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It has now become clear that in silico prediction of ADME (absorption, distribution, metabolism, and
elimination) characteristics is an important component of the drug discovery process. Therefore, there
has been considerable interest in the development of in silico modeling of ADME prediction in recent
years. Despite the advances in this field, there remains challenges when facing the unbalanced and high
dimensionality problems simultaneously. In this work, we introduce a novel adaptive ensemble
classification framework named as AECF to deal with the above issues. AECF includes four components
which are (1) data balancing, (2) generating individual models, (3) combining individual models, and (4)
optimizing the ensemble. We considered five sampling methods, seven base modeling techniques, and
ten ensemble rules to build a choice pool. The proper route of constructing predictive models was
determined automatically according to the imbalance ratio (IR). With the adaptive characteristics of AECF,
it can be used to work on the different kinds of ADME data, and the balanced data is a special case in
AECF. We evaluated the performance of our approach using five extensive ADME datasets concerning
Caco-2 cell permeability (CacoP), human intestinal absorption (HIA), oral bioavailability (OB), and P-
glycoprotein (P-gp) binders (substrates/inhibitors, PS/PI). The performance of AECF was evaluated on
two independent datasets, and the average AUC values were 0.8574-0.8602, 0.8968-0.9182, 0.7821-
0.7981, 0.8139-0.8311, and 0.8874-0.8898 for CacoP, HIA, OB, PS and PI, respectively. Our results show
that AECF can provide better performance and generality compared with individual models and two
representative ensemble methods bagging and boosting. Furthermore, the degree of complementarity
among the AECF ensemble members was investigated for the purpose of elucidating the potential
advantages of our framework. We found that AECF can effectively select complementary members to
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the late-stage development phase. The early ADME profiling
approaches allow for the prioritization of drug candidates over
their biopharmaceutical properties. With the advances in

Introduction

Nowadays, it is important to introduce early absorption,

distribution, metabolism and excretion (ADME) profiling in
parallel with optimization of efficacy in drug discovery. The
poor ADME properties are largely accountable for drug failure in
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combinatorial chemistry and high-throughput techniques,
large libraries of chemicals are available, and can be screened at
higher throughput. In silico modeling, as compared to the
traditional in vitro/vivo test, is lower-cost and time-saving. Over
the past few decades, more robust models have been estab-
lished to predict various ADME properties, including
membrane permeability,"* intestinal absorption (IA),>* oral
bioavailability (OB),>” human ether-a-go-go related gene
binders,*** as well as transporter binders."»'> Most of these
models were based on quantitative-structure active relationship
(QSAR) approach, ranging from simple multiple linear regres-
sion to complex machine learning techniques, such as partial
least squares discriminant analysis (PLSDA),** naive bayes (NB)
classifier,’** Kohonen self-organizing maps,"”® k nearest
neighbor (KNN),>**' artificial neural networks (NNET),
support vector machine (SVM),>**'"* and random forest
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(RF).>'*'” However, there remain some challenges when devel-
oping these methods. First, unbalanced situations often occurs
in ADME data due to the publications biased to the favorable
property. It refers to datasets in which samples from some
classes greatly outnumber samples from others.?® For the binary
ADME classification, the number of unfavorable compounds is
much less than favorable ones. Such skewed class distribution
has detrimental effects on the performance of conventional
classifiers which are driven by accuracy. Several studies
balanced data sets by changing the classification cutoff. For
instance, Xue et al.>* used 70% as threshold to classify the good
IA and poor IA, and 80% was used to differentiate the good OB
and the poor OB.” However, these cutoff values may be
unreasonable in practice,” consequently limiting the applica-
tion of these predictive models in drug design. In addition,
a large number of molecular descriptors were calculated to
quantitatively define structural and physicochemical properties
when modeling. This high dimensionality makes unbalanced
classification hard.”* The samples of minority class tends to be
sparse as dimensionality increasing, leading to amplifying the
issue of skewed class distribution.”® Some studies****® reported
that the classification performance heavily degenerated when
using conventional classifiers for high-dimensional and
unbalanced datasets.

In order to address the unbalanced problem, a number of
techniques can be carried out. These methods can be divided
into two main categories: the data level and the algorithm
level.*® The data level methods, also named sampling methods,
preprocess the training data to make them balanced by
increasing the minority class compounds, eliminating the
majority class compounds, or the hybrid strategy. Some of the
most popular ones are such as oversampling and under-
sampling. Sampling methods were effective in solving the class
unbalanced problem. However, the benefits of these preprocess
techniques may vary in characteristics of datasets.”* Further-
more, some potential useful data may be omitted when
modeling on a very small balanced subset from the original data
by some methods such as the undersampling based
approaches.*® The algorithm level methods reduce the sensi-
tiveness to class unbalance by modifications of existing classi-
fication algorithms. These cost-sensitive methods including the
modified SVM," RF,** and classification and regression tree
(CART)* were successfully used to handle the unbalanced
problem of predicting IA. Recently, Hai's study*® showed that
sampling based methods displayed better performance than
the cost-sensitive methods for Caco-2 cell permeability (CacoP)
prediction. Moreover, it is not easy to achieve the accurate
misclassification cost when applying the cost-sensitive
methods.** Some recent work*** found that both the data
level and the algorithm level were problem dependent, and the
selection of proper strategy was largely based on data
characteristics.

Ensemble methods have gained popularity in recent years,
and they have been used to handle the unbalanced problem in
many studies.***” The general idea of ensemble methods lies in
the aggregation from several individual models in an attempt to
obtain substantial improvement over all individual ones.*®
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Several studies'*****° have reported the better performance
achieved by ensemble models for ADME prediction. With
regard to the construction of ensemble models, some important
issues need to be taken into account. The performance of
ensemble models is dependent on the choice of constituent
individual models. Both the accuracy and the diversity of indi-
vidual models should be considered.*® Then, how to generate
such individual models and how to combine these models
should be investigated in the ensemble. When facing high
dimensionality simultaneously, it becomes more complex. On
the other hand, the larger ADME datasets with higher quality
are also required to enhance the generalization ability of the
prediction models.

In this paper, we focus on the ensemble based approaches.
We attempt to build an adaptive ensemble -classification
framework (AECF) for different kinds of ADME datasets. With
special care to the above issues, AECF consists of four main
phases: (1) data balancing, (2) generating individual models, (3)
combining individual models, and (4) optimizing the ensemble.
It is noted that the performance of an ensemble model can be
affected by the way the modeling data are selected, the options
of the base classifiers, and the final ensemble rules. The design
of AECF may be formulated as a problem in which we look for
the optimal combination for constructing a specific ensemble
model. The adapting options to frame AECF are from a total
selection pool containing five sampling methods, seven base
classifiers, and ten ensemble rules. In the first phase, multiple
balanced training datasets were created by a specific sampling
method. Subsequently, the initial pool of multiple individual
models were generated by a genetic algorithm (GA) coupled
with a specific classifier from these balanced subsets in the
second phase. Then a specific ensemble rule was used to
aggregate the classification results of these individual models,
and the ensemble model was optimized by an adaptive proce-
dure in the following phases. To assess the effectiveness of our
approach, we constructed five updated and different ADME
datasets from multiple resources, and AECF was employed to
perform the prediction task. The results show that AECF ach-
ieved the best performance compared to the individual
prediction models, and outperformed the conventional
ensemble based techniques including bagging and boosting.
The main contributions of our work include:

(1) Five extensive available ADME datasets concerning
CacoP, human intestinal absorption (HIA), oral bioavailability
(OB), and P-glycoprotein (P-gp) binders (substrates/inhibitors)
were constructed, which facilitate to enhance the generaliza-
tion ability of AECF.

(2) with specially designed for the unbalanced problems,
many crucial issues including choice of sample balancing
methods, choice of base classifiers, choice of feature space,
choice of aggregation rules, and choice of pruning individual
models have been taken into account during the development
of AECF. The final selection is adaptively based on the data
characteristics. Thus, the adaptive characteristics of AECF make
it possible to work on the different types of ADME data, and the
balanced ADME data is a special case in AECF.

n
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(3) The proposed AECF is a GA based ensemble method. In
our framework, each individual model is built on a random
balanced subset from the original training data by an inde-
pendent GA run. Due to the stochastic of both GA and data
balancing methods, the diverse and informative feature space
can be achieved during evolution, which in turn, maintains the
diversity and accuracy of the base classifier. Consequently, the
robustness and quality of the prediction task can be improved.

(4) An adaptive procedure was used to optimize the selection
of individual models for ensemble after a fitness function of
individual models was designed by their diversity and accuracy.
After the optimization procedure, the ensemble size was auto-
matically decided, and the better performance was achieved.

Methods and materials
Data source

In our framework, five extensive ADME data sets containing
diverse compounds from multiple resources were used for
binary classification. The CacoP data set was assembled from
a set of 1387 compounds mainly from 13 references. The
permeability cutoff value (P,p, = 2 x 107° cm s~ ') was used.*!
The compounds with P,p, <2 x 10~° cm s~ " were considered as
unfavorable permeability (CacoP—) group, and the others were
labelled as CacoP+. As a result, this data set comprised 922
CacoP+ compounds and 465 CacoP— compounds.

The HIA data set was collected from 11 references. A
reasonable cutoff value of 30% (ref. 19, 23, 42 and 43) for HIA
was selected to divide the data set into unfavorable HIA (HIA—)
and favorable HIA (HIA+). This leads to the data set of 734
compounds, comprising 632 HIA+ compounds and 102 HIA—
compounds.

The OB data set comprising 1076 compounds was assembled
from 7 references. Since the OB of most compounds is mainly
dependent on absorption, the OB is lower than HIA. In this
work, the cutoff value for classification was set to OB =
20%.>>*** The compounds with OB < 20% were considered as
lower OB (OB—) group, and the others were labelled as OB+.
This resulted in the data set comprising 809 OB + compounds
and 267 OB— compounds.

The P-gp substrates (PS) data set was derived from 138
references, and the same class assignments provided on the
original citations was used. This leads to the data set of 894
compounds, comprising 551 P-gp substrates and 343 P-gp
nonsubstrates.

The P-gp inhibitors (PI) data set of 2079 compounds that
includes 1240 P-gp inhibitors and 839 P-gp noninhibitors was
compiled from our previous work.'* All compounds in five data
sets represented by SMILES format are available in ESI
Table S1.t

Calculations of molecular descriptors

To quantitatively define structural and physicochemical prop-
erties, a large number of molecular descriptors were calculated
in this work. For each data set, all the two-dimensional (2D)
molecular descriptors and six types of molecular fingerprint
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sets including MACCS fingerprints, estate fingerprints,
substructure fingerprints, Pubchem fingerprints, atom pairs 2D
fingerprints, and Klekota-Roth fingerprints from PaDEL*
(version 2.20) software were used. Moreover, eight drug-likeness
descriptors (DLDs) generated by desirability functions and their
weighted fusion presented by Bickerton*® were also calculated.
As a result, 8526 descriptors were calculated for each
compound. The descriptions of the descriptors are summarized
in ESI Table S2.7

Data pre-processing and splitting

The same preprocessing strategy reported in our previous
study™ was employed to reduce the number of molecular
descriptors for each data set. The near-zero variance descriptors
were recognized and discarded. The highly correlated descrip-
tors were sequentially removed until all pairwise correlations
were below 0.85. The continuous descriptors with highly skewed
distribution were Box-Cox transformed so that the skewness
values were below 2.* Finally, all continuous descriptors were
centered and scaled to unit variance for further analysis.

To choose representative compounds for modeling and ensure
a sufficient number of compounds for validation, a two-step data
splitting was performed by duplex algorithm*® for each data set. In
the first step, the data set was divided into two partitions of equal
size, of which one was stored as training set (TRS), and then the
other was further split into two subsets of equal size, which were
served as test set (TES) and validation set (VAS), respectively. The
division was carried out for each individual class separately in
order to keep the same class distribution in different subsets. This
resulted in TRS, TES, and VAS composed of 50%, 25%, and 25% of
compounds for each data set, respectively.

Adaptive ensemble classification framework (AECF)

AECF is a GA based ensemble framework. The current work is
strongly motivated by previously published approaches** for
ensemble construction. Diversity and quality are two important
issues for the performance of ensemble models. When handling
the unbalanced problems, AECF maintains the diversity in both
the sample space and the feature space. It is also necessary to
note that in our framework the model construction process was
based only on TRS, the adaptive selection was based on TES, and
VAS was only used to evaluate the final generalization capabil-
ities and performance of the optimal ensemble models. The
overview of our proposed framework is illustrated schematically
in Fig. 1. It can be seen that the classification framework
comprises four main phases as follows.

(1) Data balancing. After the data set was split, the skewness
of class distribution of TRS was measured by the imbalance
ratio (IR). IR is defined as the ratio of the number of compounds
in the majority class to the number of compounds in the
minority class.* In this framework, the TRS with IR greater than
1.5 was considered as an imbalanced data, and the data
balancing methods were applied. Otherwise, to reduce the
computational cost, the TRS was directly input to GA. The pool
of data balancing methods includes the following five sampling
techniques.

RSC Adv., 2018, 8, 11661-11683 | 11663
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Fig.1 Workflow of the AECF. IR, imbalance ratio. US, undersampling. OS, oversampling. USBO, undersampling combined with bootstrapping.
ClusterBal, cluster based balancing. RF, random forest. MLHD, maximum likelihood classifier. NC, nearest centroid classifier.
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e Undersampling (US): the majority class compounds are
randomly eliminated to match the size of the minority class.

e Oversampling (OS): the minority class compounds are
randomly sampled with replacement to match the size of the
majority class.

e Synthetic minority oversampling technique (SMOTE): the
synthetic samples for the minority class are created based on
the k nearest neighbors of the same class, and the number of
generated samples depends on the difference in size of the two
classes. In this work, five nearest neighbors of the minority class
were used to generate the synthetic samples.

e Undersampling combined with bootstrapping (USBO): this
is a hybrid sampling method. The majority class compounds are
undersampled and the minority class compounds are sampled
by bootstrapping.

e Cluster based balancing (ClusterBal): this technique was
presented by Sun et al** The idea of ClusterBal is that
a balanced data set can be obtained by the combination of the
subgroup of the majority class and the minority class. In this
work, a k-means algorithm was employed to cluster the majority
class into K groups. K depended on the IR, and K equaled the
rounded IR to integer and no smaller than 2. Then one of these
groups was randomly selected to be combined with the minority
class, and the new balanced data set was constructed.

Further, nonsampling (NS) as a baseline method, which
means that no sampling methods are applied, was also brought
into the pool. Thus, after the number of balancing was pre-
defined, multiple balanced subsets from original TRS could be
acquired. However, when the TRS was judged as a balanced
dataset, the multiple replications of TRS were created.

(2) Generating individual models. After data balancing,
multiple balanced training sets were derived. Considering high
dimensionality, a genetic algorithm coupled with a specific
classifier was applied for simultaneous feature selection and
individual classifier design. For each balanced training subset,
the sequence of steps of GA in current scheme is as follows.

(i) Initial population of chromosomes with random descrip-
tors: random descriptor sets were created from the original
descriptor space. These selected descriptors made up a pop-
ulation of chromosomes, and were used as initially modelling
feature vectors to develop base classifiers. Choosing too few
descriptors can damage the performance of base classifiers,
while using too many descriptors can lead to high computa-
tional cost as well as the potential for overfitting. In this study,
the number of the selected descriptors was fixed at one twenty-
fifth of the number of training instances and no larger than 20
during the GA evolution, and the population size was set to 20.

(ii) Chromosomes evaluation using fitness function: an
internal 5-fold cross-validation (CV) was implemented to eval-
uate chromosomes' fitness during GA runs, and the AUC score
(the area under the ROC curve) was taken as the fitness score of
the chromosomes. The training set was randomly split into 5
non-overlapping subsets with equal size according to their
categories. In each fold, one subset was held out for validation,
and the rest were used to train the base classifier. Then this
predictive model was applied to the validation subset. This
procedure was repeated until every subset was used for

This journal is © The Royal Society of Chemistry 2018
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Table 1 The abbreviations and descriptions of base classifiers

Abbreviation Description Package
FDA Flexible discriminant analysis mda®?
SVM Support vector machine kernlab®?
with polynomial kernel
NNET Neural network nnet>*
RF Random forest randomForest’”
MLHD Maximum likelihood Galgo®"
NC Nearest centroid Galgo®*
KNN k-Nearest neighbors Galgo®*

validation. The pool of base classifiers includes seven popularly
used machine learning techniques. The detailed information of
these techniques is listed in Table 1, and the default parameters
provided by the tool was used to construct classifiers.

(iii) Design of the GA operator: chromosomes with higher
fitness in each generation were selected and then updated by
the genetic operators: crossover and mutation. These proce-
dures were repeated until the maximum generation was
reached. In this study, the maximum generation was set to 100,
and the other GA parameters were default according to Galgo
package.*

At the conclusion of GA search, the informative descriptor
subset with the highest fitness in the last generation was saved
for each balanced training subset, and the corresponding
individual model was built on the discriminative descriptor
subset using a specific classifier. As a result, multiple individual
models were achieved. There are two main advantages of using
multiple GA runs in our scheme. First, the feature space can be
reduced to improve the accuracy of base classifiers, resulting in
individual models with high performance. Second, due to the
stochastic of both the GA and data balancing methods, running
the algorithm from a different training subset from original
data set each time canyield a different discriminative descriptor
subset, which promotes the diversity among individual models.
Therefore, AECF is able to yield multiple individual models as
accurate and diverse as those obtained with wrapper-based
feature selection and data balancing.

(3) Combining individual models. Another important issue
in the development of ensemble models is how to combine
individual models. There are various schemes to aggregate the
outputs of individual models. In our framework, ten alternative
rules were investigated for improving the performance of the
fusion phase. They constitute the pool of ensemble rules in
AECF, and their detailed strategies and descriptions are shown
in Table 2. These rules are all based on predicted probabilities
of each class, and can be divided into two groups. Max Rule,
Min Rule, Prod Rule, Sum Rule, and Vote Rule directly use
predicted probabilities for aggregation. While MaxD Rule,
MinD Rule, ProdD Rule, SumD Rule, and VoteD Rule are
distance based rules.*® These rules use the inverse of average
distance to adjust predicted probabilities. For binary classifi-
cation, suppose that the class labels are G; and G,. When N
individual models are applied for a new compound, N predicted
probabilities of each class can be derived. Let P;; and P,; denote

RSC Adv., 2018, 8, 11661-11683 | 11665
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Rule Strategy Description
Max S; = argmax; =;=yP1;, S, = argmax; =;=xP2; Use the maximum predicted probability of N
individual models for each class label
Min Sy = argmin, —;,=yP1;, S, = argming —;=xP2; Use the minimum predicted probability of N
individual models for each class label
d N N Use the product of predicted probability of N
Pro = HPI,-, Sy = Hsz individual models for each class label
i-1
N For the ith model, if P;; = P,;, class G1 gets a vote
1 x= y ’ 1i 21y g ’
Vote Sy = Zf P1;,P2;), S, = Zf P2;, P1;), where f(x,y) = {0 x<y otherwise, class G2 gets a vote
Use the summation of predicted probability of N
Sum Sp = Z Pl1;, 8 = Z P2; individual models for each class label
i i=1
MaxD S| — aremax P1; S» — aremax P2; Use the inverse of average distance to adjust the
DS AEMA < jey [ 02 T A& < iey iy corresponding rule
P1; P2;
MinD Sy = argmin, ;- y =, S» = argmin, _;_ y ~———
=Npl+1 ==ND2+1
N N
P2;
ProdD — — i
S1= Hm 1 LID2 +1
(P1;, P2;) f(P2;,P1;) lx=
VoteD f(PL;, _ y
Si = Z I Z oo where/(x.y) {OKy
N N
SumD S| = i = !
: ;DliJrl : ;D2,+1

the probability of being G; and G, predicted by the ith indi-
vidual model, respectively. Then the fusion scores for the class
G, and G, (represented as S; and S,, respectively) can be ach-
ieved by the rule. For distance based rules, D,;, and D,; denote
the average distance between the new compound and the ith
training compounds with label G; and G,, respectively. Finally,
the new compound is labelled to the class with maximum
fusion score. More details about these ensemble rules have
been described elsewhere.?>*>*

(4) Optimizing the ensemble. In the proposed framework, we
focus on the optimization of ensemble classification system.
There are several combination issues that need to be addressed.
Given a pool of data balancing methods, a pool of base classi-
fiers, and a pool of ensemble rules, the first problem is how to
choose the best combination. Given a pool of individual models,
another problem is how to effectively select which individual
models to use in the final ensemble. Thus, a novel two-stage
adaptive optimization method was developed in this work.

Considering that combination schemes tend to be data-
specific (none produced the best results for all data sets).
Therefore, in the first stage, all combinations of the methods
from supplied pools including data balancing methods, base
classifiers, and ensemble rules were tested. This resulted in 420
combinations for unbalanced data sets and 70 combinations for
balanced data sets. For each combination, an ensemble model
was established by the aggregation of multiple individual
models. Then, the AUC score on TES was taken as the perfor-
mance score. The combination with the highest performance
was chosen as the adaptive selection. In the current investiga-
tion, the number of individual models was set to 50.

After obtaining the best combination of method pools,
a further optimization can be invoked to find the best

11666 | RSC Adv., 2018, 8, 1166111683

combination of individual models in the second stage, which
yields the best ensemble performance. This selection of indi-
vidual models focuses on finding the most efficient subset of
ensembles, rather than combining all available individuals. In
the second stage, a forward search algorithm (FSA) was
designed. Initially, the goodness of each individual in the pool
was evaluated. Individual models were ranked according to
their fitness, from the best to the worse, and the top two indi-
viduals were firstly selected in the final ensemble. Then the
individual model from the (sorted) input list was iteratively
added into the ensemble where, at each step the ensemble was
evaluated on the hold-out dataset. This procedure was repeated
until no further improvements could be obtained. Here,
a fitness function Q was defined for assessing the goodness of
individual models as follows.

Q = f(Perf, Div) (1)

where Perf and Div represents the measurement of performance
and diversity, respectively. In this work, the predicted AUC score
was taken as the measurement of performance, and the diver-
sity was measured by a pairwise metric of fail/non-fail
disagreement (Dis).”” Dis was defined as the percentage of test
compounds for which the individual models made different
predictions but that for one of both was correct.

M()l + MIO

Dis;; = MOT L A0 4+ 00 4 pq (2)

where Dis;; denotes the measurement of diversity between
individual model i and j. M® is the number of compounds,
predicted correctly (a = 1) or incorrectly (@ = 0) by the individual
model i, and correctly (b = 1) or incorrectly (b = 0) by the

This journal is © The Royal Society of Chemistry 2018


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8ra01206g

Open Access Article. Published on 26 March 2018. Downloaded on 2/8/2026 12:01:13 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

individual model j. Dis;; varies from 0 to 1, when both models
predict identically for each compound, it is equal to 0, and it is
equal to 1 when the results are always different and one of them
is correct. Then the diversity score of individual model i (rep-
resented as Div;) was calculated by averaging Dis;; over all pairs.

N
E DiS,’J

EL#

Div, = =% 3
\% N (3)

where N is the number of individual models. Consequently, the
fitness of individual model i (represented as Q,) was calculated
as follows.

AUC; — min(AUCQC)
max(AUC) — min(AUC)
Div; — min(Div)
max(Div) — min(Div)

0 =ax +(1-a)

4)

where AUC and Div represents the predicted AUC score vector and
the diversity score vector of individual models, respectively. The
maximum and minimum functions were used to scale the
metrics. The parameter, «, was used to adjust the weights of
performance and diversity, and varied from 0 to 1. Previous
study®® suggested that the status of individual models with
medium performance and medium diversity could result in better
ensemble performance, but the tradeoff between performance
and diversity remained unclear. Different « could be needed for
different data. Due to the lack of theoretical support, « should be
estimated from the data. In this paper, a rigorous 5-fold cross
validation combined with FSA was proposed to automatically
choose the optimal «. The general workflow of this adaptive
optimization process is shown in Fig. 2. It is necessary to note that
TRS was only used in this process. The selection pool of « values
needs to be predefined. In AECF, « began from 0 and stepped up
by 0.1 in each increment until it reached 1. For each value of «, the
original training data was randomly divided into five subsets with
equal size according to their categories. Each time one subset was
regard as the validation set and the remaining sets as modeling
set. The modeling set was subsequently used to generate 100
balanced training data sets, and 100 individual models were
created by multiple GA runs. Then an ensemble model was
developed using the best combination of method pools derived
from the previous optimizing section. This ensemble model was
further optimized by FSA, and was employed to predict on the
validation set. The AUC score was used to estimate the prediction
ability of the ensemble model. This process was repeated for five
times until each subset was used for validation. Moreover, this
optimization process with 5-fold cross validation was repeated five
times due to the use of stochastic search algorithm. The value of
a with the highest AUC score averaged over all runs was picked up
as the optimal solution. Finally, the final ensemble model was
automatically rebuilt using the best combination of method
pools, and was optimized by FSA using the optimal «.

Model evaluation

The performance of ensemble models was evaluated via the
prediction of the two independent data set (test set and
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validation set). Considering the imbalanced classification task,
several statistical metrics including specificity (SP), sensitivity
(SE), overall accuracy (OA), kappa statistic, Matthews's correla-
tion coefficient (MCC), and AUC were used as evaluation
criteria. These metrics were calculated as follows:

oo TN 5
SE = o 6)

OA = TP+1:1:1?:1+FP @)
Kappa = 701A__EEAA (8)

TP x TN — FN x FP
MCC = (9)
/(TP + FN)(TP + FP)(TN + FN)(TN + FP)

AUC = %(SP +SE) (10)
where TP, FP, TN, and FN represents true positive, false positive,
true negative, and false negative, respectively. EA is the expected
accuracy based on the marginal totals of the confusion matrix.
The AUC is defined as the area under the ROC curve, which has
proved to be a reliable performance measure for class imbal-
anced problems.* In this work, AUC was also used to guide the
construction and optimization of AECF. For binary classifica-
tion, AUC is identical to the balanced accuracy.*

Applicability domain (AD) analysis

It is necessary to define AD for delineation of interpolation
space in which the model can make reliable predictions when
applying a predictive model on a new dataset.® Several different
methodologies can be used for defining AD, including the
projection approach® and machine learning based
approach.*”®* Our previous study' showed that machine
learning based approach was more appropriate for AD analysis
than projection approach. In the presented work, we applied
machine learning based approach to define AD. In this
approach, the union of modeling descriptor sets of selected
individual models were selected, and 100 shuffled training sets
were created by randomly permuting these descriptors. Then
100 combined datasets were created, and each of them was
constructed by merging the original training set and one shuf-
fled set. An ensemble classification model was established to
predict the probability of new compounds being members of
the training set. Readers can refer to our previous work" for
implementation details.

Tools

All calculations were performed with R-3.3.2 software. The
packages used for implementing various base classifiers are
presented in Table 1. SMOTE algorithm was implemented using
DMwR package.®® Galgo®* package was used to perform GA.
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Fig. 2 Auto optimization for a by a rigorous 5-fold cross validation. Perf, the performance score of individual models. Div, the diversity score of

individual models. Q, the fitness of individual models.

Caret package® and boostr package® was used to implement
Bagging and Boosting algorithm, respectively.

Results and discussions
Characterization of the data set

For each data set, only a small subset of calculated descriptors
was remained for modeling after feature preprocessing, and
data splitting resulted in fifty percent as TRS, twenty five

11668 | RSC Adv., 2018, 8, 11661-11683

percent as TES, and twenty five percent as VAS. The data
characteristics are summarized in Table 3, where the number
of compounds is listed in the parentheses following to the
name of category. The calculated