


 Cite this: *RSC Adv.*, 2018, **8**, 12459

# Heterostructured $\text{Bi}_2\text{S}_3@\text{NH}_2\text{-MIL-125(Ti)}$ nanocomposite as a bifunctional photocatalyst for Cr(vi) reduction and rhodamine B degradation under visible light<sup>†</sup>

 Minghua Wang,<sup>a,b</sup> Longyu Yang,<sup>b</sup> Jinyun Yuan,<sup>b</sup> Linghao He,<sup>a,b</sup> Yingpan Song,<sup>b</sup> Hongzhong Zhang,<sup>a</sup> Zhihong Zhang,<sup>b</sup> and Shaoming Fang<sup>\*ab</sup>

A series of bismuth sulfide ( $\text{Bi}_2\text{S}_3$ ) nanorods and amine-functionalized Ti-based metal-organic framework heterojunctions [denoted by  $\text{Bi}_2\text{S}_3@\text{NH}_2\text{-MIL-125(Ti)}$ ] were constructed and explored as bifunctional photocatalysts for Cr(vi) reduction and rhodamine B (RhB) degradation under visible light illumination. Compared with the individual  $\text{NH}_2\text{-MIL-125(Ti)}$  and  $\text{Bi}_2\text{S}_3$ , the as-synthesized  $\text{Bi}_2\text{S}_3@\text{NH}_2\text{-MIL-125(Ti)}$  photocatalyst exhibited an enhanced photocatalytic activity toward Cr(vi) and RhB owing to the synergistic effect between  $\text{Bi}_2\text{S}_3$  and  $\text{NH}_2\text{-MIL-125(Ti)}$ . Moreover, the  $\text{Bi}_2\text{S}_3@\text{NH}_2\text{-MIL-125(Ti)}$  heterojunctions showed increased Cr(vi) removal efficiency by adding RhB in the system. The photocatalytic mechanism was proposed based on the analysis of different scavenger for active species and electron spin resonance spectrometry. The introduction of  $\text{Bi}_2\text{S}_3$  into  $\text{NH}_2\text{-MIL-125(Ti)}$  can extend the light adsorption and improve the transfer and separation of photogenerated charge carriers through the  $\text{Bi}_2\text{S}_3@\text{NH}_2\text{-MIL-125(Ti)}$  heterojunction with unique band gap structure. The synthesized  $\text{Bi}_2\text{S}_3@\text{NH}_2\text{-MIL-125(Ti)}$  photocatalyst also exhibited good reusability and stability.

Received 29th January 2018  
 Accepted 21st March 2018

DOI: 10.1039/c8ra00882e  
[rsc.li/rsc-advances](http://rsc.li/rsc-advances)

## Introduction

A variety of aromatic organic pollutants, including dyes, phenol, naphthalene, and trichloroethylene, have been found at high concentrations in water containing inorganic pollutants such as Cr(vi), Pb(II), and Hg(II). Due to their acute toxicity and bioaccumulation, the removal of these contaminants from wastewater is particularly significant. For the past few years, photocatalytic technology has emerged as a highly effective, low-cost, and eco-friendly treatment for hazardous pollutants by utilizing solar energy.<sup>1</sup> According to other studies, heavy metal ion reduction and organic pollutant degradation can simultaneously occur in the photocatalytic process.<sup>2</sup> For instance, the synergistic effect between the removal of Cr(vi) and degradation of organic pollutants is revealed by multiple utilization of  $\text{TiO}_2$  nanorods/g-C<sub>3</sub>N<sub>4</sub> for photocatalytic activity.<sup>3</sup> Nevertheless, the highly efficient and simultaneous photocatalytic removal of the co-existing pollutants remains a challenge due to the limited

utilization of sunlight, rapid recombination of photogenerated electron-hole pairs, and relatively low specific surface area.

Recently, as a new class of porous materials with an extended 3D network, metal-organic frameworks (MOFs), which are composed of metal containing nodes and organic linkers, exhibit given chemical stability and structural tenability.<sup>4,5</sup> As such, MOFs and their derivatives showed potential applications in gas storage and separation,<sup>6-8</sup> catalysis,<sup>9,10</sup> and biomedical applications.<sup>11-13</sup> Additionally, owing to the high surface area, structural organization and adjustability of MOFs, scientists have focused on their photocatalytic performances, such as in photocatalytic decontamination of organic pollutants, heavy metal, and photocatalytic water splitting.<sup>14-17</sup> For instance, the PANI/FeUiO-66 nanohybrids exhibited high photocatalytic performances toward the oxidation of various alcohol substrates.<sup>18</sup> As a photo-response and highly porous material,  $\text{NH}_2\text{-MIL-125(Ti)}$  has shown great potential in hydrogen production,<sup>19</sup>  $\text{CO}_2$  reduction,<sup>20</sup> the removal of organic pollutants<sup>21</sup> and Cr(vi).<sup>22</sup> As reported, the  $\text{NH}_2\text{-MIL-125(Ti)}$  framework only exhibited single catalytic performance toward the specific pollution. It demonstrated the combination of  $\text{NH}_2\text{-MIL-125(Ti)}$  and other photocatalytic active inorganic compounds can improve its photocatalytic ability. For example,  $\text{BiOBr}/\text{NH}_2\text{-MIL-125(Ti)}$  composite possesses an enhanced photocatalytic performance, by which 80% of RhB was degraded under visible light irradiation within 100 min. The RhB degradation rate for

<sup>a</sup>Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, P. R. China

<sup>b</sup>Henan Provincial Key Laboratory of Surface & Interface Science, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China. E-mail: [mainzhh@163.com](mailto:mainzhh@163.com); [mingfang@zzuli.edu.cn](mailto:mingfang@zzuli.edu.cn)

<sup>†</sup> Electronic supplementary information (ESI) available. See DOI: [10.1039/c8ra00882e](https://doi.org/10.1039/c8ra00882e)



BiOBr/NH<sub>2</sub>-MIL-125(Ti) was 3.12-fold that of pure BiOBr and 5.64-fold that of pure NH<sub>2</sub>-MIL-125(Ti).<sup>23</sup> However, it remained a huge challenge to explore the bifunctionally catalytic activity of NH<sub>2</sub>-MIL-125(Ti) toward multi-pollutants in the environmental system.

As an n-type semiconductor, bismuth sulfide (Bi<sub>2</sub>S<sub>3</sub>) has a bulk narrow direct band gap (~1.3 eV) with an extended visible light absorption.<sup>24</sup> Nanostructured Bi<sub>2</sub>S<sub>3</sub> materials have been used as functional broad-spectral photosensitizer.<sup>25</sup> Gao *et al.* reported that the prepared mesoporous hetero-structured BiVO<sub>4</sub>/Bi<sub>2</sub>S<sub>3</sub> hollow discoid exhibited improved photoelectrochemical current response and efficient Cr(vi) removal under visible-light illumination.<sup>26</sup> The Bi<sub>2</sub>S<sub>3</sub>/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> n-n-type heterojunction displayed good photocatalytic activity for degrading RhB under sunlight irradiation.<sup>27</sup> Compared with pure MOFs, catalysts based on the heterostructure combination of MOFs with metal oxide/sulfides/metals showed great advantages due to their synergetic effect.<sup>28-30</sup> However, few studies were conducted on the preparation of the Bi<sub>2</sub>S<sub>3</sub> and MOF heterojunction photocatalysts for the removal of pollutants. To the best of our knowledge, no report has been published on the simultaneous removal of Cr(vi) and RhB by using NH<sub>2</sub>-MIL-125(Ti)-based photocatalyst.

Based on above analysis, we designed and prepared a series of heterostructured Bi<sub>2</sub>S<sub>3</sub>@NH<sub>2</sub>-MIL-125(Ti) nanocomposites *via* solvothermal method, which exhibit the highly enhanced photocatalytic activity for the simultaneous removal of Cr(vi) and RhB. As compared to the routine photocatalysts, the as-synthesized Bi<sub>2</sub>S<sub>3</sub>@NH<sub>2</sub>-MIL-125(Ti) possesses substantial three advantages, including (i) improved visible light harvesting owing to Bi<sub>2</sub>S<sub>3</sub> and -NH<sub>2</sub> containing in the ligands of MOF; (ii) effective photoinduced charge carriers transfer and separation in Bi<sub>2</sub>S<sub>3</sub>@NH<sub>2</sub>-MIL-125(Ti) heterojunction with matched band gap structure; and (iii) synergetic effect between Bi<sub>2</sub>S<sub>3</sub> and NH<sub>2</sub>-MIL-125(Ti) for construction of bifunctional photocatalyst toward Cr(vi) and organic pollutants. It demonstrated that the as-prepared Bi<sub>2</sub>S<sub>3</sub>@NH<sub>2</sub>-MIL-125(Ti) photocatalyst exhibited an enhanced visible light photocatalytic activity for Cr(vi) reduction and RhB degradation as compared to pure NH<sub>2</sub>-MIL-125(Ti) and pure Bi<sub>2</sub>S<sub>3</sub>.

## Experiment section

### Materials and reagents

Tetra-*n*-butyl titanate (Ti(OC<sub>4</sub>H<sub>9</sub>)<sub>4</sub>) and 2-aminoterephthalic acid (H<sub>2</sub>BDC-NH<sub>2</sub>, C<sub>8</sub>H<sub>7</sub>NO<sub>4</sub>) were purchased from Aladdin Chemistry Co., Ltd. (Shanghai, China). *N*, *N*-Dimethylformamide (DMF), CH<sub>3</sub>OH, ethylene glycol (EG), K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>, and PVP (MW 40000) were obtained from Kemi European Chemical Reagent Co., Ltd. (Tianjin, China). All reagents were of analytical grade, whereas all solutions were prepared with Milli-Q ultrapure water ( $\geq 18.2$  MΩ cm).

### Preparation of Bi<sub>2</sub>S<sub>3</sub>@NH<sub>2</sub>-MIL-125(Ti) nanocomposites

Bi<sub>2</sub>S<sub>3</sub> nanorods was synthesized by according to the previous report<sup>31</sup> and NH<sub>2</sub>-MIL-125(Ti) was prepared using H<sub>2</sub>BDC-NH<sub>2</sub>

as organic linker *via* solvothermal method,<sup>10,32</sup> as described in detail in the ESI (see S1†).

To prepare Bi<sub>2</sub>S<sub>3</sub>@NH<sub>2</sub>-MIL-125(Ti) nanocomposites, a certain amount of Bi<sub>2</sub>S<sub>3</sub> (10, 50, and 100 mg) were added into beakers. Then, DMF (18 mL), methanol (2 mL), and PVP (0.5 g) were added into the beakers with stirring for 30 min under room temperature. Subsequently, 1.1 g 2-aminoterephthalic acid and 1.2 mL of tetrabutyl titanate were added into the beakers with stirring for 5 min. The resultant solution was poured into a Teflon-lined stainless-steel autoclave at 150 °C for 48 h. After reaction, the solid was centrifuged and washed repeatedly with DMF and methanol for several times and dried at 60 °C. The resultant Bi<sub>2</sub>S<sub>3</sub>@NH<sub>2</sub>-MIL-125(Ti) nanocomposites with the amount of 10, 50, and 100 mg of Bi<sub>2</sub>S<sub>3</sub> were denoted as Bi<sub>2</sub>S<sub>3</sub>@NM-10, Bi<sub>2</sub>S<sub>3</sub>@NM-50, and Bi<sub>2</sub>S<sub>3</sub>@NM-100, respectively.

### Characterizations

X-ray diffraction (XRD) measurements were performed on a Rigaku D/Max-2500 X-ray diffractometer using Cu K $\alpha$  radiation. The chemical structure and component of all sample were analyzed by Fourier transform infrared spectroscopy (FT-IR) (Bruker TENSOR27, Germany) and X-ray photoelectron spectroscopy (XPS) (Thermo Fisher ESCALAB 250Xi photoelectron spectrometer), respectively. Field emission scanning electron microscopy (FE-SEM) was conducted using a JSM-6490LV scanning electron microscope. Transmission electron microscopy (TEM) measurements were performed using a JEOL JSM-6490L V system. The UV-Visible photocatalytic apparatus used in this work is Japan model Hitachi U-3900H UV-Visible Spectrometer. The N<sub>2</sub> adsorption-desorption isotherms were conducted using a Micromeritics 3Flex surface area and pore size analyzer with a liquid nitrogen at the temperature of 77 K. The specific surface area was calculated by the Brunauer-Emmett-Teller (BET) method. Photoluminescence (PL) spectra were recorded on a Hitachi F-7000 fluorescence spectrophotometer.

### Photocatalytic activity

K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> and RhB were dissolved into deionized water to prepare Cr(vi) and RhB solution. The solution concentrations of Cr(vi) and RhB were 10 and 20 mg L<sup>-1</sup>, respectively. A 300 W Xe lamp (PLS/SXE 300C, Beijing Perfectlight Co., Ltd.) equipped with a UV cutoff filter ( $\lambda > 420$  nm) was used as the visible light source. The photocatalysts were added into the Cr(vi) and RhB solutions with continuous stirring for 30 min in the dark to achieve an adsorption-desorption equilibrium before irradiation. Afterward, the solution was irradiated under visible light with magnetic stirring. For photocatalytic analysis, 3 mL of suspensions at each given time interval were filtered with 0.45 μm filtration membrane. The concentrations of Cr(vi) were determined using colorimetry with the diphenylcarbazide as a color agent at 544 nm,<sup>22</sup> whereas those of RhB were determined by measuring the absorbance at 554 nm with UV-Vis spectrophotometer. For the recycle experiments of Cr(vi) reduction and RhB degradation, the used catalyst was collected by filtration, washed with deionized water and ethanol, and dried in a vacuum oven at 60 °C for the next run.



Different scavengers, including ethylene diamine tetraacetic acid (EDTA), isopropyl alcohol (IPA), benzoquinone (BQ), and  $K_2S_2O_8$  were used to trap hole ( $h^+$ ), hydroxyl radical ( $\cdot OH$ ), superoxide anion radical ( $O_2^-$ ), and electron ( $e^-$ ), respectively. The radical species were detected by electron spin resonance (ESR) spectrometry on a JES-FA spectrometer under visible light ( $\lambda > 420$  nm). The 5,5-dimethyl-1-pyrroline *N*-oxide (DMPO) was selected as the spin-trapping agent in ESR spectrometry.

### Electrochemical and photoelectrochemical analysis

The Mott–Schottky plots and photocurrent measurements were carried out on a CHI660D electrochemical analyzer in a traditional three electrode system, including a platinum as counter electrode, an indium-doped thin oxide (ITO) glass ( $1.5 \times 3.0$  cm) electrode as working electrode and an Ag/AgCl as reference electrode. The catalyst was dispersed and ultrasonicated in ethanol to form a homogeneous solution ( $8\text{ mg mL}^{-1}$ ). Then,  $40\text{ }\mu\text{L}$  of the solution was dropped onto the ITO glass and dried in a vacuum oven at  $60^\circ\text{C}$ . The Mott–Schottky plots were obtained in  $0.5\text{ M Na}_2\text{SO}_4$  solution in dark. Amperometric *i*-*t* curves were obtained at an applied potential of  $0.3\text{ V}$  vs. Ag/AgCl in  $0.5\text{ M Na}_2\text{SO}_4$  under visible light irradiation ( $\lambda > 420$  nm).

## Results and discussion

### Chemical and crystal structure of as-prepared samples

The XRD patterns and FT-IR spectra of the as-prepared samples are displayed in Fig. 1a and b, respectively. The XRD pattern of NH<sub>2</sub>-MIL-125(Ti) in Fig. 1a showed well-defined diffraction peaks ( $2\theta$ ) of  $6.8^\circ$ ,  $9.7^\circ$ ,  $11.6^\circ$ ,  $15.2^\circ$ , and  $19.5^\circ$ , which agreed with those of the simulated XRD pattern.<sup>32</sup> The XRD pattern of Bi<sub>2</sub>S<sub>3</sub> displayed typical  $2\theta$  at  $15.8^\circ$ ,  $17.6^\circ$ ,  $22.4^\circ$ ,  $23.7^\circ$ ,  $24.9^\circ$ ,  $25.2^\circ$ ,  $27.4^\circ$ ,  $28.7^\circ$ ,  $31.7^\circ$ ,  $32.9^\circ$ ,  $34.0^\circ$ ,  $35.7^\circ$ ,  $39.9^\circ$ ,  $45.6^\circ$ ,  $46.5^\circ$ ,  $48.3^\circ$ , and  $52.6^\circ$ , which are indexed as the diffractions of (020), (120), (220), (101), (130), (310), (021), (211), (221), (301), (311), (240), (141), (002), (431), (060), and (351) crystalline planes of Bi<sub>2</sub>S<sub>3</sub> orthorhombic phase (JCPDS card no. 17-0320).<sup>33</sup> The XRD patterns of the Bi<sub>2</sub>S<sub>3</sub>@NM samples exhibited the features of

both Bi<sub>2</sub>S<sub>3</sub> and NH<sub>2</sub>-MIL-125(Ti), in which the feature of the former became increasingly evident with its increasing amount in the nanocomposites. For Bi<sub>2</sub>S<sub>3</sub>@NM-100,  $2\theta$  were found at  $24.9^\circ$ ,  $27.4^\circ$ ,  $28.7^\circ$ , and  $31.7^\circ$ , which corresponded to the (130), (021), (211), and (221) crystal planes of Bi<sub>2</sub>S<sub>3</sub>, respectively. The XRD diffraction peaks confirmed the successful synthesis of Bi<sub>2</sub>S<sub>3</sub>@NH<sub>2</sub>-MIL-125(Ti) nanocomposites.

The strong and wide absorption band at approximately  $3443\text{ cm}^{-1}$  in Fig. 1b was attributed to the primary amines ( $-NH_2$ ) of the organic linker and the stretching vibration of the O–H groups of the adsorbed water. For Bi<sub>2</sub>S<sub>3</sub> nanorods, the absorption peaks at  $1630\text{ cm}^{-1}$  was ascribed to the C=O stretching vibration of carbamide. For NH<sub>2</sub>-MIL-125(Ti) and Bi<sub>2</sub>S<sub>3</sub>@NM nanocomposites, the absorption bands at around  $1559$  and  $1478\text{ cm}^{-1}$  were assigned to the  $\nu$  (C=C) skeletal vibration of benzene ring contained in NH<sub>2</sub>-MIL-125(Ti), whereas those at  $1293$  and  $796\text{ cm}^{-1}$  were attributed to the C–H in-plane and out-of-plane bending vibrations, respectively. These results further confirmed the existence of NH<sub>2</sub>-MIL-125(Ti) in the nanocomposite.

To identify the chemical composition and the chemical states of various as-prepared nanocomposites, XPS survey spectra were collected within the binding energy of  $1\text{ eV}$  to  $1200\text{ eV}$  (Fig. S1†). For NH<sub>2</sub>-MIL-125(Ti), the Ti 2p signal was ascribed to the metal coordination center, whereas the C 1s, N 1s, and O 1s signals were caused by the organic ligands that link coordination centers. In addition to the signals of Bi 4p, Bi 4d, Bi 4f, S 2p, and S 2s, the C 1s signal was also observed in the XPS survey scan of Bi<sub>2</sub>S<sub>3</sub>, indicating the existence of the C element of the EG residue during fabrication. In the XPS survey spectra of Bi<sub>2</sub>S<sub>3</sub>@NM samples, the occurrence of C 1s, N 1s, O 1s, Ti 2p, Bi 4f, and S 2p suggested the presence of composites of Bi<sub>2</sub>S<sub>3</sub> and NH<sub>2</sub>-MIL-125(Ti). The atomic percentages of Bi 4f and S 2p increased from  $0.04$  to  $0.19\%$  and  $0.18$  to  $1.98\%$ , respectively, with the increasing Bi<sub>2</sub>S<sub>3</sub> amounts contained in the nanocomposites (Table S1†).

The high-resolution XPS spectra of these samples are shown in Fig. 2 and S2–S4.† For NH<sub>2</sub>-MIL-125(Ti) (Fig. S2a†), the

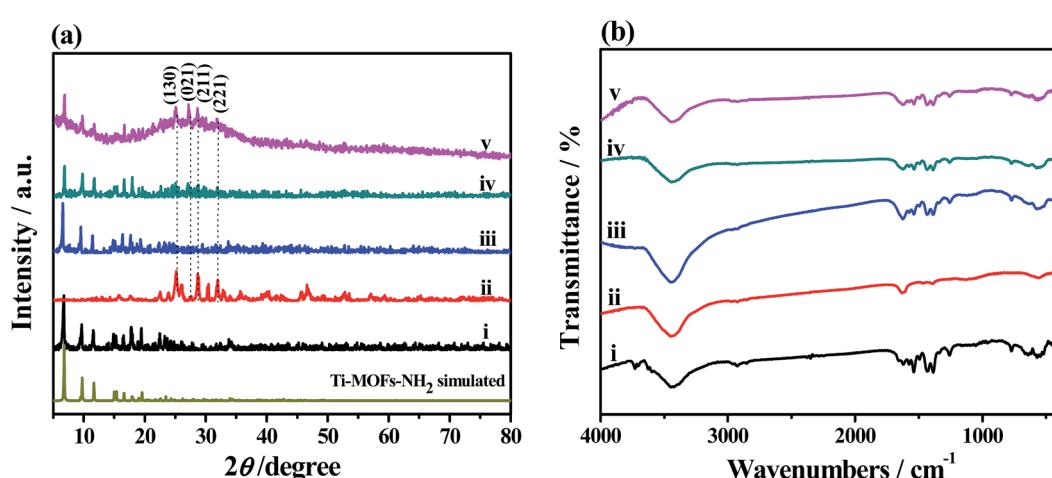



Fig. 1 (a) XRD patterns and (b) FT-IR spectra of (i) NH<sub>2</sub>-MIL-125(Ti), (ii) Bi<sub>2</sub>S<sub>3</sub>, (iii) Bi<sub>2</sub>S<sub>3</sub>@NM-10, (iv) Bi<sub>2</sub>S<sub>3</sub>@NM-50, and (v) Bi<sub>2</sub>S<sub>3</sub>@NM-100 nanocomposites.



binding energies of Ti  $2p_{3/2}$  and Ti  $2p_{1/2}$  located at 458.7 and 464.5 eV, respectively, indicating titanium bounded to oxygen remains in oxidation state IV for the titanium-oxo cluster.<sup>22</sup> The C 1s spectrum of NH<sub>2</sub>-MIL-125(Ti) (Fig. S2b†) showed four peaks at 284.6, 285.7, 287.4, and 288.7 eV, which were associated with the functional groups of C=C/C-H, C-N, C=O/N-C=O, and COO<sup>-</sup>, respectively. These functional groups were included in the ligands of NH<sub>2</sub>-MIL-125(Ti) and the residual DMF in the framework. The N 1s spectrum can be fitted into three peaks at 399.3, 400.4, and 402.9 eV (Fig. S2c†), which were contributed to C-N/N-H, N-C=O, and  $-N^{+}-$ , respectively.<sup>34</sup> For the deconvoluted XPS spectrum of the O 1s (Fig. S2d†), two peaks were observed at 529.8 and 531.6 eV, which were derived from Ti-O and -OH groups,<sup>21</sup> respectively. As for Bi<sub>2</sub>S<sub>3</sub> nanorods, the Bi  $4f_{5/2}$  and Bi  $4f_{7/2}$  at 157.5 and 162.8 eV with spin-orbit splitting of 5.3 eV were obtained in the high resolution spectrum of Bi 4f and corresponded to Bi<sup>3+</sup> of the Bi<sub>2</sub>S<sub>3</sub> nanoparticles (Fig. S3a†). The peaks at 160.2 and 161.4 eV can be ascribed to S  $2p_{3/2}$  and S  $2p_{1/2}$ , respectively. The peak centered at around 224.6 eV can be attributed to S 2s of Bi<sub>2</sub>S<sub>3</sub> (ref. 35) (Fig. S3b†). The signals of Ti 2p, Bi 4f, C 1s, N 1s, and O 1s of the

series of Bi<sub>2</sub>S<sub>3</sub>@NM samples (Fig. 2 and S4†) were found to be consistent with those of the individual NH<sub>2</sub>-MIL-125(Ti) and Bi<sub>2</sub>S<sub>3</sub>, suggesting the coexistence of the two components in the nanocomposites.

### Surface morphologies of as-prepared samples

Fig. S5 and S6† display the FE-SEM and TEM images of NH<sub>2</sub>-MIL-125(Ti) and Bi<sub>2</sub>S<sub>3</sub>, respectively. The NH<sub>2</sub>-MIL-125(Ti) elucidated truncated bipyramids and octahedron structures with smooth surfaces. Bi<sub>2</sub>S<sub>3</sub> exhibited the well-dispersed nanorods shape with a diameter of 20 to 40 nm and a length of 50 to 200 nm. The TEM and high-resolution TEM (HR-TEM) images of Bi<sub>2</sub>S<sub>3</sub> illustrated the well-resolved lattice fringes with *d*-spacing of 0.504 nm, corresponding to orthorhombic (120) lattice plane of Bi<sub>2</sub>S<sub>3</sub>. The selected area electron diffraction (SAED) pattern (inset in Fig. S6d†) indicated the well-defined crystalline of Bi<sub>2</sub>S<sub>3</sub>. Fig. 3 shows the FE-SEM, TEM, and HR-TEM images of Bi<sub>2</sub>S<sub>3</sub>@NM nanocomposites. These images suggested that the size and distribution of the Bi<sub>2</sub>S<sub>3</sub>@NM nanocomposites become small and uniform with the increasing amounts of Bi<sub>2</sub>S<sub>3</sub>. The lattice spacing at 0.329, 0.188, and

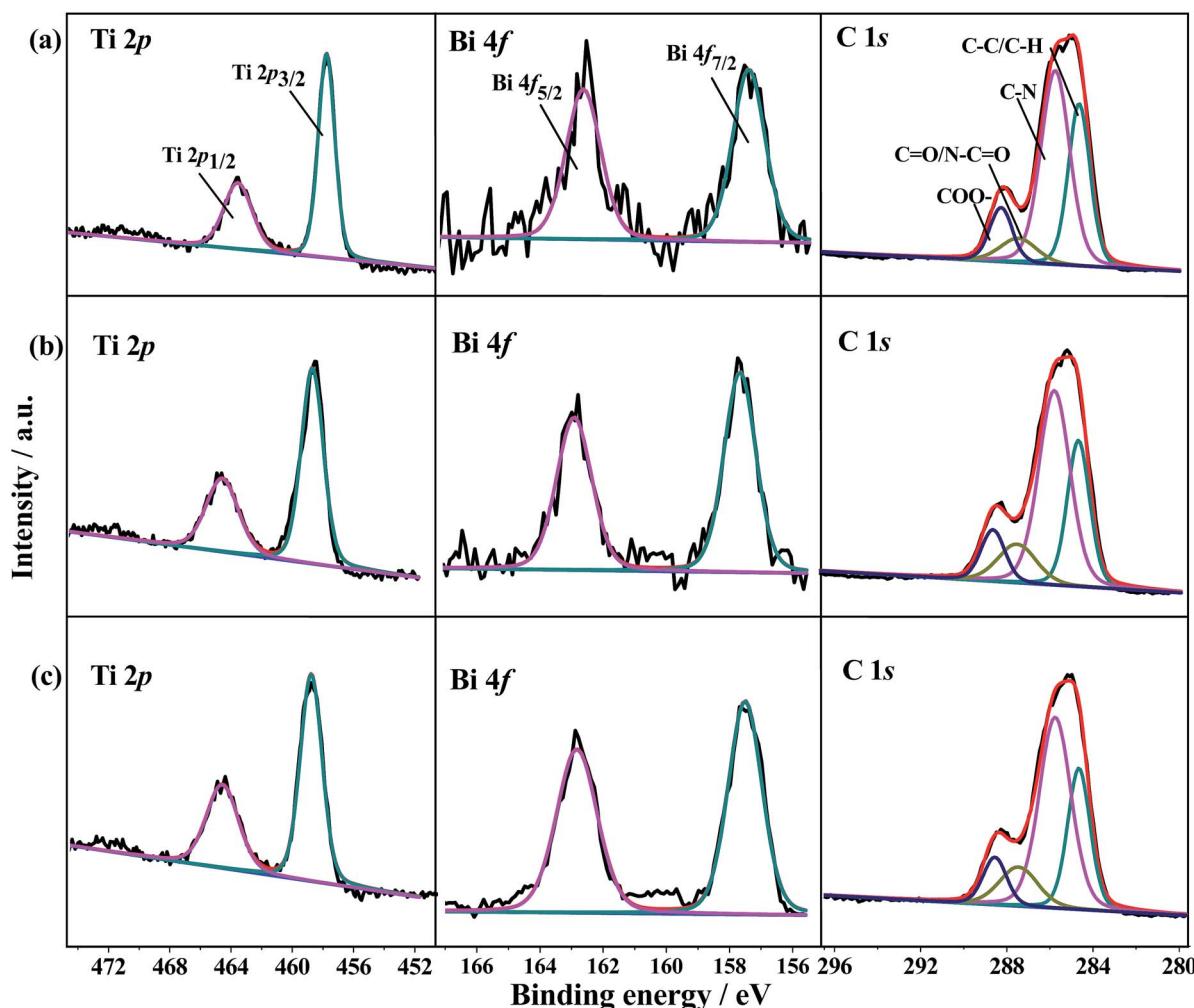



Fig. 2 Ti 2p, Bi 4f, and C 1s high resolution XPS spectra of (a) Bi<sub>2</sub>S<sub>3</sub>@NM-10, (b) Bi<sub>2</sub>S<sub>3</sub>@NM-50, and (c) Bi<sub>2</sub>S<sub>3</sub>@NM-100 nanocomposites.

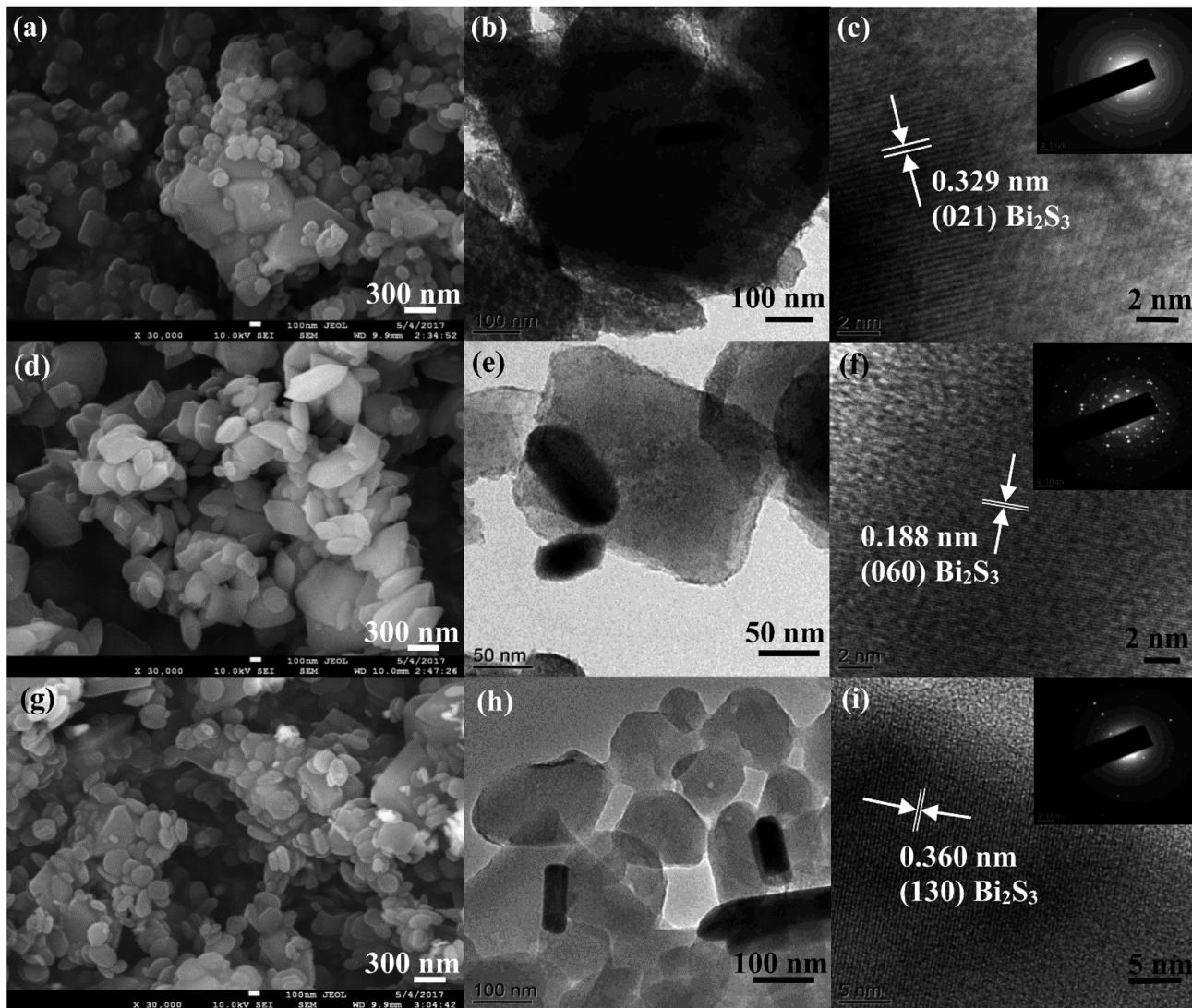



Fig. 3 FE-SEM, TEM and HR-TEM images of (a–c)  $\text{Bi}_2\text{S}_3$ @NM-10, (d–f)  $\text{Bi}_2\text{S}_3$ @NM-50, and (g–i)  $\text{Bi}_2\text{S}_3$ @NM-100 nanocomposites, respectively. The insets in (c), (f), and (i) are the corresponding SAED patterns.

0.360 nm were observed in the HR-TEM images of  $\text{Bi}_2\text{S}_3$ @NM nanocomposites, which are assigned to the (021), (060), and (130) planes of  $\text{Bi}_2\text{S}_3$ , respectively. All these results signified that the heterojunction of  $\text{NH}_2\text{-MIL-125(Ti)}$  and  $\text{Bi}_2\text{S}_3$  was formed in the nanocomposites.

$\text{N}_2$  adsorption–desorption measurements shown in Fig. S7† indicated that the  $\text{NH}_2\text{-MIL-125(Ti)}$  still maintained the porous structure after recombining with  $\text{Bi}_2\text{S}_3$ . The specific surface areas were calculated as 485.7, 560.9, and  $416.7 \text{ m}^2 \text{ g}^{-1}$  for  $\text{Bi}_2\text{S}_3$ @NM-10,  $\text{Bi}_2\text{S}_3$ @NM-50, and  $\text{Bi}_2\text{S}_3$ @NM-100 nanocomposites, respectively. The relatively high specific surface area of  $\text{Bi}_2\text{S}_3$ @NM nanocomposites was favorable to the adsorption of pollutants.

### Optical and electrochemical properties

The optical absorption properties of  $\text{NH}_2\text{-MIL-125(Ti)}$ ,  $\text{Bi}_2\text{S}_3$  and  $\text{Bi}_2\text{S}_3$ @NM nanocomposites were determined by UV-Vis DRS

(Fig. 4a). The absorption edge of  $\text{NH}_2\text{-MIL-125(Ti)}$  was at  $\sim 500 \text{ nm}$ , whereas the absorption onset of  $\text{Bi}_2\text{S}_3$  was extended at  $\sim 1000 \text{ nm}$ . The  $\text{Bi}_2\text{S}_3$ @NM nanocomposites exhibited better absorption than the pure  $\text{NH}_2\text{-MIL-125(Ti)}$  under the UV-Vis region, especially under visible light. Accordingly, the plot of  $(\alpha h\nu)^2$  versus photo energy ( $h\nu$ ) can be fitted into a linear pattern<sup>36</sup> (Fig. 4b). The band gaps of  $\text{Bi}_2\text{S}_3$ ,  $\text{NH}_2\text{-MIL-125(Ti)}$ , and  $\text{Bi}_2\text{S}_3$ @NM-10,  $\text{Bi}_2\text{S}_3$ @NM-50, and  $\text{Bi}_2\text{S}_3$ @NM-100 were calculated as 1.32, 2.68, 2.66, 2.64, and 2.59 eV, respectively. These results suggested that the introduction of  $\text{Bi}_2\text{S}_3$  in favor of visible light absorption and thus facilitated the full utilization of solar energy.

PL spectra and photocurrent measurements were used to probe the recombination of photogenerated electrons and holes and charge carrier mobility of the photocatalysts. The PL intensities of all samples were normalized for comparison.<sup>37</sup> Fig. 5a shows that the  $\text{NH}_2\text{-MIL-125(Ti)}$  exhibited the highest PL intensity and thus possessed the highest recombination rate of

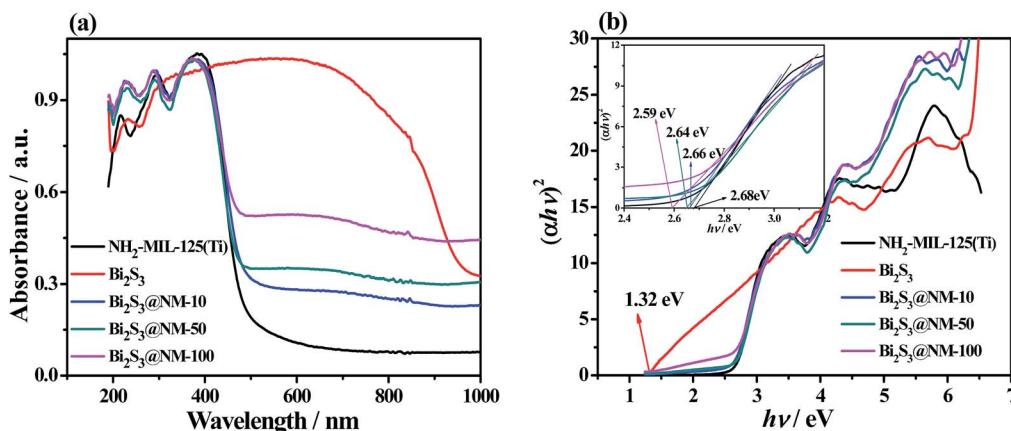



Fig. 4 (a) UV-Vis DRS and (b) the plots of  $(\alpha h\nu)^2$  versus energy  $(h\nu)$  of the NH<sub>2</sub>-MIL-125(Ti), Bi<sub>2</sub>S<sub>3</sub>, Bi<sub>2</sub>S<sub>3</sub>@NM-10, Bi<sub>2</sub>S<sub>3</sub>@NM-50, and Bi<sub>2</sub>S<sub>3</sub>@NM-100 (the inset: zoomed-in plots of the samples).

photo-induced electrons and holes. On the contrary, Bi<sub>2</sub>S<sub>3</sub> exhibited the lowest PL intensity and thus possessed the lowest recombination efficiency of photogenerated charge carrier. The PL intensities of Bi<sub>2</sub>S<sub>3</sub>@NM nanocomposites were weaker than that of the pristine NH<sub>2</sub>-MIL-125(Ti), which confirmed that the addition of Bi<sub>2</sub>S<sub>3</sub> can effectively improve the separation of photogenerated carriers. Photocurrent responses in Fig. 5b were measured under visible light in 0.5 M Na<sub>2</sub>SO<sub>4</sub> aqueous solution. Among the photocatalysts, the photocurrent density of NH<sub>2</sub>-MIL-125(Ti) was the lowest, whereas that of Bi<sub>2</sub>S<sub>3</sub> was the highest. The photocurrent responses of the Bi<sub>2</sub>S<sub>3</sub>@NM increased with the increasing dosages of Bi<sub>2</sub>S<sub>3</sub> in the nanocomposites. These results demonstrate that the separation and transfer of photogenerated carriers were improved *via* the introduction of Bi<sub>2</sub>S<sub>3</sub>.

### Photocatalytic Cr(vi) reduction

Photocatalytic activities of different catalysts were evaluated through the reduction of Cr(vi). Fig. S8a-f† and 6a show UV-Vis absorption spectra and Cr(vi) reduction using NH<sub>2</sub>-MIL-125(Ti),

Bi<sub>2</sub>S<sub>3</sub>, and various Bi<sub>2</sub>S<sub>3</sub>@NM nanocomposites at pH of 7.0. Approximately 18% of Cr(vi) was reduced by the pure NH<sub>2</sub>-MIL-125(Ti) and 48% by the pure Bi<sub>2</sub>S<sub>3</sub> after illuminating for 120 min. The Bi<sub>2</sub>S<sub>3</sub>@NM samples exhibited higher photocatalytic activity than individual NH<sub>2</sub>-MIL-125(Ti) and Bi<sub>2</sub>S<sub>3</sub>. Among the as-prepared nanocomposites, Bi<sub>2</sub>S<sub>3</sub>@NM-100 displayed the highest activity with 77% Cr(vi) removal under visible light for 120 min. As shown in Fig. 6b, the photocatalytic reactions followed the pseudo-first order reaction kinetic equation. The reaction rate was calculated by the apparent reaction rate constant (*k*) from the degradation curves of  $-\ln(C/C_0)$  versus the irradiation time. Fig. S8g† confirms the *k* values of different samples, suggesting that the reaction rates of various samples were in the following order: NH<sub>2</sub>-MIL-125(Ti) < Bi<sub>2</sub>S<sub>3</sub> < Bi<sub>2</sub>S<sub>3</sub>@NM-10 < Bi<sub>2</sub>S<sub>3</sub>@NM-50 < Bi<sub>2</sub>S<sub>3</sub>@NM-100. The *k* value of Bi<sub>2</sub>S<sub>3</sub>@NM-100 ( $0.01134 \text{ min}^{-1}$ ) is 8.86-fold that of the NH<sub>2</sub>-MIL-125(Ti) ( $0.00128 \text{ min}^{-1}$ ), and 3.57-fold that of the Bi<sub>2</sub>S<sub>3</sub> ( $0.00318 \text{ min}^{-1}$ ), indicating that the photocatalytic Cr(vi) reduction was promoted by combining the two components. Therefore, the Bi<sub>2</sub>S<sub>3</sub>@NM-100 nanocomposite was employed to

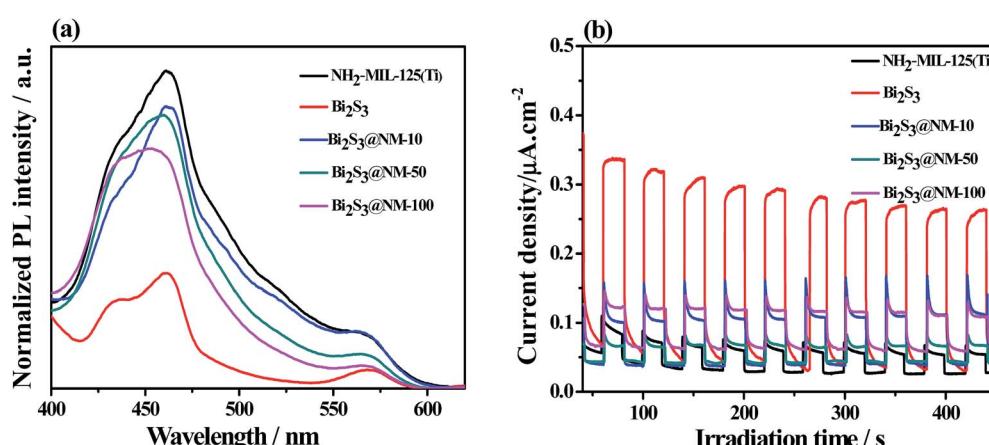



Fig. 5 (a) Photoluminescence spectra ( $\lambda_{\text{Ex}} = 350 \text{ nm}$ ) and (b) photocurrent responses of the NH<sub>2</sub>-MIL-125(Ti), Bi<sub>2</sub>S<sub>3</sub>, Bi<sub>2</sub>S<sub>3</sub>@NM-10, Bi<sub>2</sub>S<sub>3</sub>@NM-50, and Bi<sub>2</sub>S<sub>3</sub>@NM-100 nanocomposites.

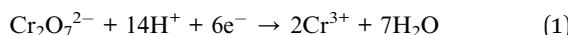


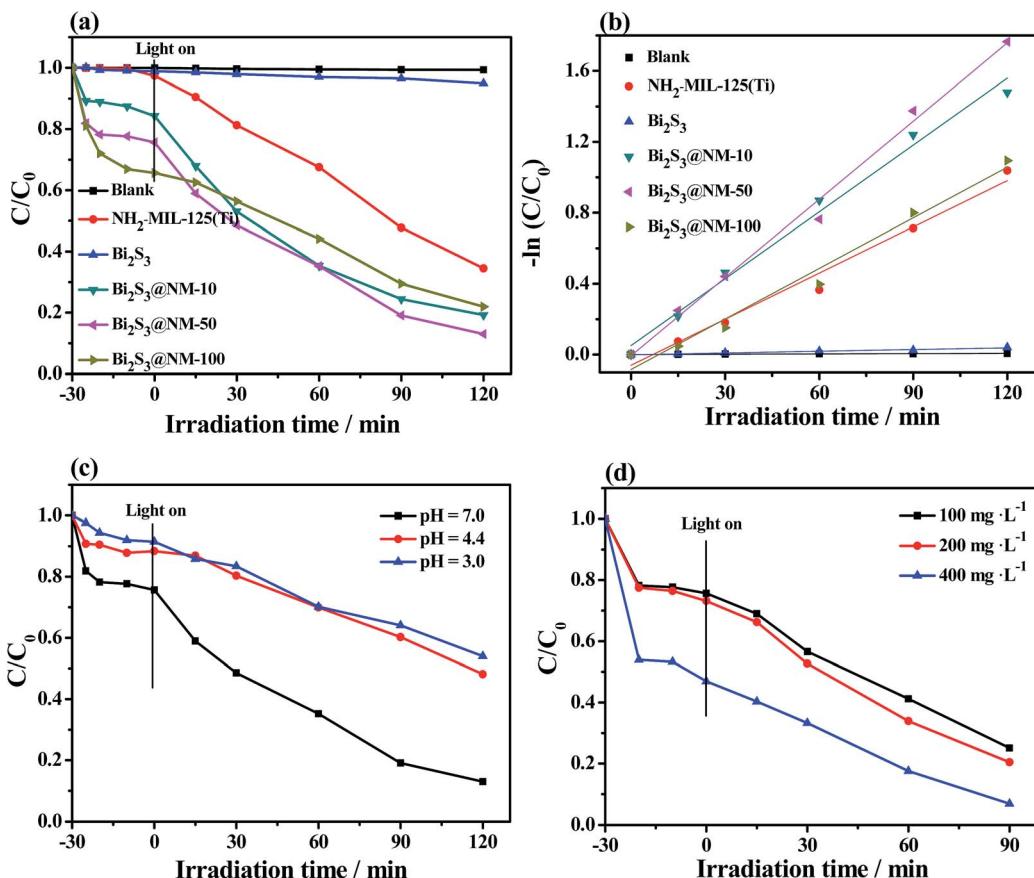



Fig. 6 (a) Photocatalytic reduction of Cr(vi) (10 mg L<sup>-1</sup>), (b) plot of  $-\ln(C/C_0)$  as a function of irradiation time using NH<sub>2</sub>-MIL-125(Ti), Bi<sub>2</sub>S<sub>3</sub>, Bi<sub>2</sub>S<sub>3</sub>@NM-10, Bi<sub>2</sub>S<sub>3</sub>@NM-50, and Bi<sub>2</sub>S<sub>3</sub>@NM-100 nanocomposites under visible (catalyst dosage: 100 mg L<sup>-1</sup>, pH = 7.0,  $\lambda > 420$  nm), (c) effects of the pH (catalyst dosage: 100 mg L<sup>-1</sup>) and (d) catalyst dosage (pH = 3.0) on the photoreduction of Cr(vi) by Bi<sub>2</sub>S<sub>3</sub>@NM-100 nanocomposite.

further investigate the photocatalytic activity in the following work.

The influence of the pH value on the photocatalytic reduction of Cr(vi) was considered. As shown in Fig. 6c, the Cr(vi) reduction efficiency was the highest with pH of 3.0, revealing that an acid medium was beneficial to Cr(vi) reduction because Cr<sub>2</sub>O<sub>7</sub><sup>2-</sup> or HCrO<sub>4</sub><sup>-</sup> are the major species of Cr(vi) with low pH value. In this case, the Cr(vi) reduction occurred following the eqn (1).<sup>38</sup>




Additionally, the effect of catalyst dosage on the photocatalytic Cr(vi) reduction was assessed at pH 3.0 (Fig. 6d). When the catalyst dosage was increased to 400 mg L<sup>-1</sup>, Bi<sub>2</sub>S<sub>3</sub>@NM-100 removed 100% of the Cr(vi) under visible light in 90 min.

### Photocatalytic RhB degradation

Photocatalytic activities of various samples were further tested through the photocatalytic degradation of RhB (Fig. 7 and S9a-f†). The pure Bi<sub>2</sub>S<sub>3</sub> nanorods showed almost no photocatalytic activity for the RhB degradation, whereas NH<sub>2</sub>-MIL-125(Ti) exhibited good photocatalytic performance. The enhanced photocatalytic degradation efficiency of RhB was observed over

Bi<sub>2</sub>S<sub>3</sub>@NM nanocomposites (Fig. 7a). The photocatalytic degradation of RhB also followed a pseudo-first order relationship ( $-\ln(C/C_0) = kt$ ) (Fig. 7b). The photodegradation activity and *k* value (Fig. S9g†) toward RhB followed the order: Bi<sub>2</sub>S<sub>3</sub> < NH<sub>2</sub>-MIL-125(Ti) < Bi<sub>2</sub>S<sub>3</sub>@NM-100 < Bi<sub>2</sub>S<sub>3</sub>@NM-10 < Bi<sub>2</sub>S<sub>3</sub>@NM-50. The results illustrated that Bi<sub>2</sub>S<sub>3</sub>@NM-50 exhibited the highest photocatalytic activity toward RhB degradation. The catalytic efficiency for RhB degradation is improved when the Bi<sub>2</sub>S<sub>3</sub> amount increased from 10 to 50 mg. However, when the Bi<sub>2</sub>S<sub>3</sub> amount was further increased to 100 mg, the photodegradation efficiency for RhB slightly decreased, but is still higher than that of Bi<sub>2</sub>S<sub>3</sub> and NH<sub>2</sub>-MIL-125(Ti). The *k* value of Bi<sub>2</sub>S<sub>3</sub>@NM-100 (0.00951 min<sup>-1</sup>) is 1.09-fold that of the NH<sub>2</sub>-MIL-125(Ti) (0.00868 min<sup>-1</sup>), and 29.2-fold that of the Bi<sub>2</sub>S<sub>3</sub> (0.0003256 min<sup>-1</sup>). This response was slightly different from the reduction of Cr(vi), in which Bi<sub>2</sub>S<sub>3</sub>@NM-100 was the best photocatalyst. Additionally, the UV-Vis absorbance (Fig. S9†) decreased gradually with the irradiation time and the maximum shift from 554 nm to the low wavelength of ~530 nm, indicating the stepwise degradation of RhB and the reaction of de-ethylated in the process.<sup>39</sup>

The effect of pH and catalyst dosage on the photocatalytic degradation of RhB was investigated using the Bi<sub>2</sub>S<sub>3</sub>@NM-50 sample. Fig. 7c and d show that the optimum experimental



**Fig. 7** (a) Photocatalytic degradation of RhB ( $20 \text{ mg L}^{-1}$ ), (b) plot of  $-\ln(C_t/C_0)$  as a function of irradiation time using  $\text{NH}_2\text{-MIL-125(Ti)}$ ,  $\text{Bi}_2\text{S}_3$ ,  $\text{Bi}_2\text{S}_3@\text{NM-10}$ ,  $\text{Bi}_2\text{S}_3@\text{NM-50}$ , and  $\text{Bi}_2\text{S}_3@\text{NM-100}$  nanocomposites under visible light (catalyst dosage:  $100 \text{ mg L}^{-1}$ , pH = 7.0,  $\lambda > 420 \text{ nm}$ ), (c) effect of pH (catalyst dosage:  $100 \text{ mg L}^{-1}$ ) and (d) catalyst dosage (pH = 7.0) on the degradation of RhB by  $\text{Bi}_2\text{S}_3@\text{NM-50}$ .

conditions for photocatalytic degradation of RhB were pH 7.0 and catalyst dosage of  $400 \text{ mg L}^{-1}$ . In this case, about 90% RhB can be degraded in 90 min. These results revealed that  $\text{Bi}_2\text{S}_3@\text{NM-50}$  nanocomposites were promising materials for the simultaneous decontamination of Cr(vi) and RhB.

#### Photoactivity of the simultaneous decontamination of Cr(vi) and RhB

The simultaneous photocatalytic Cr(vi) reduction and RhB degradation over  $\text{Bi}_2\text{S}_3@\text{NM-100}$  were performed in the Cr(vi) ( $10 \text{ mg L}^{-1}$ )/RhB ( $5 \text{ mg L}^{-1}$ ) system with pH 3.0 (Fig. 8 and S10†). After introduction of RhB in the system, high photocatalytic activity toward Cr(vi) reduction and completely removal of Cr(vi) was achieved in 90 min. The first-order reaction rate constant  $k$  value with coexistence of RhB ( $0.04785 \text{ min}^{-1}$ ) was higher than that without RhB ( $0.02279 \text{ min}^{-1}$ ). The removal rate of RhB increased with coexistence of Cr(vi). These results suggested a synergistic effect between photocatalytic Cr(vi) reduction and RhB degradation.

#### Stability of photocatalyst samples

The stability of the as-prepared photocatalyst was investigated by repeating the photocatalytic reduction Cr(vi) and degradation

of RhB for five cycles. As illustrated in Fig. 9, the removal efficiency of Cr(vi) was still 100% after three cycles and around 81% after five cycles. The photocatalytic efficiency of RhB degradation was still 92% in the fifth cycle. FT-IR, XRD, and XPS spectra were obtained to evaluate the chemical stability and durability of the as-synthesized photocatalyst after the fifth cycle. No substantial change was observed in FT-IR spectra (Fig. S11a†) of the recycled samples as compared with those of the fresh  $\text{Bi}_2\text{S}_3@\text{NM-100}$ . As shown in Fig. S11b,† the XRD patterns of the recycled samples presented the main diffraction peaks of  $\text{NH}_2\text{-MIL-125(Ti)}$  ( $2\theta = 6.8^\circ$ ) and  $\text{Bi}_2\text{S}_3$  ( $2\theta = 24.9^\circ$ ,  $27.4^\circ$ , and  $28.7^\circ$ ), further confirming the good durability of the as-prepared photocatalyst. The XPS survey spectra of the  $\text{Bi}_2\text{S}_3@\text{NM-100}$  before and after the cycling test mainly showed the peaks of C 1s, N 1s, O 1s, Ti 2p, Bi 4f, and S 2p species (Fig. S11c†). In addition, a weak additional peak was found at 577.1 eV, which indicated the existence of Cr 2p. As illustrated in Fig. S11d,† the Cr 2p XPS spectrum can be curve-fitted with four components; among which, the peaks located at 577.1 and 579.9 eV were assigned to Cr 2p<sub>3/2</sub> orbitals, whereas those at 586.4 and 589.2 eV were designated to Cr 2p<sub>1/2</sub> orbitals. The peaks at 577.1 and 586.4 eV were assigned to Cr(III), indicating the photoreduction of Cr(vi) under visible light. The peaks at 579.9 and 589.2 eV are regarded

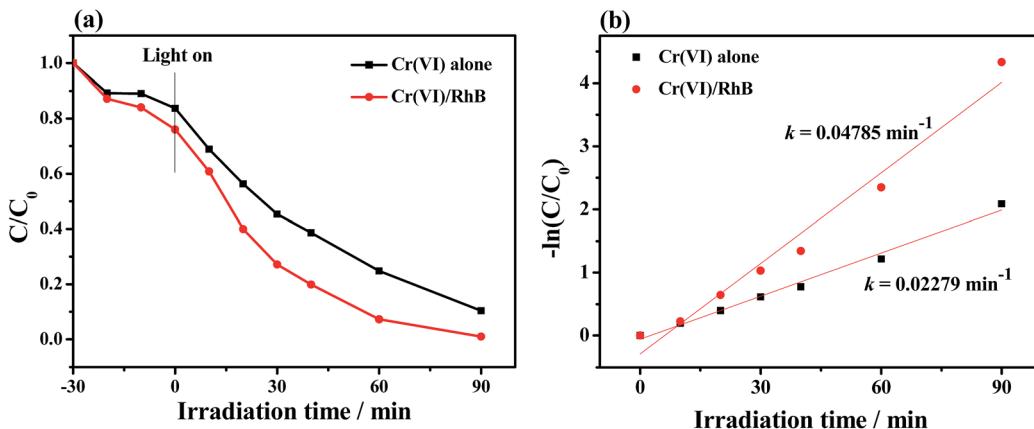



Fig. 8 Photocatalytic reduction (a) and reduction kinetics of Cr(VI) (b) with and without RhB using  $\text{Bi}_2\text{S}_3@\text{NM-100}$  sample (initial concentrations of Cr(VI):  $10 \text{ mg L}^{-1}$  and RhB:  $5 \text{ mg L}^{-1}$ , photocatalyst dosage:  $200 \text{ mg L}^{-1}$ ,  $\text{pH} = 3.0$ ).

as the residual Cr(VI) adsorbed on the photocatalyst surface.<sup>40</sup> Compared with that of the fresh sample, the surface morphologies of  $\text{Bi}_2\text{S}_3@\text{NM-100}$  after five cycling runs (Fig. S12†) showed only slight roughness. All these results indicated good durability and stability of these photocatalysts.

### Mechanism of the photocatalytic Cr(VI) reduction and RhB degradation

Trapping experiments of active species were conducted for the  $\text{Bi}_2\text{S}_3@\text{NM-100}$  nanocomposite to investigate the possible reaction mechanism. For photocatalytic Cr(VI) reduction (Fig. 10a), the removal efficiency decreased with the addition of  $\text{K}_2\text{S}_2\text{O}_8$ , a scavenger of photo-induced electrons. Photo-generated electrons play an important role in the photoreduction of Cr(VI). The photoreduction efficiency of Cr(VI) was enhanced by the addition of EDTA, which served as the hole scavenger and promoted the separation of photo-induced electron-hole pairs. Fig. 10a also shows that the  $\text{N}_2$  purging inhibited the Cr(VI) reduction. The dissolved  $\text{O}_2$  can react with

the photoexcited electrons to produce  $\text{O}_2^{\cdot-}$ , which can further reduce Cr(VI). Therefore,  $\text{N}_2$  purging in the solution suppressed the reaction rate, whereas  $\text{O}_2^{\cdot-}$  was a crucial active radical in the photocatalytic Cr(VI) reduction. For the photocatalytic degradation of RhB, the active species of  $\text{h}^+$ ,  $\cdot\text{OH}$ , and  $\text{O}_2^{\cdot-}$  were tested by introducing EDTA, IPA, and BQ, respectively. As depicted in Fig. 10b, the degradation efficiency of RhB decreased with the addition of EDTA, IPA, and BQ, suggesting that the  $\text{h}^+$ ,  $\cdot\text{OH}$ , and  $\text{O}_2^{\cdot-}$  influenced the photodegradation of RhB. Among these chemicals, BQ had the most critical effect, indicating  $\text{O}_2^{\cdot-}$  as the predominant active species for the photocatalytic degradation of RhB.

ESR analyses were conducted to further investigate the existence of  $\text{O}_2^{\cdot-}$  and  $\cdot\text{OH}$ , and the results are displayed in Fig. 11. After exposure under visible light for 10 min, six characteristic peaks of the DMPO- $\text{O}_2^{\cdot-}$  adducts and four characteristic peaks of the DMPO- $\cdot\text{OH}$  adducts<sup>41</sup> over  $\text{NH}_2\text{-MIL-125}(\text{Ti})$ ,  $\text{Bi}_2\text{S}_3$ , and  $\text{Bi}_2\text{S}_3@\text{NM-100}$  were observed in Cr(VI) (Fig. 11a) and RhB solutions (Fig. 11b). These findings showed that  $\text{O}_2^{\cdot-}$  and  $\cdot\text{OH}$  active species were produced during photocatalysis,

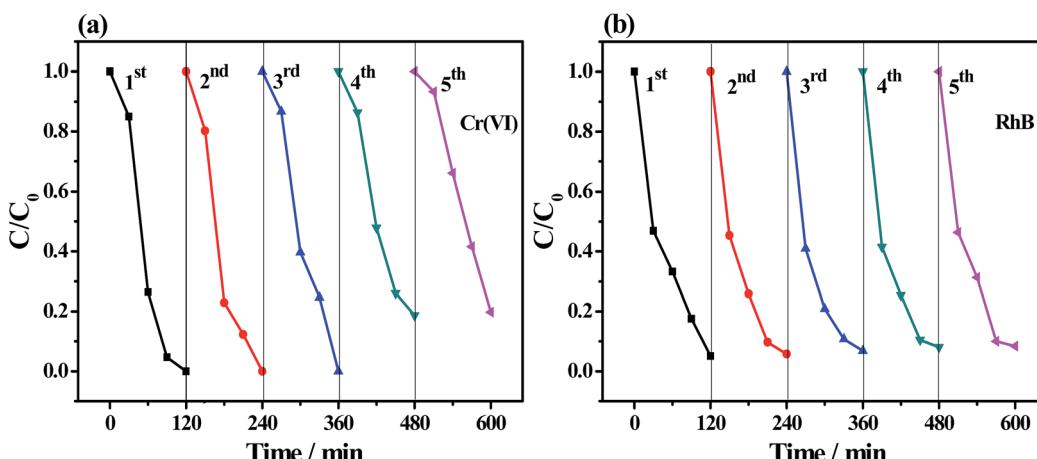



Fig. 9 Recycled test of  $\text{Bi}_2\text{S}_3@\text{NM-100}$  for (a) photocatalytic reduction of Cr(VI) (initial concentration:  $10 \text{ mg L}^{-1}$ , photocatalyst dosage:  $200 \text{ mg L}^{-1}$ ,  $\text{pH} = 3.0$ ) and (b) photocatalytic degradation of RhB (initial concentration:  $20 \text{ mg L}^{-1}$ , photocatalyst dosage:  $200 \text{ mg L}^{-1}$ ,  $\text{pH} = 7.0$ ).



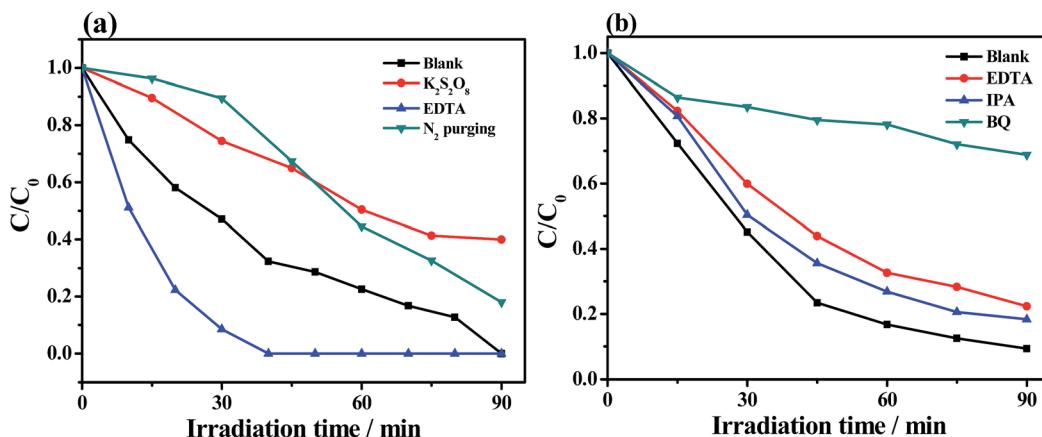



Fig. 10 Photocatalytic activity of the  $\text{Bi}_2\text{S}_3@\text{NM-100}$  for (a) Cr(vi) reduction (initial concentration:  $20 \text{ mg L}^{-1}$  photocatalyst dosage:  $200 \text{ mg L}^{-1}$ ,  $\text{pH} = 3.0$ ) and (b) RhB degradation (initial concentration:  $10 \text{ mg L}^{-1}$ , photocatalyst dosage:  $200 \text{ mg L}^{-1}$ ,  $\text{pH} = 7.0$ ) with different scavengers under light irradiation.

and the radical intensity catalyzed by  $\text{Bi}_2\text{S}_3@\text{NM-100}$  was higher than those by both pristine  $\text{NH}_2\text{-MIL-125(Ti)}$  and  $\text{Bi}_2\text{S}_3$ . Furthermore,  $\text{Bi}_2\text{S}_3@\text{NM-100}$  can highly generate active radicals. These results revealed that the combination of  $\text{Bi}_2\text{S}_3$  and  $\text{NH}_2\text{-MIL-125(Ti)}$  had synergistic effect for RhB degradation. In addition, the ESR signals of  $\text{DMPO-O}_2^{\cdot-}$  and  $\text{DMPO-OH}^{\cdot}$  over  $\text{Bi}_2\text{S}_3@\text{NM-100}$  with Cr(vi)/RhB coexistence were detected (Fig. 12). The results revealed that the Cr(vi)/RhB coexistence system exhibited the highest radical intensity, verifying the synergistic effects of the photocatalytic removal of Cr(vi) and RhB under visible light.

The Mott-Schottky plots were used to study the band structure of  $\text{NH}_2\text{-MIL-125(Ti)}$  and  $\text{Bi}_2\text{S}_3$  (Fig. S13†). The positive slope of  $\text{NH}_2\text{-MIL-125(Ti)}$  showed that the sample was an n-type semiconductor, giving a flat-band potential of  $-0.70 \text{ V}$  versus  $\text{Ag/AgCl}$  ( $-0.49 \text{ V}$  vs. normal hydrogen electrode, NHE).<sup>42</sup> Given that the conduction band edge is often considered more negative by approximately  $0.1 \text{ V}$  than its flat-band potential for n-type semiconductors,<sup>43</sup> the conduction band (LUMO) of  $\text{NH}_2\text{-MIL-125(Ti)}$  can be deduced at approximately  $-0.59 \text{ V}$  (vs. NHE). Therefore, the valence band (HOMO) of the sample can be estimated as  $2.09 \text{ V}$  (vs. NHE) using the formula:  $E_{\text{VB}} = E_{\text{CB}} + E_{\text{g}}$ . Herein,  $E_{\text{g}}$  is  $2.68 \text{ eV}$  for  $\text{NH}_2\text{-MIL-125(Ti)}$  from the UV-Vis DRS result.  $\text{Bi}_2\text{S}_3$  also behaved as an n-type semiconductor (Fig. S13b†) with a narrow band gap ( $E_{\text{g}} = 1.32 \text{ eV}$ ), and the conduction band (CB) and valence band (VB) positions can be calculated as  $0.30$  and  $1.62 \text{ V}$  (vs. NHE), respectively. The deduced conduction band and valence band positions for  $\text{NH}_2\text{-MIL-125(Ti)}$  and  $\text{Bi}_2\text{S}_3$  were close to those in the previous reports.<sup>27,44</sup> The values of the calculated conduction band, valence band, and  $E_{\text{g}}$  for various samples are listed in Table S2.† The high conduction band and valence band positions of  $\text{Bi}_2\text{S}_3@\text{NM}$  nanocomposites were observed upon increasing the  $\text{Bi}_2\text{S}_3$  amounts.

Based on the above investigations, a possible mechanism of simultaneous Cr(vi) reduction and RhB degradation over the as-prepared photocatalyst was proposed (Fig. 13).  $\text{NH}_2\text{-MIL-125(Ti)}$  and  $\text{Bi}_2\text{S}_3$  semiconductors form an n-n-type heterojunction,

and both of them can be excited under visible light. According to their band gap structures, photoexcited electrons can transfer from  $\text{NH}_2\text{-MIL-125(Ti)}$  to  $\text{Bi}_2\text{S}_3$ . The photo-induced electrons were accumulated to reduce Cr(vi) to Cr(III), whereas the photo-induced holes were accumulated for RhB degradation. These

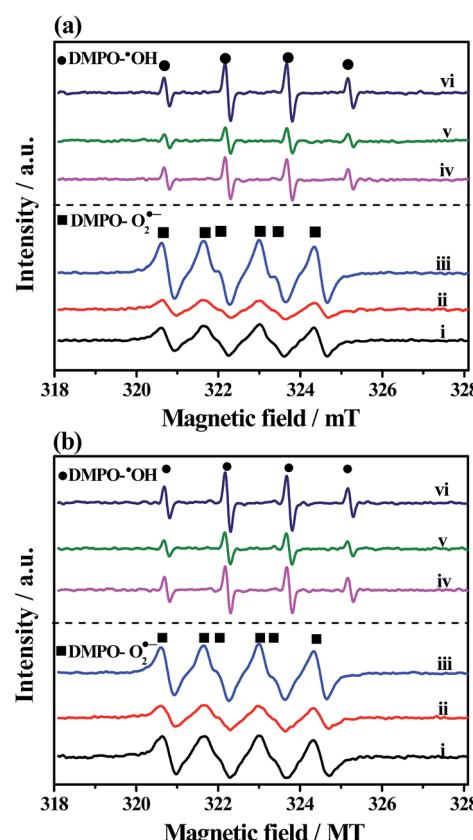



Fig. 11 ESR spectra of  $\text{DMPO-O}_2^{\cdot-}$  and  $\text{DMPO-OH}^{\cdot}$  in (a) Cr(vi) and (b) RhB solution under visible light ( $\lambda > 420 \text{ nm}$ ) for  $10 \text{ min}$ , including (i) and (iv) for  $\text{NH}_2\text{-MIL-125(Ti)}$ , (ii) and (v) for  $\text{Bi}_2\text{S}_3$ , (iii) and (vi) for  $\text{Bi}_2\text{S}_3@\text{NM-100}$ .

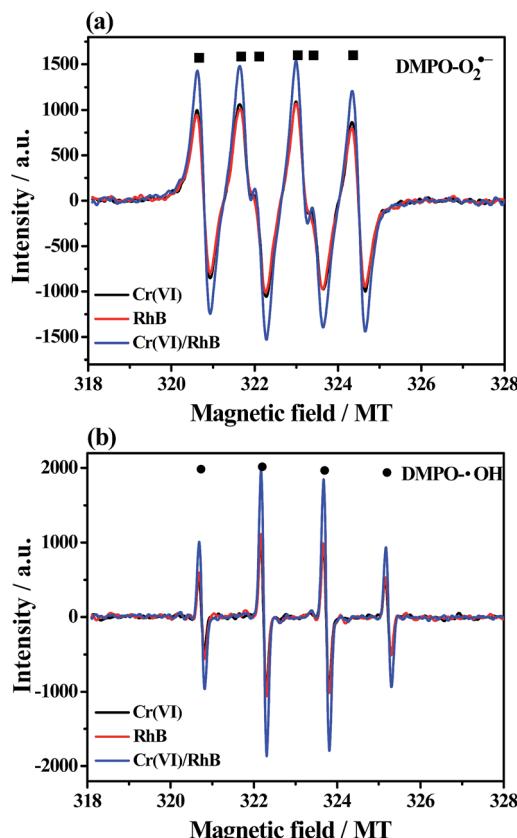



Fig. 12 ESR spectra of (a) DMPO- $\text{O}_2^-$  and (b) DMPO- $\cdot\text{OH}$  formed over  $\text{Bi}_2\text{S}_3@\text{NM-100}$  in Cr(vi), RhB, and Cr(vi)/RhB coexistence systems under visible light ( $\lambda > 420$  nm) for 10 min.

findings revealed that the coexistence of Cr(vi) and RhB was favorable in avoiding recombination and promoting the migration of photogenerated charge carriers. In addition, the conduction band (LUMO) of  $\text{NH}_2\text{-MIL-125}(\text{Ti})$  ( $-0.59$  V vs. NHE) is more negative than the potential of  $\text{O}_2/\text{O}_2^-$  ( $-0.046$  V vs. NHE)<sup>45</sup> thus, the photo-induced electrons can react with

dissolved  $\text{O}_2$  to yield  $\text{O}_2^-$ .<sup>46</sup> After interacting with  $\text{H}_2\text{O}$  molecules, the  $\text{O}_2^-$  could produce  $\cdot\text{OH}$ .<sup>47</sup> In addition, the photo-induced holes ( $\text{h}^+$ ) could directly oxidize the RhB molecules. These active species ( $\text{O}_2^-$ ,  $\cdot\text{OH}$ , and  $\text{h}^+$ ) can induce RhB oxidation. Thus, the n-n-type  $\text{Bi}_2\text{S}_3@\text{NH}_2\text{-MIL-125}(\text{Ti})$  heterojunction was a good photocatalyst for the simultaneous photocatalytic Cr(vi) reduction and RhB degradation.

## Conclusions

In summary, a series of  $\text{Bi}_2\text{S}_3@\text{NH}_2\text{-MIL-125}(\text{Ti})$  heterojunctions were prepared *via* solvothermal method and used as a bifunctional photocatalysts for Cr(vi) reduction and RhB oxidation under visible light irradiation. As a photosensitizer,  $\text{Bi}_2\text{S}_3$  improved the visible light absorption and narrowed the band-gap of  $\text{Bi}_2\text{S}_3@\text{NH}_2\text{-MIL-125}(\text{Ti})$  nanocomposite to 2.59 eV. Cr(vi) photocatalytic reduction rate was 8.86-fold that of the  $\text{NH}_2\text{-MIL-125}(\text{Ti})$  and 3.57-fold that of the  $\text{Bi}_2\text{S}_3$ , whereas the photocatalytic degradation rate toward RhB was 1.09-fold that of the  $\text{NH}_2\text{-MIL-125}(\text{Ti})$  and 29.2-fold that of the  $\text{Bi}_2\text{S}_3$  over  $\text{Bi}_2\text{S}_3@\text{NM-100}$  photocatalyst. It indicates the synergistic effect between two components is present and significantly improves photocatalytic activity. The detailed reaction mechanism analysis suggests that the photoexcited electrons transfer from  $\text{NH}_2\text{-MIL-125}(\text{Ti})$  to  $\text{Bi}_2\text{S}_3$  through  $\text{Bi}_2\text{S}_3@\text{NH}_2\text{-MIL-125}(\text{Ti})$  heterojunction with well-matched band gap structure, which suppress charge recombination and enhanced photocatalytic activity. Moreover, cycle experiments showed that the as-prepared photocatalyst had good stability and reusability. This work is useful for the rational design of bifunctional photocatalysts based on semiconductor/MOF heterostructures, which have great potentiality in decontamination of heavy metal ions and organic pollutants in the wastewater.

## Conflicts of interest

There are no conflicts to declare.

## Acknowledgements

The present work is supported by Programs for the National Natural Science Foundation of China (NSFC: Account No. U1604127, 21601161 and 21571159), and Innovative Technology Team of Henan Province.

## References

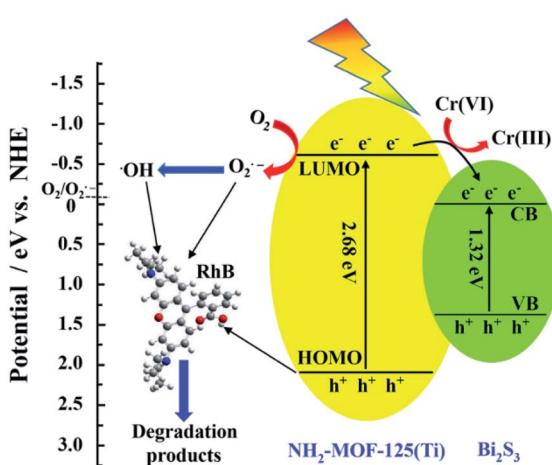



Fig. 13 Schematic diagram of simultaneous Cr(vi) and RhB decontamination over  $\text{Bi}_2\text{S}_3@\text{NH}_2\text{-MIL-125}(\text{Ti})$  under visible light.

- 1 J. Wang, C. Cui, Y. Li, L. Liu, Y. Zhang and W. Shi, *J. Hazard. Mater.*, 2017, **339**, 43–53.
- 2 C. Yang, J. Qin, Z. Xue, M. Ma, X. Zhang and R. Liu, *Nano Energy*, 2017, **41**, 1–9.
- 3 D. Lu, P. Fang, W. Wu, J. Ding, L. Jiang, X. Zhao, C. Li, M. Yang, Y. Li and D. Wang, *Nanoscale*, 2017, **9**, 3231–3245.
- 4 C. Wang, D. Liu and W. Lin, *J. Am. Chem. Soc.*, 2013, **135**, 13222–13234.



- 5 T. Rodenas, I. Luz, G. Prieto, B. Seoane, H. Miro, A. Corma, F. Kapteijn, F. X. Llabrés I Xamena and J. Gascon, *Nat. Mater.*, 2014, **14**, 48–55.
- 6 J. E. Bachman, M. T. Kapelewski, D. A. Reed, M. I. Gonzalez and J. R. Long, *J. Am. Chem. Soc.*, 2017, **139**, 15363–15370.
- 7 J. Y. Kim, R. Balderas-Xicohténcatl, L. Zhang, S. G. Kang, M. Hirscher, H. Oh and H. R. Moon, *J. Am. Chem. Soc.*, 2017, **139**, 15135–15141.
- 8 J. Hu, H. Cai, H. Ren, Y. Wei, Z. Xu, H. Liu and Y. Hu, *Ind. Eng. Chem. Res.*, 2010, **49**, 12605–12612.
- 9 J. Ye and J. K. Johnson, *Catal. Sci. Technol.*, 2016, **6**, 8392–8405.
- 10 Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu and Z. Li, *Angew. Chem.*, 2012, **124**, 3420–3423.
- 11 K. Jiang, L. Zhang, Q. Hu, Q. Zhang, W. Lin, Y. Cui, Y. Yang and G. Qian, *Chem.-Eur. J.*, 2017, **23**, 10215–10221.
- 12 W. Chen, X. Yu, W. Liao, Y. S. Sohn, A. Ceccanello, A. Kozell, R. Nechushtai and I. Willner, *Adv. Funct. Mater.*, 2017, **27**, 1702102.
- 13 J. Liu, T. Bao, X. Yang, P. Zhu, L. Wu, J. Sha, L. Zhang, L. Dong, X. Cao and Y. Lan, *Chem. Commun.*, 2017, **53**, 7804–7807.
- 14 Z. Jin, W. Dong, M. Yang, J. Wang, H. Gao and G. Wang, *ChemCatChem*, 2016, **8**, 3510–3517.
- 15 T. Araya, M. Jia, J. Yang, P. Zhao, K. Cai, W. Ma and Y. Huang, *Appl. Catal., B*, 2017, **203**, 768–777.
- 16 D. Shi, R. Zheng, M. Sun, X. Cao, C. Sun, C. Cui, C. Liu, J. Zhao and M. Du, *Angew. Chem., Int. Ed.*, 2017, **56**, 14637–14641.
- 17 R. Liang, F. Jing, L. Shen, N. Qin and L. Wu, *J. Hazard. Mater.*, 2015, **287**, 364–372.
- 18 X. Xu, R. Liu, Y. Cui, X. Liang, C. Lei, S. Meng, Y. Ma, Z. Lei and Z. Yang, *Appl. Catal., B*, 2017, **210**, 484–494.
- 19 Z. Li, J. Xiao and H. Jiang, *ACS Catal.*, 2016, **6**, 5359–5365.
- 20 J. G. Santaclara, M. A. Nasalevich, S. Castellanos, W. H. Evers, F. C. M. Spoor, K. Rock, L. D. A. Siebbeles, F. Kapteijn, F. Grozema, A. Houtepen, J. Gascon, J. Hunger and M. A. van der Veen, *ChemSusChem*, 2016, **9**, 388–395.
- 21 H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen, L. Leng and H. Li, *Appl. Catal., B*, 2015, **174**, 445–454.
- 22 H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen, L. Leng, Z. Wu, L. Jiang and H. Li, *J. Hazard. Mater.*, 2015, **286**, 187–194.
- 23 S. Zhu, P. Liu, M. Wu, W. Zhao, G. Li, K. Tao, F. Yi and L. Han, *Dalton Trans.*, 2016, **45**, 17521–17529.
- 24 H. Yu, J. Wang, T. Wang, H. Yu, J. Yang, G. Liu, G. Qiao, Q. Yang and X. Cheng, *CrystEngComm*, 2017, **19**, 727–733.
- 25 S. Wang, X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi and H. Chen, *Adv. Mater.*, 2015, **27**, 2775–2782.
- 26 X. Gao, H. B. Wu, L. Zheng, Y. Zhong, Y. Hu and X. W. D. Lou, *Angew. Chem.*, 2014, **126**, 6027–6031.
- 27 N. Liang, J. Zai, M. Xu, Q. Zhu, X. Wei and X. Qian, *J. Mater. Chem. A*, 2014, **2**, 4208–4216.
- 28 L. Shen, S. Liang, W. Wu, R. Liang and L. Wu, *J. Mater. Chem. A*, 2013, **1**, 11473–11482.
- 29 X. Zeng, L. Huang, C. Wang, J. Wang, J. Li and X. Luo, *ACS Appl. Mater. Interfaces*, 2016, **8**, 20274–20282.
- 30 R. Liang, F. Jing, L. Shen, N. Qin and L. Wu, *Nano Res.*, 2015, **8**, 3237–3249.
- 31 Z. Ge, B. Zhang, Z. Yu and B. Jiang, *CrystEngComm*, 2012, **14**, 2283–2288.
- 32 M. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez and G. Férey, *J. Am. Chem. Soc.*, 2009, **131**, 10857–10859.
- 33 B. Sun, F. Qiao, L. Chen, Z. Zhao, H. Yin and S. Ai, *Biosens. Bioelectron.*, 2014, **54**, 237–243.
- 34 D. Sun, W. Liu, Y. Fu, Z. Fang, F. Sun, X. Fu, Y. Zhang and Z. Li, *Chem.-Eur. J.*, 2014, **20**, 4780–4788.
- 35 Z. Fang, Y. Liu, Y. Fan, Y. Ni, X. Wei, K. Tang, J. Shen and Y. Chen, *J. Phys. Chem. C*, 2011, **115**, 13968–13976.
- 36 M. A. Butler, *J. Appl. Phys.*, 1977, **48**, 1914–1920.
- 37 O. Akhavan and E. Ghaderi, *Nanoscale*, 2013, **5**, 10316–10326.
- 38 Y. Deng, L. Tang, G. Zeng, Z. Zhu, M. Yan, Y. Zhou, J. Wang, Y. Liu and J. Wang, *Appl. Catal., B*, 2017, **203**, 343–354.
- 39 B. Feng, Z. Wu, J. Liu, K. Zhu, Z. Li, X. Jin, Y. Hou, Q. Xi, M. Cong, P. Liu and Q. Gu, *Appl. Catal., B*, 2017, **206**, 242–251.
- 40 H. Ma, Y. Zhang, Q. Hu, D. Yan, Z. Yu and M. Zhai, *J. Mater. Chem.*, 2012, **22**, 5914–5916.
- 41 F. Lin, D. Wang, Z. Jiang, Y. Ma, J. Li, R. Li and C. Li, *Energy Environ. Sci.*, 2012, **5**, 6400–6406.
- 42 S. Yuan, T. Liu, D. Feng, J. Tian, K. Wang, J. Qin, Q. Zhang, Y. Chen, M. Bosch, L. Zou, S. J. Teat, S. J. Dalgarno and H. Zhou, *Chem. Sci.*, 2015, **6**, 3926–3930.
- 43 J. Huang, Q. Shang, Y. Huang, F. Tang, Q. Zhang, Q. Liu, S. Jiang, F. Hu, W. Liu, Y. Luo, T. Yao, Y. Jiang, Z. Pan, Z. Sun and S. Wei, *Angew. Chem.*, 2016, **128**, 2177–2181.
- 44 C. H. Hendon, D. Tiana, M. Fontecave, C. Sanchez, L. D. Arras, C. Sassooye, L. Rozes, C. Mellot-Draznieks and A. Walsh, *J. Am. Chem. Soc.*, 2013, **135**, 10942–10945.
- 45 B. Wang, J. Di, P. Zhang, J. Xia, S. Dai and H. Li, *Appl. Catal., B*, 2017, **206**, 127–135.
- 46 Q. Liang, J. Jin, M. Zhang, C. Liu, S. Xu, C. Yao and Z. Li, *Appl. Catal., B*, 2017, **218**, 545–554.
- 47 J. Xie, Y. Cao, D. Jia and Y. Li, *J. Colloid Interface Sci.*, 2017, **503**, 115–123.