# **RSC Advances**



View Article Online

View Journal | View Issue

## PAPER

Check for updates

Cite this: RSC Adv., 2018, 8, 11127

Received 4th February 2018 Accepted 13th March 2018

DOI: 10.1039/c8ra01094c

rsc.li/rsc-advances

### Introduction

2-Arylbenzoxazoles are important structural subunits in natural products, pharmaceuticals, agrochemicals, and dyes.1-4 Therefore, the development of efficient synthetic methods for C2-arylation of benzoxazoles has received much attention.<sup>5,6</sup> Among them, palladium-catalyzed cross-coupling is one of the most powerful and reliable tools to achieve arylsubstituted benzoxazoles through direct C-H activation and subsequent C-C bond formation.7-9 However, this protocol still suffered from inherent drawbacks associated with the use of uncommon, toxic, and expensive agents such as aryltrimethylammonium triflates,7 aryl halides or triflates,10-17 aryl boronic acids,18 sodium arylsulfinates,19 arylsulfonyl hydrazides,<sup>20</sup> and 3-phenylpropionic acid.<sup>21</sup> Additionally, the requirement of high-cost palladium catalysts and other expensive additives also prevents the palladium-catalyzed cross-coupling procedure from being employed in large-scale synthesis.22 Recently, the replacement of palladium by other transition metals, such as bis(diisopropylphosphinomethyl) amine nickel(II) and nickel(0) complexes,23 metal-organic frameworks,<sup>24,25</sup> Cu/Fe system,<sup>26</sup> CeO<sub>2</sub>/Fe<sub>3</sub>O<sub>4</sub>,<sup>27</sup> CuCN(PPh<sub>3</sub>)<sub>2</sub>,<sup>28</sup> and Ni(COD)<sub>2</sub>,<sup>29</sup> has been investigated. These direct arylation methods have received much attention due to their advantage of avoiding the use of stoichiometric amounts of expensive organometallic reagents or additives. However, these protocols still encounter several problems including low yields, long reaction times, poor substrate scope, and high toxicity. Therefore, the development of an effective alternative method for the arylation of benzoxazoles remains highly desirable. Aromatic aldehydes are considered as preferable reagents in the arylation of benzoxazoles owing to their widespread availability, non-toxicity, and low-cost production. The

# Deep eutectic solvent-catalyzed arylation of benzoxazoles with aromatic aldehydes<sup>†</sup>

Phuong Hoang Tran 💿 \* and Anh-Hung Thi Hang

A novel and efficient methodology for the arylation of benzoxazoles with aromatic aldehydes catalyzed by deep eutectic solvent has been developed. The reaction smoothly proceeded with a wide range of substrates to give the desired products in high yields within short reaction time. Deep eutectic solvents are easily recovered and reused without significant loss of catalytic activity.

reaction between benzoxazoles and aromatic aldehydes can be conducted in the presence of a suitable catalyst, *e.g.*, molecular  $I_2$  or FeSO<sub>4</sub>.<sup>30,31</sup> Until now, there has been no further report on the arylation of benzoxazoles using aldehydes as reagents.

In an attempt to develop a cost-effective and environmentally benign protocol, we focus on exploring a new and affordable catalyst for direct arylation of benzoxazoles under "greener" conditions. Deep eutectic solvents (DESs) which were discovered for the first time by Abbott in 2001 have been known as a new class of ionic liquids possessing many outstanding characteristics.32-34 DESs have found many applications as green solvents in diverse fields including nanotechnology,35 separation processes,<sup>36</sup> transition metal catalyzed reactions,<sup>37</sup> material chemistry,<sup>38</sup> stabilization of DNA,<sup>39</sup> and organic synthesis.40 Besides, DESs have been known as preferable alternative solvents/catalysts for organic synthesis due to their non-hazardous, non-toxic, stable, non-flammable, and inexpensive nature.41-49 Recently, we have reported DESs-catalyzed organic transformations such as Friedel-Crafts acylation and esterification of sterically hindered alcohols.50,51 As our ongoing efforts to develop environmentally benign syntheses, it is the aim of this communication to describe our preliminary results in the arylation of benzoxazoles with aromatic aldehyde using DES as a green catalyst. Notable features of our report include: (i) straightforward and affordable preparation of catalyst, (ii) simple work-up, (iii) removable additive agents, (iv) recyclable, biodegradable, and low-toxic catalyst.

## Results and discussion

#### Preparation and characterization of [ZnCl<sub>2</sub>][ethylene glycol]<sub>4</sub>

DESs were synthesized by mixing zinc chloride and ethylene glycol (HBDs) at a defined molar ratio (1 : 4) and heating at 120 °C for 1 h at atmospheric pressure under constant magnetic stirring until a homogeneous liquid was formed. The charge delocalization which occurs through hydrogen bonding between the halide anion and ethylene glycol is responsible for the decrease in the  $T_{\rm m}$  of the mixture.<sup>52,53</sup>

Department of Organic Chemistry, Faculty of Chemistry, University of Science, Viet Nam National University, Ho Chi Minh City 721337, Viet Nam. E-mail: thphuong@ hcmus.edu.vn

<sup>†</sup> Electronic supplementary information (ESI) available. See DOI: 10.1039/c8ra01094c

The NMR characterization are in good agreement with the structure of [ZnCl<sub>2</sub>][ethylene glycol]<sub>4</sub> and the NMR spectra show that the catalyst is free of impurities. DESs with high viscosity and the inter- as well as intra-dipolar interactions can cause the broadening effect on the resonance signals of NMR spectrum.54 The high viscosity of DES used in the current work involves the formation of massive hydrogen bond network between each component.55 Fig. 1 displays the FT-IR spectra of ethylene glycol and [ZnCl<sub>2</sub>][ethylene glycol]<sub>4</sub>. The spectrum of the [ZnCl<sub>2</sub>][ethylene glycol]<sub>4</sub> is an overlap of those of ethylene glycol. The result showed that the structure of ethylene glycol was not destroyed in the [ZnCl<sub>2</sub>][ethylene glycol]<sub>4</sub>. Particularly, the absorption bands of ethylene glycol at 3390 cm<sup>-1</sup> could be ascribed to stretch vibration of O-H functional group. As observed in Fig. 1, the O-H stretching vibration of [ZnCl<sub>2</sub>][ethylene glycol]<sub>4</sub> shifts to lower wavenumber, indicating that O-H of ethylene glycol takes part in the formation of the hydrogen bond with the anion of zinc chloride.47,53,55

The Raman spectra of ethylene glycol, zinc chloride, and  $[\text{ZnCl}_2]$ [ethylene glycol]<sub>4</sub> are presented in Fig. 2 for a comparative analysis in the region from 50 to 1500 cm<sup>-1</sup>. In pure ZnCl<sub>2</sub>, we have observed a strong signal at 225 cm<sup>-1</sup> and another weak signal at 290 cm<sup>-1</sup>; however, at low ZnCl<sub>2</sub> molar fraction (in deep eutectic solvent) the feature at 290 cm<sup>-1</sup> becomes strong and the signal at 225 cm<sup>-1</sup> disappears. Rubim *et al.* have also observed the same feature for ZnCl<sub>2</sub> in eutectic mixture with 1-butyl-3-methylimidazolium chloride.<sup>56</sup> Thus, the Raman spectrum of [ZnCl<sub>2</sub>][ethylene glycol]<sub>4</sub> does not change as compared with the signal of ethylene glycol but additional peaks from ZnCl<sub>2</sub> appear at 80 and 290 cm<sup>-1</sup>.

Thermal gravimetric analysis (TGA) of  $[ZnCl_2]$ [ethylene glycol]<sub>4</sub> was performed in Fig. 3. The major weight loss occurs in the temperature range from 200 °C to 475 °C, which make the  $[ZnCl_2]$ [ethylene glycol]<sub>4</sub> suitable for high-temperature reaction conditions.



Fig. 1 FT-IR spectra of ethylene glycol (a), and  $[ZnCl_2][ethylene glycol]_4$  (b).



Fig. 2 Raman spectra of ethylene glycol (a), zinc chloride (b), and  $[ZnCl_2][ethylene glycol]_4$  (c).



Fig. 3 TG analysis of [ZnCl<sub>2</sub>][ethylene glycol]<sub>4</sub>.

#### **Optimization of reaction conditions**

We initiated our studies by investigating various reaction conditions for the C2-arylation of benzoxazole by benzaldehyde (Tables 1 and 2). The optimized condition revealed that the airstable and environmentally benign  $[\text{ZnCl}_2]$ [ethylene glycol]<sub>4</sub> proved to be an effective catalyst for the highly selective C2arylation of benzoxazole with benzaldehyde in 2 : 1 molar ratio. The method provided the desired product in high yield in the absence of other additives such as organic solvents or bases. It is also noteworthy that this arylation of benzoxazole proceeded smoothly without the need of inert atmosphere.

With the optimized catalyst in hand, the scope of the benzoxazoles and aromatic aldehydes in the arylation reaction was studied (Table 3). The results demonstrated that the developed pathway provided the C2-arylation products in high yields. Generally, the robust DES between ethylene glycol and zinc chloride allowed a variety of substituted benzoxazoles and aldehydes to transform into the desired products in good to

 Table 1
 Optimization of catalyst for the arylation of benzoxazole<sup>a</sup>



| Entry | Catalyst                                     | Yield <sup>b</sup> (%) |
|-------|----------------------------------------------|------------------------|
| 1     | $\mathrm{ZrCl}_4$                            | 70                     |
| 2     | ZnCl <sub>2</sub>                            | 20                     |
| 3     | FeCl <sub>3</sub>                            | 75                     |
| 4     | HfCl <sub>4</sub>                            | 73                     |
| 5     | $[ZnCl_2]$ [ethylene glycol] <sub>4</sub>    | 95                     |
| 6     | [ChCl][ZnCl <sub>2</sub> ] <sub>3</sub>      | 0                      |
| 7     | [ZnCl <sub>2</sub> ] <sub>4</sub> [urea]     | 80                     |
| 8     | [ZnCl <sub>2</sub> ][glycerol] <sub>4</sub>  | 85                     |
| 9     | [ZnCl <sub>2</sub> ][acetamide] <sub>4</sub> | 5                      |

 $^a$  Reaction conditions: benzoxazole (1 mmol), benzaldehyde (0.5 mmol), solvent-free.  $^b$  Isolated yield.

Table 2Optimization of the reaction conditions for the synthesis of 2-phenylbenzoxazole $^{a}$ 

| Entry | Catalytic amount<br>(mol%) | Time<br>(h) | Temperature<br>(°C) | Yield <sup>b</sup><br>(%) |
|-------|----------------------------|-------------|---------------------|---------------------------|
|       | · · /                      |             | . ,                 | . ,                       |
| 1     | 1                          | 6.0         | 120                 | 60                        |
| 2     | 2                          | 6.0         | 120                 | 75                        |
| 3     | 3                          | 6.0         | 120                 | 80                        |
| 4     | 5                          | 6.0         | 120                 | 95                        |
| 5     | 10                         | 6.0         | 120                 | 95                        |
| 6     | 5                          | 1.0         | 120                 | 0                         |
| 7     | 5                          | 1.5         | 120                 | 0                         |
| 8     | 5                          | 2.5         | 120                 | 0                         |
| 9     | 5                          | 4.0         | 120                 | 30                        |
| 10    | 5                          | 4.5         | 120                 | 75                        |
| 11    | 5                          | 6.0         | 120                 | 95                        |
| 12    | 5                          | 6.5         | 120                 | 97                        |
| 13    | 5                          | 6.0         | 90                  | 40                        |
| 14    | 5                          | 6.0         | 100                 | 45                        |
| 15    | 5                          | 6.0         | 110                 | 80                        |
| 16    | 5                          | 6.0         | 120                 | 95                        |
| 17    | 5                          | 6.0         | 130                 | 95                        |
| 18    | 5                          | 6.0         | 140                 | 95                        |

 $^a$  Reaction conditions: benzoxazole (1 mmol), benzaldehyde (0.5 mmol), solvent-free.  $^b$  Isolated yield.

excellent yields with 100% selectivity in C2-arylation. First, a large number of aromatic aldehydes, regardless of containing electron-donating substituents (methyl, *t*-butyl, hydroxy, methoxy) or electron-withdrawing substituents (nitro, halide), can react with benzoxazoles to produce the expected products under the given reaction conditions (Table 3). However, low yields of the desired products were observed for benzaldehydes bearing severe electron-withdrawing groups such as nitro or fluoro substituents (Table 3, entries 5, 6, 8, 10, 18, 26, 35). Next, the scope of various benzoxazoles was also evaluated. As our expectation both 5-methylbenzoxazole and 5-chlorobenzoxazole generally underwent the arylation to give the corresponding

 Table 3
 The scope of arylation of benzoxazoles with aromatic aldehydes

| $R \xrightarrow{CHO} + \xrightarrow{CHO} R' \frac{[ZnCl_2][ethylene glycol]_4}{120-140 \text{ °C}, 4-6 \text{ h},} \xrightarrow{R} \xrightarrow{N} \xrightarrow{N} \xrightarrow{R'}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                        |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|--|
| Entry                                                                                                                                                                                | Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Condition   | Yield <sup>a</sup> (%) |  |
| 1                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 °C, 6 h | 95 $(94)^b$            |  |
| 2                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 °C, 5 h | 93                     |  |
| 3                                                                                                                                                                                    | $\underset{O}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}}{\overset{CH_3}}{\overset{CH_3}}{\overset{CH_3}}}{\overset{CH_3}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$                                                                                                                                                                                                                                                                                                                                           | 120 °C, 5 h | 94                     |  |
| 4                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 °C, 4 h | 95                     |  |
| 5                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 140 °C, 6 h | 75                     |  |
| 6                                                                                                                                                                                    | ₩<br>N<br>N<br>F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 120 °C, 4 h | 80                     |  |
| 7                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 °C, 4 h | 92                     |  |
| 8                                                                                                                                                                                    | K − − − − − − − − − − − − − − − − − − −                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 120 °C, 5 h | 70                     |  |
| 9                                                                                                                                                                                    | Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120 °C, 5 h | 90                     |  |
| 10                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 °C, 5 h | 72                     |  |
| 11                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 °C, 4 h | 90                     |  |
| 12                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 °C, 6 h | 93                     |  |
| 13                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120 °C, 6 h | 80                     |  |
| 14                                                                                                                                                                                   | H <sub>3</sub> C N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120 °C, 5 h | 94                     |  |
| 15                                                                                                                                                                                   | H <sub>3</sub> C N CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120 °C, 4 h | 90                     |  |
| 16                                                                                                                                                                                   | $\overset{H_3C}{\underset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{{}}}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{{}}}{\overset{O}{\overset{O}{{}}{\overset{O}{{}}}{\overset{O}{\overset{O}{{}}{\overset{O}{{}}{\overset{O}{{}}{\\{}}}{{}}{{}}}{{}}}{{}}}{{}}}$ | 120 °C, 4 h | 90                     |  |
| 17                                                                                                                                                                                   | H <sub>3</sub> C N OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 120 °C, 4 h | 95                     |  |

#### Table 3 (Contd.)

| $R \xrightarrow{CHO} R $ |                                                                                                                                                                      |               |                        |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------|--|--|
| Entry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Product                                                                                                                                                              | Condition     | Yield <sup>a</sup> (%) |  |  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H <sub>3</sub> C                                                                                                                                                     | 120 °C, 4.5 h | 75                     |  |  |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      | 120 °C, 4.5 h | 85                     |  |  |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H <sub>3</sub> C N OH                                                                                                                                                | 120 °C, 6.5 h | 70                     |  |  |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H <sub>3</sub> C                                                                                                                                                     | 120 °C, 6 h   | 82                     |  |  |
| 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      | 120 °C, 5 h   | 95                     |  |  |
| 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      | 120 °C, 4 h   | 95                     |  |  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} CI & CH_3 \\ CI & CH_3 \\ CH_3 \end{array}$                                                                                                        | 120 °C, 4 h   | 90                     |  |  |
| 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      | 120 °C, 4 h   | 95                     |  |  |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      | 120 °C, 4 h   | 75                     |  |  |
| 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CINCCI                                                                                                                                                               | 120 °C, 4 h   | 95                     |  |  |
| 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CI N Br                                                                                                                                                              | 120 °C, 6 h   | 85                     |  |  |
| 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | СІ ЛАЛАЛА ПАЛАЛА ОН                                                                                                                                                  | 120 °C, 6.5 h | 75                     |  |  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      | 120 °C, 6 h   | 85                     |  |  |
| 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O <sub>2</sub> N N                                                                                                                                                   | 140 °C, 6 h   | 70                     |  |  |
| 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O <sub>2</sub> N N CH <sub>3</sub>                                                                                                                                   | 140 °C, 5 h   | 75                     |  |  |
| 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} O_2 N \\ \hline \\ O \\ O \\ \hline \\ O \\ C \\ C$ | 140 °C, 5 h   | 75                     |  |  |
| 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                      | 140 °C, 5 h   | 80                     |  |  |
| 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | O <sub>2</sub> N N F                                                                                                                                                 | 140 °C, 6 h   | 72                     |  |  |

Table 3 (Contd.)



products in very good yields ranging from 82 to 95% except the case of 4-fluorobenzaldehyde and 4-hydroxybenzaldehyde whose resulting arylated products were only obtained in significantly diminished yields of 70–75% (Table 3, entries 14–30). For the benzoxazole bearing a nitro substituent, the lower yields of arylation products with various aldehydes were recorded even though harsher conditions (higher temperature for prolonged reaction time) were employed (Table 3, entries 31–37). It is noteworthy that the condensation between benzoxazole and benzaldehyde was successfully performed on a 10 mmol or 20 mmol scale, and the yield is virtually the same as on 1 mmol scale (Table 3, entry 1).

The versatility of benzothiazole and benzimidazole as substrates in the replacement of benzoxazole was also reported. The adducts resulted from the condensation of benzothiazole with various aromatic aldehydes were isolated in comparative yields with those derived from benzoxazole (Table 4, entries 1–6). Meanwhile, a failure in the formation of the desired product was noted for the case of benzimidazole (Table 4, entry 7), probably due to the existence of intermolecular hydrogen bonds between the NH of benzimidazole and DES.

A comparative study between the current method and previous ones was presented in Table 5. Deep eutectic solventcatalyzed arylation of benzoxazole afforded the arylated benzoxazole products in excellent yields under a mild and simple condition without the demand for any additives as in preceding reports (Table 5, entry 6). Remarkably, no loss of catalytic activity in the recycling test of DES is the most prominent artifact of this protocol.

As asserted in previous literature through isotope-labeling mechanistic studies, the arylation of benzoxazoles with aromatic aldehydes underwent the ring-opening step assisted by Lewis acids such as  $I_2$  or FeSO<sub>4</sub> to afford the key intermediate 2-aminophenol. Its nucleophilic addition to aldehydes followed by oxidative ring closure provided arylated benzoxazoles as final products.<sup>30,31</sup> As an extra part in our research to check the conformability of the proposed mechanism for the same reaction catalyzed by  $[ZnCl_2]$ [ethylene glycol]<sub>4</sub>, we also carried out



 Table 4
 The arylation of benzothiazole and benzimidazole with aromatic aldehydes under current method

result, the same arylated benzoxazole product was obtained in a comparable yield of 85%. Additionally, in another control experiment whereby benzoxazole reacted with [ZnCl<sub>2</sub>][ethylene glycol]<sub>4</sub> in the absence of benzaldehyde, 2-aminophenol was obtained in 62% yield. Thus, it is not doubtful that the arylation of benzoxazole studied herein must also undergo the ringopening step prior to the condensation step with aldehydes. Although the mechanism is not clear now, the method possesses attractive merits including cheap and recyclable catalyst, non-toxicity, and wide scope of substrates.

The recyclability is an important feature for applying a catalyst in industrial processes. The recyclability of deep eutectic solvent of zinc chloride and ethylene glycol under study in this work was investigated in the model reaction. After completion of the reaction, the product was extracted with diethyl ether (10  $\times$  5 mL), the catalyst was separated from the ethereal solution and dried under vacuum. The recovered catalyst was



isoluteu yleiu.

the acylation–cyclization of 2-aminophenol with benzaldehyde under the same optimized conditions which were previously applied for the arylation of benzoxazole by benzaldehyde. As the

Fig. 4 Reuse of  $[ZnCl_2][ethylene glycol]_4$  catalyst in the arylation of benzoxazole with benzaldehyde.

 Table 5
 The comparison of the current method with previous reports in the arylation of benzoxazole

| ĭ,<br>N | + | Arylating reagent | Catalyst |   |
|---------|---|-------------------|----------|---|
| Ń       |   | , , ,             |          | Ň |

|       |                                                                                                                    | ~ N —                       |              |              |
|-------|--------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------|--------------|
| Entry | Catalyst                                                                                                           | Reagent                     | Condition    | Yield (%)    |
| 1     | FeSO <sub>4</sub> (0.2 equiv.), H <sub>2</sub> O/diglyme/O <sub>2</sub>                                            | СНО                         | 150 °C, 20 h | 70 (ref. 31) |
| 2     | I <sub>2</sub> (2 equiv.), PhCl, DMF                                                                               | СНО                         | 130 °C, 30 h | 75 (ref. 30) |
| 3     | $[Pd(\pi-allyl)Cl]_2$ (0.1 equiv.), PCy <sub>3</sub> , NaOtBu (2 equiv.), DMF                                      | ⊕ ⊖<br>NMe <sub>3</sub> OTf | 120 °C, 12 h | 43 (ref. 7)  |
| 4     | CuCN(PPh <sub>3</sub> ) <sub>2</sub> (10 mol%), PPh <sub>3</sub> , Cs <sub>2</sub> CO <sub>3</sub> , pivalonitrile |                             | Reflux, 24 h | 85 (ref. 28) |
| 5     | Ni(COD) <sub>2</sub> (0.1 equiv.), dcype (0.2 equiv.), $Cs_2CO_3$ (1.5 equiv.), p-xylene                           | OPiv                        | 140 °C, 22 h | 91 (ref. 29) |
| 6     | Current work: $[ZnCl_2][ethylene glycol]_4$ (5 mol%), solvent-free                                                 | СНО                         | 120 °C, 6 h  | 95           |



Fig. 5 FT-IR of fresh  $[ZnCl_2]$  [ethylene glycol]<sub>4</sub> (a) and  $[ZnCl_2]$  [ethylene glycol]<sub>4</sub> after the fifth recovery (b).

reused in the model reaction to the next run. As illustrated in Fig. 4, the efficiency of deep eutectic solvent was found to be constantly excellent even after five consecutive recycles. IR spectroscopy of fresh and recovered deep eutectic solvent indicated that no detectable structural degradation can be seen (Fig. 5). After each recycling test, a very small amount of DES leaching to diethyl ether phase during the work-up step was indirectly estimated by means of ICP-MS technique in which Zn content of about 0.08 ppm in the ethereal phase was determined. A slight decrease of catalytic activity was observed due to a little loss of deep eutectic solvent during the work-up process.

## Experimental

#### General procedure for catalytic arylation of benzoxazole

Benzoxazole (119 mg, 1.0 mmol) was treated with benzaldehyde (53 mg, 0.5 mmol) in the presence of  $[ZnCl_2]$ [ethylene glycol]<sub>4</sub> (5 mg, 0.01 mmol) at 120 °C for 6 h under solvent-free magnetic stirring. The completion of the reaction was checked by TLC and GC. The mixture was then diluted with diethyl ether (10 × 5 mL). The solvent was removed on a rotary evaporator. The crude product was purified by silica gel chromatography using acetone/petroleum ether (1/19) to afford the desired product (95% yield). The purity and identity of the product were confirmed by FT-IR, <sup>1</sup>H NMR, <sup>13</sup>C NMR, and MS. The recovered catalyst was activated by heating under reduced vacuum at 80 °C for 30 min and reused for next cycles.

## Conclusions

In conclusion, we have developed the first DES-mediated arylation of benzoxazoles with aromatic aldehydes at the C2 position under solvent-free condition. The most important highlight of the current method is the use of inexpensive, air- and water-stable, and recyclable deep eutectic solvent in the replacement of highcost palladium catalysts. Interestingly, only a catalytic amount of deep eutectic solvent is requisite for the quantitative production of various 2-arylbenzoxazoles through a simplistic, environmentally benign, and low-cost synthetic procedure.

## Conflicts of interest

There are no conflicts to declare.

## Acknowledgements

This research is funded by Viet Nam National University, Ho Chi Minh City (VNU-HCM) under grant number 562-2018-18-03.

## Notes and references

- 1 O. Daugulis, H.-Q. Do and D. Shabashov, Acc. Chem. Res., 2009, 42, 1074–1086.
- 2 K. Kuroda, S. Tsuyumine and T. Kodama, Org. Process Res. Dev., 2016, 20, 1053–1058.
- 3 C. S. Demmer and L. Bunch, *Eur. J. Med. Chem.*, 2015, 97, 778–785.
- 4 K. Seth, S. K. Garg, R. Kumar, P. Purohit, V. S. Meena, R. Goyal, U. C. Banerjee and A. K. Chakraborti, ACS Med. Chem. Lett., 2014, 5, 512–516.
- 5 C. L. Sun and Z. J. Shi, Chem. Rev., 2014, 114, 9219-9280.
- 6 L. Yang and H. Huang, Chem. Rev., 2015, 115, 3468-3517.
- 7 F. Zhu, J.-L. Tao and Z.-X. Wang, *Org. Lett.*, 2015, 17, 4926–4929.
- 8 F. Bellina and R. Rossi, Tetrahedron, 2009, 65, 10269-10310.
- 9 G. Wu, J. Zhou, M. Zhang, P. Hu and W. Su, *Chem. Commun.*, 2012, 48, 8964–8966.
- 10 B. Sezen and D. Sames, Org. Lett., 2003, 5, 3607-3610.
- 11 R. S. Sánchez and F. A. Zhuravlev, J. Am. Chem. Soc., 2007, 129, 5824–5825.
- 12 F. Derridj, S. Djebbar, O. Benali-Baitich and H. Doucet, J. Organomet. Chem., 2008, 693, 135–144.
- 13 F. Yang, Y. Wu, Z. Zhu, J. Zhang and Y. Li, *Tetrahedron*, 2008, 64, 6782–6787.
- 14 J. Canivet, J. Yamaguchi, I. Ban and K. Itami, *Org. Lett.*, 2009, **11**, 1733–1736.
- 15 J. Roger, S. Mom, M. Beaupérin, S. Royer, P. Meunier, V. V. Ivanov, H. Doucet and J.-C. Hierso, *ChemCatChem*, 2010, 2, 296–305.
- 16 J. J. Dong, J. Roger, C. Verrier, T. Martin, R. Le Goff, C. Hoarau and H. Doucet, *Green Chem.*, 2010, **12**, 2053–2063.
- 17 X.-B. Shen, Y. Zhang, W.-X. Chen, Z.-K. Xiao, T.-T. Hu and L.-X. Shao, *Org. Lett.*, 2014, **16**, 1984–1987.
- 18 S. Ranjit and X. Liu, Chem.-Eur. J., 2011, 17, 1105-1108.
- 19 M. Wang, D. Li, W. Zhou and L. Wang, *Tetrahedron*, 2012, 68, 1926–1930.
- 20 F. Kwong, O. Yuen, C. So and W. Wong, *Synlett*, 2012, 23, 2714–2718.
- 21 D. Liu, B. Liu and J. Cheng, RSC Adv., 2013, 3, 9193-9196.
- 22 K. E. Balsane, S. H. Gund and J. M. Nagarkar, *Catal. Commun.*, 2017, **89**, 29–33.
- 23 A. Kruckenberg, H. Wadepohl and L. H. Gade, Organometallics, 2013, 32, 5153–5170.

- 24 N. T. S. Phan, C. K. Nguyen, T. T. Nguyen and T. Truong, *Catal. Sci. Technol.*, 2014, 4, 369–377.
- 25 H. T. N. Le, T. T. Nguyen, P. H. L. Vu, T. Truong and N. T. S. Phan, *J. Mol. Catal. A: Chem.*, 2014, **391**, 74–82.
- 26 S.-L. Zhang, W.-Y. Hu and P.-P. Wang, *Synthesis*, 2014, 47, 42–48.
- 27 R. S. Shelkar, K. E. Balsane and J. M. Nagarkar, *Tetrahedron Lett.*, 2015, **56**, 693–699.
- 28 D. Kim, K. Yoo, S. E. Kim, H. J. Cho, J. Lee, Y. Kim and M. Kim, *J. Org. Chem.*, 2015, **80**, 3670–3676.
- 29 D. F. Steinberg, M. C. Turk and D. Kalyani, *Tetrahedron*, 2017, **73**, 2196–2209.
- 30 Y. C. Teo, S. N. Riduan and Y. Zhang, *Green Chem.*, 2013, 15, 2365–2368.
- 31 S. Liu, R. Chen, X. Guo, H. Yang, G. Deng and C.-J. Li, Green Chem., 2012, 14, 1577–1580.
- 32 Q. Zhang, K. De Oliveira Vigier, S. Royer and F. Jerome, *Chem. Soc. Rev.*, 2012, **41**, 7108–7146.
- 33 B.-Y. Zhao, P. Xu, F.-X. Yang, H. Wu, M.-H. Zong and W.-Y. Lou, ACS Sustainable Chem. Eng., 2015, 3, 2746–2755.
- 34 A. P. Abbott, G. Capper, D. L. Davies, H. L. Munro, R. K. Rasheed and V. Tambyrajah, *Chem. Commun.*, 2001, 2010–2011.
- 35 A. Abo-Hamad, M. Hayyan, M. A. AlSaadi and M. A. Hashim, *Chem. Eng. J.*, 2015, **273**, 551–567.
- 36 B. Tang, H. Zhang and K. H. Row, J. Sep. Sci., 2015, 38, 1053– 1064.
- 37 J. García-Álvarez, Eur. J. Inorg. Chem., 2015, 2015, 5147-5157.
- 38 F. del Monte, D. Carriazo, M. C. Serrano, M. C. Gutierrez and M. L. Ferrer, *ChemSusChem*, 2014, 7, 999–1009.
- 39 H. Zhao, J. Chem. Technol. Biotechnol., 2015, 90, 19-25.
- 40 C. Vidal, J. García-Álvarez, A. Hernán-Gómez, A. R. Kennedy and E. Hevia, *Angew. Chem., Int. Ed.*, 2016, 55, 16145–16148.

- 41 M. Starykevich, A. N. Salak, D. K. Ivanou, A. D. Lisenkov, M. L. Zheludkevich and M. G. S. Ferreira, *Electrochim. Acta*, 2015, **170**, 284–291.
- 42 E. L. Smith, A. P. Abbott and K. S. Ryder, *Chem. Rev.*, 2014, 114, 11060–11082.
- 43 J. I. García, H. García-Marín and E. Pires, *Green Chem.*, 2014, 16, 1007–1033.
- 44 J. Cao, B. Qi, J. Liu, Y. Shang, H. Liu, W. Wang, J. Lv, Z. Chen,
   H. Zhang and X. Zhou, *RSC Adv.*, 2016, 6, 21612–21616.
- 45 C. Mukesh, R. Gupta, D. N. Srivastava, S. K. Nataraj and K. Prasad, *RSC Adv.*, 2016, **6**, 28586–28592.
- 46 G. García, S. Aparicio, R. Ullah and M. Atilhan, *Energy Fuels*, 2015, **29**, 2616–2644.
- 47 Q. Wang, X. Yao, Y. Geng, Q. Zhou, X. Lu and S. Zhang, *Green Chem.*, 2015, **17**, 2473–2479.
- 48 O. S. Hammond, K. J. Edler, D. T. Bowron and L. Torrente-Murciano, *Nat. Commun.*, 2017, 8, 14150–14157.
- 49 A. R. Hajipour, S. H. Nazemzadeh and F. Mohammadsaleh, *Tetrahedron Lett.*, 2014, 55, 654–656.
- 50 P. H. Tran, H. T. Nguyen, P. E. Hansen and T. N. Le, *RSC Adv.*, 2016, 6, 37031–37038.
- 51 H. T. Nguyen and P. H. Tran, RSC Adv., 2016, 6, 98365–98368.
- 52 Y. Dai, J. van Spronsen, G. J. Witkamp, R. Verpoorte and Y. H. Choi, *J. Nat. Prod.*, 2013, **76**, 2162–2173.
- 53 A. Pandey, Bhawna, D. Dhingra and S. Pandey, J. Phys. Chem. B, 2017, 121, 4202–4212.
- 54 C. D'Agostino, R. C. Harris, A. P. Abbott, L. F. Gladden and M. D. Mantle, *Phys. Chem. Chem. Phys.*, 2011, 13, 21383– 21391.
- 55 J. Zhu, K. Yu, Y. Zhu, R. Zhu, F. Ye, N. Song and Y. Xu, *J. Mol. Liq.*, 2017, **232**, 182–187.
- 56 M. B. Alves, V. O. Santos Jr, V. C. D. Soares, P. A. Z. Suarez and J. C. Rubim, *J. Raman Spectrosc.*, 2008, **39**, 1388–1395.