \frac{3 - 4 \cdot 1}{3 \cdot [1]^2}$$ (2)

Exfoliation of porphyrin from the liposome surface by cyclodextrin

To control the association–dissociation of 3 onto the liposomal surface, TMe-β-CDx was added to the mixture of 3 and
liposome-1. After adding TMe-β-CDx, although the λ_{max} of the Soret band of 3 is barely shifted [i.e., 415 to 416 nm], the λ_{max} in the Q-band of 3 is shifted from 517 to 511 nm. These λ_{max} were the same as that observed for the 3-TMe-β-CDx complex (416 and 511 nm) (Fig. 2A, green and orange). Furthermore, peaks were observed in the 1H NMR spectrum for the 3-TMe-β-CDx complex (Fig. 4C and S2C†). The results show that most of 3 peeled off the liposomal surface and had formed a complex with two TMe-β-CDxs (Scheme 1B).

Conclusions

In summary, anionic 3 was adsorbed onto liposomal surfaces composed of neutral lipid 1 at high lipid concentrations. The interaction of 3 with 1 was via four contact points. In contrast, the 3-TMe-β-CDx complex cannot be adsorbed onto liposomal surfaces because 3 interacts with 1 by only a single point and is encapsulated by two TMe-β-CDxs. Addition of TMe-β-CDx caused the release of 3 from the liposomal surface and complex formation with two TMe-β-CDxs. Consequently, the association–dissociation of 3 onto the liposomal surfaces can be controlled by the addition of TMe-β-CDx.

Experimental

Experimental materials

Trimethyl-β-cyclodextrin (TMe-β-CDx) and 5,10,15,20-tetrakis(4-sulfophenyl)porphyrin (3) were purchased from Wako Pure Chemical Industries Ltd (Tokyo, Japan) and Tokyo Chemical Industries Co., Ltd (Tokyo, Japan), respectively. 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC, 1) was obtained from Funakoshi Co., Ltd (Tokyo, Japan). Compound 2 was prepared according to the method described previously.²⁷

Phosphate buffer

A phosphate buffer was prepared by dissolving a mixture of Na$_2$HPO$_4$·\cdotH$_2$O (390 mg, 2.50 mmol), Na$_3$PO$_4$·12H$_2$O (181 mg, 0.50 mmol) and K$_2$SO$_4$ (1.70 mg, 9.74 mmol) in pure water or D$_2$O (100 mL), to reach a final pH of 6.5 at 23 °C.

Preparation of liposome-1 and liposome-1–2

An appropriate amount of 1 or a mixture of 1 and 2 ([1]: [2] = 7:3 mol mol$^{-1}$) was dissolved in chloroform. The solvent was evaporated under a gentle stream of nitrogen, followed by a period under vacuum to remove any traces of solvent. The resulting thin lipid films were hydrated on the wall of the vial above the phase transition temperature with an appropriate amount of phosphate buffer. The hydrated materials were subjected to eight freeze–thaw cycles (−195 and 50 °C) to give unilamellar vesicles, which were extruded 11 times through 0.05 μm pores using a LiposoFast miniextruder from Avestin (Ottawa, Canada) above the phase transition temperature. The resulting liposomes were uniform in size with a diameter of approximately 80 nm. The final lipid concentration was 3.0 mM.

Preparation of the 3-TMe-β-CDx complex

Compound 3 (5.00 mg, 5.26 x 10$^{-6}$ mol) and TMe-β-CDx (15.0 mg, 1.05 x 10$^{-5}$ mol) were placed in an agate capsule with two agate-mixing balls. The resulting mixture was agitated vigorously at 30 Hz for 20 min using a high-speed vibration mill (MM 200; Retsch Co., Ltd., Haan, Germany). The solid mixture was suspended in either phosphate buffer or D$_2$O–phosphate buffer (1.5 mL) to produce a dark purple emulsion. Subsequent centrifugation (18 000 x g, 25 °C, 20 min) removed non-dispersed 3 from the solution. The concentration of 3 in the 3-TMe-β-CDx complex was determined to be 0.03 mM by measuring the absorbance of the solution at λ_{max} in water. The molar absorption coefficient for the water-soluble 3-TMe-β-CDx complex is $\varepsilon_{416} = 3.79 x 10^5$ dm3 mol$^{-1}$ cm$^{-1}$.

Spectrophotometric assay

The absorbance spectra were scanned using a UV-2550 spectrophotometer (Shimadzu Corporation, Kyoto, Japan). Fluorescence spectra were obtained using an LS 55 luminescence spectrometer (Perkin-Elmer, Waltham, MA, USA). The excitation and emission wavelengths were 517 and 600–750 nm, respectively.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by a JSPS KAKENHI Grant-in-Aid for Scientific Research (B) (Grant No. JP16H04133) and a Grant-in-Aid for Challenging Exploratory Research (Grant No. JP16K13982). We thank the Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Notes and references

2. F. Zhao, Y. Zhao, Y. Liu, X. Chang, C. Chen and Y. Zhao, Small, 2011, 7, 1322–1337.