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ng approach towards the
prediction of protein–ligand binding affinity based
on fundamental molecular properties†

Indra Kundu,a Goutam Paul *b and Raja Banerjee *c

There is an exigency of transformation of the enormous amount of biological data available in various forms

into some significant knowledge. We have tried to implement Machine Learning (ML) algorithm models on

the protein–ligand binding affinity data already available to predict the binding affinity of the unknown. ML

methods are appreciably faster and cheaper as compared to traditional experimental methods or

computational scoring approaches. The prerequisites of this prediction are sufficient and unbiased

features of training data and a prediction model which can fit the data well. In our study, we have

applied Random forest and Gaussian process regression algorithms from the Weka package on protein–

ligand binding affinity, which encompasses protein and ligand binding information from PdbBind

database. The models are trained on the basis of selective fundamental information of both proteins and

ligand, which can be effortlessly fetched from online databases or can be calculated with the availability

of structure. The assessment of the models was made on the basis of correlation coefficient (R2) and

root mean square error (RMSE). The Random forest model gave R2 and RMSE of 0.76 and 1.31

respectively. We have also used our features and prediction models on the dataset used by others and

found that our model with our features outperformed the existing ones.
Introduction

The cardinal goal of drug discovery is to design and deliver
selective compounds against individual biological targets. In
general, it takes about 15 years and up to 800 million dollars to
convert a promising new compound into a drug.1 The
approaches and methodologies used in drug design have been
changed over time. In an early stage of the drug discovery
process, the focus is on reducing the number of drug candidates
and this problem has been deciphered using computational
approaches.2 A drug is a small molecule which activates or
inhibits the function of protein, as proteins are one of the
popular targets for the drug designing process.3 The interaction
between a protein and ligand is specic. These specic molec-
ular interactions between proteins and its ligand plays crucial
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role to a broad spectrum of biological functions.4–6 Predicting
interactions between ligand and proteins is an indispensable
element in the drug discovery process.3,7

In order to perform a rapid search for molecules that may
bind to targets of biological interest computational techniques
such as structure based drug designing (SBDD) is carried out,
which includes structure based virtual screening (SBVS) or
molecular docking followed by Molecular Dynamics.3,8,9

Molecular docking is one of the most frequently used methods
because of its ability to predict the conformation and affinity of
ligand binding to the target site, with a substantial degree of
accuracy.10,11 Docking methods effectively search high-
dimensional spaces for plausible interaction and use
a scoring function that correctly ranks the candidate.12

Although the results of docking are specic and reliable;
however, screening of umpteen molecules maneuvering every
step of docking can be wearisome. As docking is a time
consuming process, it could be worth it if some faster methods
can be employed to predict whether a molecule can bind the
biologically active target molecule to initiate the biological
function. Towards the end, Machine Learning (ML)13 tech-
niques can be an alternative choice.

Machine learning algorithms build a model from training
inputs in order to make data-driven predictions or decisions,
expressed as outputs.13,14 These methods will statistically
analyze the correlation between chemical structures and inter-
action status of known protein and ligand pairs to derive
RSC Adv., 2018, 8, 12127–12137 | 12127
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statistical models for predicting the status of other unknown
compounds.15 It does not demand the explicit program for the
learning procedure of the machine. Supervised prediction can
be based on either classication or regression.16 Classication
is used when the discrete value is to be predicted, whereas
regression is used where the values are diverse and cannot be
predicted exactly hence, accuracy is measured on the basis of
closeness of predicted value to true value. Prediction of binding
energy value requires regression algorithm and predicting the
feasibility of interaction can be fullled by classication. Other
than this, statistical learning method has recently been used for
classication of G-protein coupled receptors and DNA-binding
proteins. It has also been employed in a number of other
protein structure, interaction prediction studies including fold
recognition,17 protein–protein interaction prediction,18,19

solvent accessibility20 and structure prediction.21

However, studies combining the spheres of protein–ligand
interactions and machine learning conducted till date were
mostly focused on a particular protein or a particular class of
proteins. Laurent Jacob et al. carried out a study involving
targets with no or few known ligands and succeeded in pre-
dicting enzymes and GPCR with an accuracy of 86.2% and
77.6% respectively.22 Masayuki Yarimizu et al. accomplished
a study using Support Vector Machine (SVM) on tyrosine
receptor and predicted whether a molecule is a ligand of the
tyrosine receptor or not with a very high accuracy, AUC was
0.996.23 The study is focused on tyrosine kinases. Laurent Jacob
et al.22 andMasayuki Yarimizu et al.23 usedML for classication,
where there is binary class i.e. yes or no. For prediction of
discrete value ML regression is employed.13,14,16 Xue et al.24 uti-
lised regression for prediction of binding energy in terms of
log K using SVM models, their study was focused on drugs
against a single protein, human serum albumin.

In order to utilize the application of ML in much broader
aspect beyond a particular protein or particular class of
proteins, in this paper, we have addressed this issue over
a heterogeneous class of proteins with variety of ligands and
trained the machine so as to predict the preferable interaction
through calculation of binding energy. To the best of our
knowledge, such an effort would be reported for the rst time.
We have used Weka 3.6.8,16,25,26 which is a popular data mining
tool that provides various machine learning algorithms.

Receptors which were diverse in their molecular function,
biological process, and cellular component were considered.
Deng et al.27 used a diverse dataset of 105 protein–ligand
complexes, Kramer and Gedeck28 used pdbbind version 2009,
whereas Wang et al.29 did a wide range study on pdbbind
benchmark version 2007 and 2012. We have used pdbbind
dataset version 2015 for our study in which we obtained corre-
lation coefficient (R2) and root mean square error (RMSE) 0.76
and 1.31 respectively. We have also tested our model and
features on the protein–ligand list used by Wang et al.,29 Deng
et al.,27 Xue et al.24 and Kramer and Gadeck28 and have
successfully recorded a better correlation coefficient of 0.75,
0.75, 0.86, and 0.72 than the reported 0.67, 0.64, 0.63 and 0.69
respectively.
12128 | RSC Adv., 2018, 8, 12127–12137
Materials and methods
Dataset

All the protein–ligand binding affinity data were acquired from
the PdbBind Database.30,31 The database (v2015) comprises of
binding energy for all types of biomolecular complexes available
in RCSB.32 Hence, it bridges structural information with the
binding affinity of complexes. We have focused only on the
protein–ligand complexes, excluding protein–nucleic acid and
protein–protein complexes. There were 11 987 instances of
protein and ligand. Binding affinity data was available in terms
of Ki (inhibition constant), Kd (dissociation constant), IC50,
EC50. We have taken into account the instances having activity
in terms of either Ki or Kd, rejecting those which have the
activity in terms of assay dependent IC50 or EC50. The dataset
was further rened by excluding the ligands which had
incomplete structure. Proteins which bind to isomers, peptide
like compounds, and more than one compound or have metal
ions as cofactors were also eliminated. Our nal dataset
consists of 2864 instances, which comprises proteins of diverse
class listed in ESI S1.† There, we have given the classication of
the proteins used by us on the basis of their functions. They are
of diverse types and the data is non-redundant in the sense that
no two rows are exactly the same – either the protein or the
ligand is different. Training and testing set are assigned
randomly but we have also reported blind set validation.

Our primary goal was to develop a tool which can be used in
the very initial stage of drug discovery process for predicting
potential candidates. As diverse drugs act on a diverse set of
enzymes, therefore we focused on training machine on heter-
ogenous class of protein which are both functionally and
structurally diverse. We have used pdbbind version 2015 for our
study. Wang et al.29 did a similar study using 2012 version but
they did not eliminate isomers or incomplete ligand structure,
whereas we have included even the low-resolution structure.
Despite the dataset being created from the same source our
dataset varies a lot listed in ESI S1.† We have used their exact
training and test dataset for one generic and 3 family specic
dataset namely HIV protease, trypsin, carbonic anhydrase with
our features. Other than this we have also compared our
features on the dataset used by Deng et al.27 and Xue et al.24

Our dataset has 2864 rows and 128 columns. The rows
represent the protein–ligand pair whereas the columns are their
properties. Each row of the Dataset can be represented as X11,
X21,., Y1, where x are the features and y is the class that will be
predicted by our models. Our Dataset can be represented as
follows 2

664
X11 X21 / X1271 Y1

X12 X22 / X1272 Y2

« « « « «
X12864 X22864 / X1272864 Y2864

3
775

Machine learning algorithms will nd the pattern which will
t x and create a function f(x) that can predict y for a new x.
This journal is © The Royal Society of Chemistry 2018
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Table 1 Features details and their source

Molecule Features Source

Protein Amino acid percentage Calculated
from Fasta
les31

Accessible surface of
protein

DSSP36

Number of hydrogen bonds
in antiparallel bridges and
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Features extraction

Training a machine is highly dependent on features. Feature
selection must be done with utmost care. Drug binding is an
extremely selective process; it depends on the shape, size,
constitutional makeup, and physicochemical properties of both
drug and its target.33 We have calculated total 127 features and
all the features are very common, so they can be effortlessly
calculated for any new or unexplored protein or ligand listed in
ESI S2.†
parallel bridges
Number of hydrogen bonds
of type O(I) / H–N(I-5),
O(I) / H–N(I-4), O(I) /
H–N(I-3), O(I) / H–N(I-2),
O(I) / H–N(I-1), O(I) /
H–N(I+0), O(I)/H–N(I+1),
O(I) / H–N(I+2), O(I) /
H–N(I+3), O(I)/H–N(I+4),
O(I) / H–N(I+5)
Number of chains
Number of ss bridge
Number of residues

Ligand Atom count: C, N, O, H, S,
P, Cl, F, Br, I

Padel
descriptors42

Bond count: number of
single, double, triple bond
including and excluding
hydrogens
Ring count: number of 3, 4,
5, 6, 7, 8, 9 atom/carbon
rings, aromatic rings, fused
hetero rings, fused homo
ring
Physicochemical
properties: complexity,
log p, hbond donor, hbond
acceptor, topological
surface area, mol. wt

Pubchem41
For proteins

Global features refer to the features considering the entire
protein. We have used the entire protein instead of features of
only pockets and cavities. Our aim is to train a machine with the
features that are easily calculable using merely the receptor.
Calculating features of the cavity demands the information of
the cavity. For the cavity information, we either need to have
a co-crystallized structure of a protein with its ligand or we can
try in silico methods. Both of the methods are well known but
are time-consuming, here we are presenting a method in which
can skip a few steps and reach the binding energy prediction
relatively faster.

Amino acid sequence. The unique amino acid sequence of
one protein is oen referred to as its primary structure. Protein
primary sequence is guided and specied by nucleotides
present in the gene. Each amino acid is encoded by particular
triplet set of codons. Native conformation of a protein is
determined by the interatomic interactions along with the
amino acid sequence, in a given environment.34 Chemical
reactivity of an individual protein is dened by the type and
spatial orientation of surface accessible amino acid side
chains.35 Conformation, therefore, determines protein func-
tion, especially its interaction with ligand. Consequently,
knowledge of primary sequence might play a crucial role to
predict conformation as well as its interactive properties.

Protein secondary structure. Proteins secondary structure,
stabilised through the local interactions among the adjacent
residues are giving rise to a particular geometry by repetitive
approach. Instead of considering coordinates of each atom
present in the system, in order to minimise the computation
time, we have selected a few special characteristics functional
features (e.g.molecular weight, number of chains, number of ss
bridges, and number of various types of secondary structure like
helices, sheets; as mentioned in Table 1 of the protein of
interest to build a prediction model towards feasibility of
protein–ligand interaction. These features were calculated
using programme DSSP.36

Accessible surface area. Solvent plays a crucial role in the
interactions of proteins with their ligands. Solvent-accessible
surface area (SASA) is the area of the protein that is directly in
contact with solvent.37 Interaction of protein with ligand
generally involves an entropically favored displacement of
solvent molecules from the protein and ligand surfaces and an
enthalpically favored reorganization between the protein and
ligand along with the solvent molecule.38 SASA of the receptor is
also calculated from DSSP programme.36
This journal is © The Royal Society of Chemistry 2018
For ligands

A drug sweeps thorough blood vessel, gastrointestinal uids,
small intestine before reaching its active site. As Lipinski
et al.39,40 explained, a drug molecule must have the absorption,
distribution, metabolism, excretion, and toxicity (ADMET)
properties so as to qualify as a successful candidate. All these
responses of a chemical compound are intrinsic and is a result
of the combination of its various physical and chemical prop-
erties. Therefore, for dening a drug we have included all its
physicochemical properties available in pubchem41 along with
that few structural properties, which were calculated using
a tool Padel Descriptor.42 We have includedmajor 2-d properties
of a small molecule along with physicochemical properties
which dene a molecule and differentiate it with others. List of
features and their source is represented in Table 1 and details of
the features are also listed in ESI S2.†

We haven't included intermolecular interaction features as
we are going to use this prediction method in the very initial
stage, prior to the formation of protein–ligand complex and
considering the fact that binding intermolecular distance or
RSC Adv., 2018, 8, 12127–12137 | 12129
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constitution can only be generated using the complex structure.
The presence of the complex structure validates that either
computational molecular docking or experiment is already
done, hence no need to get the binding affinity using this
prediction model.
Prediction models

Weka v3.8.0 (ref. 25 and 26) was used in our study. 2864 instances
with 128 features were trained using Gaussian process,43 linear
regression,44 multilayer perceptron,45,46 SMO regression,47,48 K-
star,49 and Random forest.50 It is tested for 10-fold cross-validation.
i.e. for each fold there are 286 instances for testing while rest 2578
are used for training. For the next fold another 286 instances are
selected for testing and the rest used for training.
Random forest model

Random forest (RF), introduced by Breiman50 is based on
bagging i.e. bootstrap aggregation. It divides the entire dataset
into subsets and builds a random tree for each subset which is
called bootstrap sampling and runs prediction test on each
sample tree, the nal prediction result is the amalgamation of
prediction of each Random Tree. In addition to bagging, RF
splits the dataset on features. Each tree will be trained on
a minimum of features that is K. The entire training dataset is N
in number and there will be I number of random trees. For
constructing a tree, a node is selected at random from the
features set and growing the tree, each parent node is split into
daughter nodes on the basis of best split considering informa-
tion gain that is needed to be present in the data of the node.

Information gain ¼ entropy (parent node) � [average entropy

(daughter node)]

where entropy ¼ �P
pi log2 pi

Moreover, p is the probability of class.
Gaussian process model

In a multivariate data, any point in space is a vector ~x having
components X1, X2, .Xn. Gaussian Process (GP)43 by denition
is a collection of random variables of any nite number which
have consistent joint Gaussian distribution which is fully
specied by its mean function (m) and covariance function (ref).

This can be represented as2
664

X1

X2

«
X127

3
775 � GP

2
664

m1

m2

«
m127

3
775;

2
664

C1;1 C1;2 / C1;127

C2;1 C2;2 / C2;127

« « « «
C127;1 C127;2 / C127;127

3
775

where X1, X2., Xn are the components of vector ~x which
describe the features while m1, m2. mn are component of ~m
which is the mean of corresponding feature. The matrix is the
covariance matrix, each of its diagonal elements are variance of
corresponding feature whereas the rest elements are their
respective covariance. Covariance function characterizes corre-
lations between different points in the space.
12130 | RSC Adv., 2018, 8, 12127–12137
For making prediction utilizing Gaussian Process, we have
used various kernels. Kernels basically calculate how 2 points
x1!; x2! in space are related which is termed as the covariance
here. We have studied polykernel, normalised polykernel, and
RBF kernel.

Polykernel. Polynomial kernel looks into the similarity of two
input vectors on the basis of their dot product of the vectors. For
a p degree of polynomial, it is dened as
kpðx1!; x2!Þ ¼ ððxT1

!
; x2
!Þ þ 1Þp. In weka the parameter exponent

controls the degree of polynomial. The default degree is set to 1,
however we have toggled that to nd a function which best ts
our data.

Normalised polykernel. It is an extension of polykernel. This

is dened as knpðx1!; x2!Þ ¼ kpðx1!; x2!Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1!$x1!Þðx2!$x2!Þ2

p , the parameter

exponent is same as the polykernel.
RBF kernel. Radial basis function (RBF) kernel uses the

squared Euclidean distance function between two feature vectors

in space. This can be dened as kRðx1!; x2!Þ: ¼ e
�
�gjjx1!�x2

!jj2
�
, where

the parameter gamma is 0.01 by default.

Multilayer perceptron model

Multilayer perceptron (MLP)45,46 model is an Articial Neural
Network model. Neural Network mimics biological neurons. Each
element of input vector can be seen as single dendrite which have
the information and it passes the information to the perceptron
neuron. The perceptron forms a linear combination of inputs and
their weights to computes an output and then the output calcu-
lation continues through an activation function. The classier uses
back propagation error to nd the optimised weights. These per-
ceptron makes up the hidden layer, there are more than one per-
ceptron in a multilayer perceptron model to t non-linearly
separable data. Number of hidden layers can be dened in
weka's MLP function.

SMO model

SMOmodel in weka 3.6.8 (ref. 25 and 26) is based upon sequential
minimal optimisation (SMO) algorithm47 for training a support
vector classier. Support vector machines (SVM) are learning
algorithms that nds a hyperplane which separates the features of
multiple classes of data. The points that are closest to the sepa-
rator have nonzeroweights and the rest have zero. The points with
nonzero weights are called the support vectors because they hold
up the separating plane. SVM uses kernel (same as Gaussian
Process model), it implicitly maps the original data to a feature
space of possibly innite dimension in which data which is not
separable in the original space becomes separable in the feature
space. SMO algorithm quickly solves the SVM quadratic problem
without any extra matrix storage and without invoking an iterative
numerical routine for each sub-problem.

Model evaluation

Internal 10-fold cross-validation and a blind set validation was
implemented for prediction of binding affinity of protein–ligand
pair. Cross-validation allows each instance of the dataset to be
This journal is © The Royal Society of Chemistry 2018
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tested once for prediction, hence it is purely an unbiased basis for
testing efficiency of a model. The performance of each model was
evaluated using correlation coefficient (R2) and Root Mean Square
Error (RMSE).

Error (E) ¼ actual binding affinity (AA) � predicted binding

affinity (AP)

Mean actual binding affinity,

AA ¼ 1

N

XN
i¼1

AAðiÞ

Mean predicted binding affinity,

AP ¼ 1

N

XN
i¼1

APðiÞ

Relative percentage error ¼ E

AA

� 100;

Mean error,

E ¼ 1

N

XN
i¼1

Ei;

Mean Square Error ðMSEÞ ¼ 1

N

XN
i¼1

Ei
2;

Root Mean Square Error ðRMSEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
MSE

p

Correlation coefficient
�
R2

� ¼
XN
i¼1

AAi
� AA

� �
APi � AP

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

AAi
� AA

� �2 XN
i¼1

APi � AP

� �s
Fig. 1 (a) Random forest algorithm's performance analysis. Change in co
algorithm's performance analysis. Change in correlation coefficient with

This journal is © The Royal Society of Chemistry 2018
Comparative study

In addition to testing the prediction models on our own dataset,
we have drawn a comparison using our features with few of
already published dataset. Xue et al.24 used 94 drugs against
human serum albumin and have used SVM models for predic-
tion the binding affinity. Deng et al.27 has used 105 diverse
protein–ligand complexes and Wang et al.29 used pdbbind
version 2012. Wang et al.29 had compared their model with
various state of art prediction models with their Random forest
model and concluded their model outperformed others. We
have used the same list of proteins and ligands used by these
authors and extracted our list of features for them. They have
also tested their model on the basis R2 and RMSE. We have
chosen their best R2 value for comparing with our result.
Results
Performance analysis

Machine learning algorithm incorporated in Weka 3.6.8
package25,26 has been used. It has some default parameters;
however, we have also tried to optimise parameters according to
the need of our dataset, and hence we are able to predict our
binding energy with better correlation and lesser error. Below
we present a summary of the regression algorithms used.
Random forest

Random forest is an ensemble of various Decision Trees.50 The
number of trees to be generated can be dened by the user.Weka's
default value of the number of tree generation is 100. We have
changed the parameter and recorded the correlation coefficient for
each model. We have observed an increase in the correlation
coefficient with the increase in number of trees; however, it is not
increasing much aer 300, so we have used 400 trees for our
subsequent determination of number of features to be used per
tree.

When the number of features is set to 0 (default setting), then
the actual number of features is calculated as log2((127) + 1) ¼ 7.
We observed that 400 iterations with 30 features in each iteration
rrelation coefficient with change in number of trees. (b) Random forest
change in number of features with number of iterations fixed at 400.

RSC Adv., 2018, 8, 12127–12137 | 12131
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Fig. 2 Scatter plot for actual vs. predicted binding affinity of v2015
dataset using Random forest with 400 iterations having 30 features in
each.
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gave the best result, shown in Fig. 1a and b, with R2 ¼ 0.7651 and
error 1.31 molar (M). Variance was xed at default 0.001 and the
number of instances per leaf was set to 1 to reduce the probabi-
listic conditions. The correlation plot of actual vs. predicted
binding affinity using the above-mentioned parameters is shown
in Fig. 2.
Gaussian process

Gaussian process43 regression models utilizing normalised poly-
kernel and RBF (Radial Basis Function) kernels were used in our
study. In normalised polykernel, the degree of polynomial is
assigned by a parameter named exponent. Weka 3.6.8 (ref. 25 and
26) package have 2.0 as default exponent, using that we got
correlation coefficient 0.6505 and RMSE 1.53, we kept increasing
stepwise and nally observed 20-degree polynomial gave the best
results, correlation coefficient 0.7386 and RMSE 1.36 (Fig. 3a). In
RBF kernel the parameter g was set to 0.01 which gave correlation
coefficient 0.5626 and RMSE 1.57. We further adjusted the
parameter to get better results. When g is set to 2, it gave the best
results with correlation coefficient 0.7327 and RMSE 1.38 (Fig. 3b).
Fig. 3 (a) Gaussian process algorithm's performance analysis. Change in t
polykernel, (b) change in the correlation Coefficient with change in g va

12132 | RSC Adv., 2018, 8, 12127–12137
Other models

Other than Random forest and Gaussian Process, we also used
multilayer perceptron, SMO, and K-star prediction models.
multilayer perceptron and Linear regression did not suit our
data well. We observed that the maximum number of instances
have relative error less than 20%. Out of 2864, the number of
instances that gave relative error less than 20% is 1938, 1932,
1896 and 1525 respectively in Random forest,50 SMO,47 Gaussian
process43 and multilayer perceptron45,46 (Fig. 4). For less than
250 instances, we are getting more than 50% relative error. SMO
and Random forest models are equally good with our data,
however a slight difference is that 2 instances had 200% relative
error in Random forest model and the number is 8 for SMO and
9 for Gaussian Process. This makes Random forest model better
than the rest. We can see that multilayer perceptron is not
performing well, 361 instances had relative error more than
50%. Out of 2864 instances, 2570 instances had error less than
0.2 log units of actual energy, which implies a signicant
prediction result.
Comparative results

We have ne-tuned the algorithms to nd out the best perfor-
mance. We have observed that Random forest50 is out-
performing all other algorithms. Wang et al.,29 Deng et al.27 and
Xue et al.24 studied prediction of protein–ligand binding
affinity. We have used the instances from their datasets and
calculated the features that we used in our study.

Xue et al.24 had used 94 drugs against human serum
albumin, we have also used human serum albumin against 91
drugs as 3 drugs were obsolete at present and we could not nd
their information. Xue et al.24 used Support Vector Machine
(SVM) regression using RBF kernel for their study, so for this
dataset we have also used SMO models, which is the SVM
regression algorithm incorporated in Weka 3.6.8.25,26 We got
a better correlation coefficient 0.86 as compared to their re-
ported correlation coefficient 0.63 for 10-fold cross-validation
(Fig. 5a). They have trained the machine for drugs against
single protein human serum albumin, we can conclude that ML
he correlation coefficient with change in exponent value of normalised
lue of RBF kernel.

This journal is © The Royal Society of Chemistry 2018
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Fig. 4 A comparison of percentage of relative error among algorithms used.

Fig. 5 (a) Scatter plot for actual vs. predicted log K of Xue's dataset using SMO utilising RBF kernel over 10-fold cross-validation. (b) Scatter plot
for actual vs. predicted binding affinity of Deng's dataset using Random forest over 10-fold cross validation. (c) Scatter plot for actual vs. predicted
binding affinity of Wang's dataset using Random forest. (d) Scatter plot for actual vs. predicted binding affinity of Kramer's dataset using Random
forest.
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models can predict protein–ligand interaction with one protein
and many ligand with very minimal error, RMSE 0.114.

Deng et al.27 were one of the initiators of carrying out
prediction study over diverse class of proteins. They had used
This journal is © The Royal Society of Chemistry 2018
105 diverse protein–ligand complex and we also have used the
same complexes with our calculated features. We have used
Random forest prediction models50 for prediction test. We got
a better correlation coefficient 0.75 as compared to their
RSC Adv., 2018, 8, 12127–12137 | 12133
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Table 2 Comparison table

Authors Training instances Test/method Their result Our result

C. X. Xue, J. Chem. Inf.
Comput. Sci., 2004 (ref. 24)

Human serum albumin; 95
drugs

Training set R2 ¼ 0.94: RMSE ¼ 0.134 R2 ¼ 0.1; RMSE ¼ 0.0059
Supplied test set R2 ¼ 0.89: RMSE ¼ 0.222 R2 ¼ 0.987: RMSE ¼ 0.114
Cross validation R2 ¼ 0.63 R2 ¼ 0.867

Wei Deng, J. Chem. Inf.
Comput. Sci., 2004 (ref. 27)

105 (diverse) complexes Cross validation R2 ¼ 0.64 R2 ¼ 0.756

Christian Kramer and Peter
Gedeck, J. Chem. Inf. Model.,
2011 (ref. 28)

Pdbbind v2009; 1387
complexes

Cross validation R2 ¼ 0.69 R2 ¼ 0.72

Yu Wang, J. Comput.–Aided
Mol. Des., 2014 (ref. 29)

Hiv protease 136 Supplied test set 34 R2 ¼ 0.728: RMSE ¼ 1.05 RF: R2 ¼ 0.69: RMSE ¼ 1.07
DT: R2 ¼ 0.74: RMSE ¼ 1.08

Trypsin 88 Supplied test set 22 R2 ¼ 0.871: RMSE ¼ 0.61 RF: R2 ¼ 0.85: RMSE ¼ 0.69
Kstar: R2 ¼ 0.873: RMSE ¼
0.65

Carbonic anhydrase 100 Supplied test set 26 R2 ¼ 0.790: RMSE ¼ 0.92 R2 ¼ 0.8078: RMSE ¼ 0.8867
V2012 2318 Supplied test set 579 R2 ¼ 0.678: RMSE ¼ 1.46 R2 ¼ 0.7564: RMSE ¼ 1.299

Fig. 6 Bar graph for the correlation coefficient and RMSE (both rounded off to two decimal places) of the prediction models. A comparison of
results using our prediction model and the results published by the respective authors.
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reported correlation coefficient 0.64 for 10-fold cross-validation
(Fig. 5b).

Wang et al.29 used the PdbBind Database30 of the year 2012
for their study and had reported an appreciable prediction
results. We have used the exact same protein ligand pairs in test
and training set as used by them. We have used Random forest
Model50 for the dataset, as Wang et al.29 concluded that the
Random forest models outperformed others. We got a better
correlation coefficient 0.75 and RMSE 1.29 as compared to their
reported correlation coefficient 0.67 and RMSE 1.46 (Fig. 5c).
Other than the generic dataset used by Wang we have also
compared family specic dataset used by them.

Kramer and Gadeck28 had also used the PdbBind Database30

of the year 2009. They have used rened set of protein–ligand
binding data which comprised 1741 complexes out of which
they had excluded the complex in which the ligands which were
12134 | RSC Adv., 2018, 8, 12127–12137
polymer, peptides and ATPs. We have also eliminated those and
1387 complexes were used. Random forest algorithm with 400
iterations and 30 features in each iteration was used to predict.
Prediction was analyzed using 10-fold cross validation (Fig. 5d).
As they had already drawn a comparison among other models
and programs which are used in prediction and stated their
performance was signicantly better, so we have considered
their method as benchmark for our comparison an observed
our method and features outperformed theirs.

Comparison of our results with the published one is listed in
Table 2 and represented in Fig. 6.
Blind set validation

We have also validated our prediction model using external test
set. Out of the 2864 instances we have randomly sampled 80%
This journal is © The Royal Society of Chemistry 2018
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Fig. 7 Scatter plot for actual vs. predicted binding affinity of external
dataset using Random forest.

Table 3 Result of prediction of feasibility of protein–ligand interaction

TP rate 0.968
FP rate 0.056
Precision 0.968
Recall 0.968
F-Measure 0.967
MCC 0.927
ROC area 0.994
PRC area 0.994

Table 4 Change in true positive rate of protein binding prediction
using Random forest algorithm with respect to decrease in number of
features

Number of attributes TP rate

127 0.968
93 0.969
82 0.965
72 0.966
64 0.967
58 0.966
54 0.968
48 0.965
38 0.963
28 0.96
18 0.96
10 0.93
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of the data in training set and rest 20% in the test set. Model
was trained with 2291 instances and was supplied with 573 test
instances. The blind validation also gave promising results, R2

¼ 0.75 and RMSE ¼ 1.38. The result is represented in Fig. 7.

Negative set validation

The algorithm and features were also validated against non-
binders. Non-binding or decoy data was used from the DUD-E
database.51 We have used 12 proteins with pdb id (1e66, 2oi0,
3d0e, 1bcd, 3odu, 3ccw, 3g0e, 2ojg, 3bgs, 2azr, 1ype, 1sqt) from
the DUD-E database which contribute in 2249 non-binders and
1110 binders. The same features were calculated for all the
binders and non-binders. Random forest algorithm was trained
This journal is © The Royal Society of Chemistry 2018
using 10-fold cross validation in prediction. The prediction
results are shown in Table 3. The correctly classied instances
are 3250 means 96.755% accuracy and incorrectly classied
instances 109 3.245%.
Feature selection

We have used 127 features of protein and ligand for training.
We have further explored and employed attribute selection lter
of Weka package25,26 which ranks the attributes on the basis of
their information gain. Out of 127, we have observed a set of 93
attributes giving the best prediction results shown in Table 4.
However, there is not signicant difference in the results, so top
18 (9 of ligand and 9 of protein) attributes can be used. Ranking
list of the attributes is given in ESI 4.†
Conclusion

Discovery of potential drug or lead through protein–ligand
interaction is a herculean task. As the interaction between
specic ligand and protein depend on some characteristic
features, determining a particular feature of ligand and protein
plays a crucial role in identifying the interaction. The aim of our
study is to predict whether an unknown ligand can interact with
a protein, which may be utilised as a potential lead. Towards
this end we exploit the binding energy in terms of dissociation
constant Kd and inhibition constant Ki using Machine Learning
algorithms with a few signicant features of interaction. This
method reduces the running time in comparison of state-of-the
art computational techniques. Out of various machine learning
algorithms like multilayer perceptron, SVM and Gaussian
Process, Random forest model best suited the protein–ligand
binding energy prediction problem. RF model's performance is
highly dependent on the number of iterations (trees) and
number of features used to build each tree, on the other hand
machine learning relies upon the number and signicance of
features on which model is trained upon. Use of too many non-
signicant features may cause the machine to learn fuzzy
patterns, leading to poor prediction. We have performed
extensive experimentation in order to select optimum parame-
ters of the ML algorithms which not only reduced the run time
but also increase the accuracy of prediction. Further compara-
tive study revealed that our strategy and the RF-model perform
much better in the diverse dataset towards prediction of the
unknown interaction. These models have the potential to
identify the binding site for the interaction of protein and
ligand based on their structural, physicochemical, and coordi-
nate features.
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