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preponderance of
biocomputation in clinical virology
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Bioinformatics and computer based data simulation and modeling are captivating biological research,

delivering great results already and promising to deliver more. As biological research is a complex,

intricate, diverse field, any available support is gladly taken. With recent outbreaks and epidemics,

pathogens are a constant threat to the global economy and security. Virus related plagues are somehow

the most difficult to handle. Biocomputation has provided appreciable help in resolving clinical virology

related issues. This review, for the first time, surveys the current status of the role of computation in virus

related research. Advances made in the fields of clinical virology, antiviral drug design, viral immunology

and viral oncology, through input from biocomputation, have been discussed. The amount of progress

made and the software platforms available are consolidated in this review. The limitations of

computation based methods are presented. Finally, the challenges facing the future of biocomputation

in clinical virology are speculated upon.
1. Introduction

Generally, viral outbreaks are pandemic andmostly transmitted
via oral and nasal passages, the gastrointestinal tract, the skin
and the urogenital tract/vagina. Viral diseases are not only
a health threat, but they also result in outbreaks that have huge
impacts on the global economy. Viral infections are a tremen-
dous disease burden on humanity and combating them is an
increasing challenge, since new viruses are continuously found.
According to a recent World Health Organization (WHO) report,
viral diseases which have recently caused outbreaks include:
Ebola virus, inuenza, human immunodeciency virus (HIV),
Middle East respiratory syndrome coronavirus (MERS-CoV),
severe acute respiratory syndrome (SARS) and Zika viral infec-
tion.1 These diseases are major threats to health and global
security. From 2013 to 2016, Ebola virus was most predominant
in Guinea, Sierra Leone and Liberia. Since May 2016, 28 616
suspected cases have been found, 11 310 deaths reported and
the fatality rate was approximately 70.8%.2,3 Outbreaks of Zika
virus have been traced back to October 2015 in Brazil. The
outbreak of Zika virus was evidenced by a rapid increase in
cases among pregnant women, whose infants are born with
extremely underdeveloped brains and will grow up to be adults
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with limited cognitive abilities and motor skills. The World
Bank estimated that this outbreak caused a loss to the global
economy to the magnitude of a total of $8.9 billion USD.4 The
identication and characterization of the causative agents and
prophylaxis to limit the spread of a virus require the successful
isolation of viral isolates via ‘wet-lab’ experimentation. This is
necessary for curbing these outbreaks, in order to facilitate
restoration.
1.1 Importance of clinical virology

Withmorbidity andmortality rates being signicantly high with
respect to virus related infections, clinical virology is at the
forefront of research highlights. Clinical virology is a eld of
medicine which consists of the identication of viral pathogens
responsible for human diseases like polio, chikungunya, severe
acute respiratory disease (SARS), inuenza, acquired immune
deciency syndrome (AIDS), Ebola hemorrhagic fever, hepatitis
etc.5 Clinical virology is an interdisciplinary eld, integrating
virology/medical virology and healthcare sciences that charac-
terize the safety and efficacy of medication, devices, diagnostic
products and treatment regimes intended for mankind, which
can be utilized for the prevention, treatment and diagnosis of
infectious viral diseases. The effective prevention and clinical
management of infectious diseases are intimately linked to the
early and accurate screening of pathogens. This includes
detecting the infectious particles in the organism and eluci-
dating the aspects that confer resistance to therapy, mutations
and genotype disparity. In this aspect, the accurate interpreta-
tion of laboratory results warrants the effective clinical
management and control of a disease,6 however on the other
This journal is © The Royal Society of Chemistry 2018
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hand, erroneous diagnosis could lead to nancial and human
loss. EM and culture-based methods work together and were
one of the early traditional methods for the diagnosis of viral
infections, along with serology testing for the detection of
antibodies targeted against viruses. These conventional
methods are still fundamental practices in many medical labs.7

Cell culturing is yet another popular method for isolating
viruses using cell lines.8 The complement xation test (CFT) is
one of the oldest methods in the history of clinical virology.9

The haemagglutination inhibition test is generally used for
detecting arboviruses and inuenza and parainuenza virus
subtypes and is capable of yielding relative quantitation of the
virus particles.10,11 More recent, new generation diagnostic
methods include: immunoassay methods,12,13 amplication
based assays,14,15 mass spectrometric methods16,17 and next
generation sequencing.18,19

Biocomputational tools and database resources provide
a wealth of valuable information about viral genomic sequences,
molecular structures and viral–host pathogenesis. This infor-
mation on infectious agents can lead to better diagnostics,
therapeutics and vaccine development. Bioinformatics addresses
these specic needs during data acquisition, storage and analysis
and for the integration of this research with major therapeutic
research areas such as viral oncology, viral immunology and
antiviral research. In this review, the importance of exploring the
role of biocomputation for additional knowledge in the realms of
clinical virology is discussed. Advances made in the elds of
clinical virology, antiviral drug design, viral immunology and
viral oncology, through input from biocomputation, are recor-
ded. Computation based approaches, their effects on clinical
virology and their therapeutic usefulness are presented. Finally,
the challenges facing the future of biocomputation in clinical
virology are speculated upon.
2. Current status of biocomputational
approaches in clinical virology

In virology, computational approaches have played crucial roles
in various aspects of viral genome sequence analysis, thera-
peutic protein identication, anti-viral drug design/discovery, in
silico vaccine design, differentially expressed gene identica-
tion, microRNA based signature identication and therapeutic
design. Through in silico analysis, researchers gain a profound
understanding of viral–host pathogenesis, which leads to better
diagnostics, therapeutics and vaccines. Viruses have always
been a major cause of a large number of infectious diseases.
Molecular knowledge on viral proteins is thus seen to play an
important role in the development of improved peptide-based
vaccines, the design of novel anti-viral agents and the under-
standing of the entry mechanisms of viruses. Ongoing major
research areas where biocomputation has played a positive role
in clinical virology are represented in Fig. 1.
2.1 Biocomputation for antiviral drug design

Antiviral drugs are aimed at targeting selective viral infections.
In particular, antiviral drugs have been designed against
This journal is © The Royal Society of Chemistry 2018
herpes, HIV, human cytomegalovirus (HCMV), varicella-zoster
virus (VZV), hepatitis B and C, and inuenza A and B viral
infections which have caused chronic infection in millions all
over the world.20 There are many difficulties facing the accurate
design of an antiviral drug against pathogenic viruses. Since
viruses are parasites, they are unable to replicate on their own.
They reproduce within the cells of an infected host and disturb
the functions of the host cells. Many clinically important viruses
don’t have model systems due to their dangerous ability to
mutate. Cultures are also hard to maintain and expensive.
Viruses which show early infectious symptoms like inuenza,
common cold etc., are treated with antiviral drugs, but for
viruses with symptoms that appear during the later stages of
infection, the population is put at risk.21

A very early stage of viral infection is viral entry; a second
approach is to target the processes that synthesize viral
components aer a virus invades a cell and establishes a critical
infection. Based on the level of infection, the receptor protein
and its therapeutic compounds are different.22 So before
designing a drug, we need to ascertain the level of infection. To
date, however, many viruses remain devoid of effective immu-
nization and only a few antiviral drugs are licensed for clinical
practice. Hence, there is an urgent need to discover novel
antivirals that are highly efficacious and cost-effective for the
management and control of viral infections at times when
vaccines and standard therapies are lacking.23

Previously identied antiviral drugs do not destroy the target
pathogen of the host, but instead they are able to reduce their
growth and development. Modern in silico antiviral drug design
aims to identify viral proteins (receptor proteins) that induce
disease in humans or the survival of a microbial pathogen.
Target proteins are common among many strains of viruses.
Once the potent targets are identied, the appropriate drugs
can be designed and administered.24 Target protein sequences
were retrieved from sequence databases like viral genome
databases (see Table 1) and structures will be retrieved from
viral protein databases (Table 1). The binding site of the
receptor protein is called the active site and this will be iden-
tied using in silico binding site prediction tools, such as active
site prediction servers, CASTp,36 PDBeMotif,37 metaPocket,38

3DLigandSite,39 Pocketome,40 PocketDepth,41 Pocket-Finder,42

FINDSITE43 etc. Drugs can be designed which bind to the active
region and inhibit receptor molecules. The structure of a drug
molecule that can specically interact with the biomolecules
can be modeled using molecular modeling techniques via
computational tools like I-TASSER,44 Robetta,45 HHpred,46

MODELLER,47 MODBASE,48 RaptorX,49 SWISS-MODEL50 etc.
The rst antiviral drug 5-iodo-20-deoxyuridine (idoxuridine,

IDU) was designed for the herpes virus infection in 1960.51

Computer aided drug design (CADD) played an important role
in designing a suitable antiviral drug against the deadly viral
infection. There are two types of CADD, structure based and
ligand based.52 The available drugs were retrieved from antiviral
drug databases (see Table 1). The successful design of antiviral
drugs like Saquinavir, Relenza, and Tamiu has validated the
application of these techniques and indicates a bright future for
drug discovery protocols.53 The creation of a structure based
RSC Adv., 2018, 8, 17334–17345 | 17335
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Fig. 1 Scheme depicting the ongoing major research areas in clinical virology.

RSC Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
M

ay
 2

01
8.

 D
ow

nl
oa

de
d 

on
 7

/2
2/

20
25

 3
:4

2:
49

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
pharmacophore model from the 3D structure of a target protein
provides helpful information for investigating protein–ligand
interactions and upgrading the knowledge of ligand binding
affinities. The structure based pharmacophore regions are used
for screening chemical databases for potential lead structures.
CATALYST,54 PharmDock,55 PHASE,56 and ROCS57 are used for
pharmacophore modeling. Molecular docking is used to study
the interactions between a target protein and a ligandmolecule.
Tools and soware used for molecular docking include: Auto-
Dock,58 DOCK,59 Glide,60 GOLD,61 PatchDock62 etc. Molecular
dynamics (MD) simulations can be used to provide dynamic
insight into the structures of viruses and their components.63

These simulations can be performed using CHARMM,64 Des-
mond,65 GROMACS66 etc. A owchart for a typical antiviral drug
design process is shown in Fig. 2.
2.2 Biocomputation in viral immunology and subsequent in
silico vaccine design

Viral immunology is the most challenging and rapidly growing
eld in biology. During computational approaches, it relates to
computational immunology or immunoinformatics, which deal
with immunological problems using computational methods.67

Generally, the immune system connects thousands of molecules
which become closely and intricately linked with each other;
based on individuals the structure and the function of these
17336 | RSC Adv., 2018, 8, 17334–17345
molecules are different. Experimentally, immunologists have
generated a vast amount of functional, clinical and epidemio-
logical data. Using in silico techniques, these data have been
stored and analyzed. In silico methods are affordable, because
they reduce the time and costs involved in the laboratory analysis
of pathogenic proteins. In vivomethods require the cultivation of
the pathogenic genome in order to identify antigenic proteins.
Although pathogens grow quickly, the extraction of their proteins
and then the testing of those proteins on a large scale is expensive
and time consuming.68 The use of immunoinformatics solves
these problems and can identify virulence genes, potential target
proteins and binding sites; this will lead to the development of
novel vaccines and immunotherapeutics. This in silico method
for vaccine design is called reverse vaccinology.

In 1796, Edward Jenner rst identied the smallpox vaccine
and introduced the term vaccine.69 A century later, Louis Pas-
teur introduced a rational method for vaccine development.70

Subsequently, researchers discovered many in vivo vaccines like
the polio vaccine (Albert Sabin),71 measles, mumps and rubella
(Hilleman),72 and so on. In later years, researchers faced the
challenge of cultivating pathogenic viruses. It was found that in
the case of hepatitis B viral infection, the pathogenic virus could
not be cultured in vitro. Thus, they collected the viral antigen
from chronically infected patients, the antigens were inacti-
vated and the vaccine was developed.73 At the end of the 20th

century, researchers developed vaccines based on the genomes
This journal is © The Royal Society of Chemistry 2018
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Table 1 A consolidated list of various biocomputational resources used in clinical virology

Feature Computational resource Website Reference

Viral sequence database Viral genomes resource https://www.ncbi.nlm.nih.gov/genome/viruses/ 25
Virus pathogen database and
analysis resource (ViPR)

https://www.viprbrc.org/ 26

Viral genome databases
(VGDB) – Oxford academic

https://www.oxfordjournals.org/nar/database/subcat/5/18 27

Viral reference sequences –
ViralZone

http://www.viralzone.expasy.org/6096 28

Inuenza research database https://www.udb.org/ 29
viruSITE http://www.virusite.org/ 30
RNAVirusDB http://virus.zoo.ox.ac.uk/rnavirusdb 31

http://hivweb.sanbi.ac.za/rnavirusdb
http://bioinf.cs.auckland.ac.nz/rnavirusdb
http://tree.bio.ed.ac.uk/rnavirusdb

Viral protein structure
database

VPDB http://vpdb.bicpu.edu.in/ 32
VIDA http://www.biochem.ucl.ac.uk/bsm/virus_database 33
VIPERdb http://viperdb.scripps.edu/ 34
PhEVER http://pbil.univ-lyon1.fr/databases/phever 35

Antiviral drug database Antiviral library http://www.enamine.net/ 101 and
102

Drug office – oral
antiviral drugs

https://www.drugoffice.gov.hk/eps/do/en/consumer/
news_informations/dm_17.html

103

Virus pathogen database and
analysis resource (ViPR)

https://www.viprbrc.org/ 26

Database of anticancer peptides
and
proteins (CancerPPD)

http://crdd.osdd.net/raghava/cancerppd/ 104

Cancer drug resistance
database (CancerDR)

http://crdd.osdd.net/raghava/cancerdr/ 105

CancerHSP http://lsp.nwsuaf.edu.cn/CancerHSP.php 106
http://www.inpacdb.org 107

Microarray data Stanford microarray
database (SMD)

http://genome-www.stanford.edu/microarray/ 108

GEO datasets https://www.ncbi.nlm.nih.gov/geo/info/datasets.html 109
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of microorganisms. The rst pathogenic organism identied by
the reverse vaccinology approach was meningococcus B.74

Recently, Reza Taherkhani and Fatemeh Farshadpour
Fig. 2 A flowchart for antiviral drug design.

This journal is © The Royal Society of Chemistry 2018
developed an epitope based vaccine for the hepatitis E viral
infection75 and vaccines have been designed for other recent
outbreaks including for the Zika virus76 and the Ebola virus.77
RSC Adv., 2018, 8, 17334–17345 | 17337
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An adaptive immune response occurs against a pathogen.
There are two types of adaptive immune response, cellular and
humoral, mediated by T cells and B cells. The antigenic deter-
minant region is called the epitope, which is recognized by the
corresponding receptor present on B or T cells.78 In bio-
informatics, epitope based vaccine design relies on machine
learning techniques, such as support vector machines (SVMs),
hidden Markov models (HMMs) and neural networks (NNs).79–81

The in silico vaccine design process requires the identication
of a key molecule on the receptor protein, which is predicted
using the Epitope Database (IEDB).82 Then, the immunogenetic
peptides will be identied using Kolaskar and Tongaonkar’s
predicted antigenic peptide tools, based on applied semi
empirical methods,83 and the peptide-epitope will be mapped.
Subsequently, peptide and immunodominant epitope docking
will be performed for vaccine design. Molecular dynamics based
simulations will be carried out for conformational analysis.
Finally, the peptide will be synthesized for practical application.
The steps involved in in silico vaccine design are shown in Fig. 3.
2.3 Biocomputational inputs in viral oncology

Viral oncology is an ongoing and essential research eld for
biologists. According to a report in 2017 by the American Cancer
Society, 1 688 780 cancer cases were expected to be treated in
Fig. 3 Steps in in silico vaccine design.

17338 | RSC Adv., 2018, 8, 17334–17345
2017.84 Certain tumors are reported to be caused by viruses like
the human papilloma virus (HPV), Epstein–Barr virus (EBV),
Kaposi’s sarcoma-associated herpesvirus (KSHV), hepatitis C
virus (HCV), human immunodeciency virus (HIV) and hepatitis
B virus (HBV). More than 90% of anal cancers have been caused
by 500 000 HPV infections per year worldwide.85 Traditionally,
viral oncology research has relied on biological techniques, but
recently, computational techniques have enabled the diagnosis
of malignancies.

In recent years, high throughput technologies have generated
vast amounts of data, but on the other hand only limited experi-
mental information is available for most genes. Next Generation
Sequencing (NGS) plays an especially important role in cancer
therapeutics. Computers can analyze vast amounts of data using
remarkable techniques based on supercomputers. Computational
oncology techniques have created in silico biological system
models. To understand normal vs. malignant patient sequence
characteristics, bioinformaticians rst retrieved enormous
sequences from various databases.86 Tumor suppressor genes
(TSG), sequence annotation, their relation to diseases and gene
ontology (GO) processes are identied using these databases.
Cellular pathway databases have played an important role in
identifying the essential proteins that induce disease, constructing
biological networks and predicting models.87 Using traditional
methods, only single genotype–phenotype relationships can be
This journal is © The Royal Society of Chemistry 2018
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identied at a time. In contrast, high-throughput technology
examines the phenotypic outcomes of multiple mutations simul-
taneously.88 Fig. 4 presents the typical process steps of the NGS of
clinical data.

Microarrays contain thousands of gene expressions and tran-
scriptome data. Using a computer, we can analysemicroarray data.
From transcriptome data, differentially expressed genes can be
identied using NGS techniques. The differentially expressed
genes lead to the identication of cellular target genes that identify
the therapeutic compound.89,90 Computer based drug design
techniques use the pharmacokinetics and pharmacodynamic
relationships of the available anticancer agents to improve treat-
ment and drug development. These techniques include virtual
screening, QSAR (quantitative structure activity relationship)
Fig. 4 Schematic representation of the process steps of the NGS of clin

This journal is © The Royal Society of Chemistry 2018
models and molecular docking.91 Pharmacophore-mapping algo-
rithms are employed for the inverse screening of some represen-
tative compounds for a large set of pharmacophore models
constructed from human target proteins. Molecular docking
studies were carried out to assess the binding affinity of these
compounds to proteins responsible for mediating tumor growth.
Furthermore, the important structural features of compounds for
anticancer activity were assessed usingMonte Carlo-based SMILES
and hydrogen graph-based QSAR studies.92

2.4 Cheminformatics and machine learning models for anti-
viral drug discovery

Structure activity relationships (SARs) with molecular systems,
quantitative structure activity relationships (QSARs) and
ical data.

RSC Adv., 2018, 8, 17334–17345 | 17339

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8ra00888d


RSC Advances Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
M

ay
 2

01
8.

 D
ow

nl
oa

de
d 

on
 7

/2
2/

20
25

 3
:4

2:
49

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
quantitative structure–property relationships (QSPRs) with
molecules play a major role in computational drug discovery. In
this context, machine learning approaches for viral drug
discovery are pioneering as an emerging and ongoing research
technique in clinical virology. Machine learning approaches can
help make complex network models for conrming the effec-
tiveness of combinations of drugs for epidemiological
outbreaks in large populations. In 2015, Herrera and his
coworkers collected datasets from ChEMBL (anti-HIV chemical
compounds), the AIDSVu database (HIV surveillance reports)
and the Census Bureau (socioeconomic data) and proposed the
rst articial neural network (ANN) model for the prediction of
HAART cocktails, to halt AIDS in the epidemic networks of the
U.S.93 The rst multitasking model for quantitative structure–
biological effect relationships (mtk-QSBERs) was predicted, in
silico fragment based drug design for drug–molecule interac-
tion study was performed and its molecular entities were
screened by virtual screening for the Hepatitis C viral infection.
This was then experimentally validated for anti-HCV activity
and ADMET (Absorption, Distribution, Metabolism, Excretion
and Toxicity) properties.94 Very recently, the rst multitasking
model was developed for anti-HIV agents from 29 682 HIV cases
using quantitative structure–biological effect relationships
(mtk-QSBER) based on fragment based drug design and virtual
screening approaches. More than 96% of fragments contributed
towards the multiple biological effects.95

ANNs have been used to link data related to AIDS in the U.S.
to ChEMBL data. ANNs are network prediction models that are
Fig. 5 Advantages and disadvantages of biocomputation in clinical virol

17340 | RSC Adv., 2018, 8, 17334–17345
mainly used in medicinal chemistry and drug development.96

Moreover, in 2008 Francisco and coworkers constructed drug–
drug complex networks against different species of virus.97

González-D́ıaz et al., used the MARkovian CHemicals IN SIlico
DEsign (MARCH-INSIDE) approach and predicted novel anti-
microbial drugs and targets using drug–drug similarity complex
networks.98 Computational studies of structural stability rela-
tionships produce novel stochastic moments. In 2005,
González-D́ıaz et al. constructed a new Markov model, which
makes use of novel stochastic moments such as molecular
descriptors for viral protein surfaces in quantitative structure–
activity relationship (QSAR) studies for small molecules for
human rhinoviruses (HRVs).99 Markovian Backbone Negen-
tropies (MBNs) have been introduced in order to model their
effects on protein structure stability relationships. An MBN
based on a Markov chain model of electron delocalization
throughout the protein backbone for the computational study
of structure/stability relationships has also been reported.100

These approaches mainly focus on cheminformatic approaches
towards drug design, drug development and drug–target inter-
actions in in silico clinical elds, especially with respect to viral
diseases.
2.5 Challenges facing biocomputation in clinical virology

Antiviral drug discovery and design processes are not excep-
tionally without fault; they do have certain limitations and face
a few challenges. Firstly, therapeutic target selection is difficult
ogy.

This journal is © The Royal Society of Chemistry 2018
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in certain conditions, for instance in the disordered physio-
logical processes (pathophysiology) of nervous system related
disorders. Thus, the integration of large experimental data with
machine learning approaches requires the development of new
brain-inspired computational algorithms.110 If the molecular
mechanisms of the disease are unknown, it is difficult to nd
the specic receptor and with the function of the protein not
determined, it is difficult to make much progress.111 No single
medicine is a common solution for all diseased patients; it may
vary based on the patient’s symptoms, disease conditions and
their history. In such a case, we have to follow a personalized
medicinal approach. Based on this approach we need gene
expression data for individuals in order to identify the potent
drug target and design a drug and in such situations we need
a knowledge base. We need to investigate many drug targets
based on the drug candidate, which is a trial and error
process.112 The use of molecular signatures like peptides in
epitope based vaccine design hits a limitation here due to a lack
of delivery systems or disease models, rendering it incapable of
reaching its set goals in therapeutics.113 The mtk-QSBER model
was able to integrate multiple chemical compounds with
multiple biological target molecules and develop drug like
compounds.93,94,114–116

Emerging diseases, especially viral diseases including cancer
related viruses, threaten human life with mortality and
morbidity. Emerging viral diseases caused by RNA viruses are
increasing due to increasing mutation rates. In clinical virology,
emerging techniques, such as microarrays (expression anal-
ysis), metagenomic biosynthetic gene cluster identication,
host–pathogen interaction analysis, unknown disease-
associated viruses, the discovery of novel human viruses and
NGS technologies (differential gene expression, de novo
sequencing, epigenetics, variant calling, SNPs etc.), are enor-
mously supported.117,118 Using these technologies, it is possible
to analyze millions of data simultaneously at a low cost.

Microarrays generate a vast amount of gene expression
datasets for healthy and control samples. NGS also produces
gigabytes of transcriptome data. Here, the major challenge is
storage of this voluminous data. This requires multiprocessors
and multicore computers with hundreds of gigabytes of RAM
and terabytes of hard drive space in Linux operating systems.
Even with the use of internet based supercomputing, the
delivery of results is greatly delayed and results become queued
up. It is also impossible to submit whole datasets as these have
to be divided up to adhere to the accessible memory size and
then submitted. In this way, the entire process is greatly affected
and becomes time consuming because of the data storage
issue.119 Fig. 5 summarizes the advantages and disadvantages of
computation in clinical virology.

3. Summary

Computer-assisted clinical virology research areas are without
doubt very essential, although many aspects of improvement
are still in progress. Every year, lots of web-assisted tools, so-
ware and algorithms are continuously being developed for
various aspects of antiviral drug design, viral immunology and
This journal is © The Royal Society of Chemistry 2018
viral oncology. High throughput technologies generate data for
thousands of patients as well as their corresponding expression
data. Thus, computer-assisted approaches do overcome
cumbersome wet lab procedures to a large extent and provide
valuable insights into clinical virology and a positive direction
for antiviral drug design, epitope-based vaccine design, differ-
entially expressed gene identication and potential drug target
identication strategies.
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