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In this study, we present a simple method to prepare and control the structure of regenerated hybrid
silkworm silk films through icing. A regenerated hybrid silk (RHS) film consisting of a micro-fibrillar
structure was obtained by partially dissolving amino-functionalized polyhedral oligomeric silsesquioxanes
(POSS) and silk fibers in a CaCl,—formic acid solution. After immersion in water and icing, the obtained
films of RHS showed polymorphic and strain-stiffening behaviors with mechanical properties that were
better than those observed in dry or wet-regenerated silk. It was also found that POSS endowed the

burning regenerated silk film with anti-dripping properties. The higher B-sheet content observed in the
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Introduction

Silk is a fascinating natural material that combines exceptional
mechanical properties in terms of strength, stiffness, and
resilience;"” therefore, there is an increasing interest to emulate
the properties of natural silk by mimicking the natural process
in regenerated silk.*

It is generally believed that the exceptional mechanical prop-
erties of silk originate from the combination of a hierarchical
architecture of the B-sheet crystal and fibrillar structures. Several
attempts have been made in this regard. Hu et al.,® for example,
were able to regulate the crystallinity of the regenerated silk
fibroin by exposing silk to hot water vapor; Zhang et al.” showed
the preparation of silk directly by dissolving the fibers in CaCl,-
formic acid, preserving the nano-fibril structure, and allowing
high-quality silk materials; on the other hand, recently, Buehler
et al.® reported a bioinspired spinning method to obtain regen-
erated silk fibers, with interesting mechanical properties, by
pulling out a silk microfibril solution.

“Dipartimento di Ingegneria Civile e Ambientale, Universita di Perugia, UdR INSTM,
Strada di Pentima 4, 05100 Terni, Italy. E-mail: luca.valentini@unipg.it; Tel: +39
0744 492924.

*Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil,
Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77,
Trento, Italy. E-mail: nicola.pugno@unitn.it; Tel: +39 0461 282525

°School of Engineering and Materials Science, Queen Mary University of London, Mile
End Road, London, E14NS, UK

“‘Ket-Lab, Edoardo Amaldi Foundation, Italian Space Agency, via del Politecnico snc, I-
00133 Roma, Italy

T Electronic  supplementary
10.1039/c7ra13708g

information (ESI) available. See DOIL

This journal is © The Royal Society of Chemistry 2018

composites are considered for comparison.

However, the methods adopted to reassemble silk fibroin in
thin films resulted in films that became brittle once dried or
had low strength in the wet state.”'® A recent study demon-
strates that the partial dissolution of silk fibers can be the
hidden ingredient to obtain hierarchical micro-fibrils with
a high content of B-sheet crystals.® Recent advances on the
structure of regenerated liquid silk fibroin help us gain a deeper
understanding of the effect of fiber dissolution on the proper-
ties of silk fibroin and provide important experimental data for
using silk protein as advanced functional biomaterials.***

Polyhedral oligomeric silsesquioxanes (POSS) are organic-
inorganic molecules, approximately 1-3 nm in diameter, with
the general formula (RSiO; 5),, where R is hydrogen or a func-
tional group.'**® The incorporation of amino-functionalized
POSS molecules (i.e. NH,-terminated POSS) into silk could
lead to the dispersion of these nano-cages through the coupling
of the amino groups and the oxygen atoms within the dissolved
silk chains. Moreover, POSS is a low-cost material that is
generally used in synergy with the polymer phase as a stiff phase
with the Young's modulus reaching 7.5 GPa;" in addition, it is
usually used as a flame-retardant in polymer nanocomposites
due to the retention of the silicon phase during combustion;
this leads to the reduction of flammability and the formation of
a glassy char acting as a barrier to heat.™

Herein, we report a study that exploits the ability of polyhedral
oligomeric silsesquioxanes to promote the partial dissolution of
silk fibers and act as a reinforcing agent. The post-synthesis icing
has been used to regulate the B-sheet crystal content during the
crystallization process of these hybrid micro-fibrils. We have
observed that the ice-regenerated hybrid silk film displays better
mechanical performances and a strain-stiffening character that
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can be regulated by the B-sheet crystal content and a reduced
flammability.

Experimental

For the preparation of the regenerated hybrid silk film,
commercial B. mori silk cocoons were boiled for 1 h in a distilled
water solution of 0.025 wt% NaHCO; and then rinsed with
distilled water every 30 min to remove sericin. According to the
method adopted by Kaplan et al.,* the degummed silk (i.e. 0.2
2) and aminopropyl heptaisobutyl polyhedral oligomeric sil-
sesquioxanes (ie. 2 mg) (hereinafter named
functionalized POSS were purchased from Hybrid Plastics
(USA) as a crystalline powder and used as received) were then
added to a CaCl, (i.e. 0.14 g)-formic acid (i.e. 20 ml) solution
and stirred overnight at 40 °C yielding a 1 wt% solution. The
same procedure was adopted by introducing short-COOH
functionalized multi-walled carbon nanotubes (CNTs)
supplied by Cheaptubes (outer diameter: 20-30 nm, inside
diameter: 5-10 nm, purity: >95 wt%, length: 0.5-2.0 pm).
Regenerated hybrid silk films were prepared by leaving the silk-
amino-functionalized POSS and silk-functionalized CNT solu-
tion to evaporate for 12 h in a polystyrene Petri dish (diameter
15 cm). The resulting RHS and RS-CNT films were then
immersed in distilled water for 5 min and subsequently frozen
for 3 h at —10 °C. Both the water-annealed and iced films were
air-dried at 25 °C before characterization. The morphology of
the films was investigated by optical and field emission scan-
ning electron microscopy (FESEM). Fourier transform infrared
(FTIR) analysis was performed using a Jasco FTIR FT/IR-615

amino-

a)
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spectrometer in the ATR mode in the wavenumber range from
400 to 4000 cm ™', Differential scanning calorimetry (DSC) was
carried out using TA Q200. Each sample was heated from 25 °C
to 214 °C at the heating rate of 10°C min"; the samples were
then cooled down to room temperature and heated again.
Thermogravimetric analysis (TGA) was performed using SII TG/
DTA 6300 (Seiko). The samples were heated from room
temperature to 800 °C at the heating rate of 10°C min~". The
rate of gas (air or nitrogen) was 70 ml min "

X-ray diffraction was performed using the Bruker D8
Advance diffractometer, with a CuKea radiation source and
wavelength A = 0.154 nm, operated at 40 kV and 40 mA. The
incidence angle (26) was varied between 2° and 60°, and the
scan rate was 0.02° s~ .

The tensile properties, i.e. toughness, Young's modulus, and
tensile strength, of the films were measured using a universal
tensile testing machine (Lloyd Instr. LR30K) with a 50 N static
load cell. The film samples were cut into strips (30 mm x 12
mm). The gauge length was 20 mm, and the extension rate was

set at 1 mm min .

Results and discussion

The outstanding mechanical properties of the natural silk
originate from its intrinsic hierarchical order. Previous studies
have indicated the importance of the complete dissolution of
silk in several solvents that destroys the hierarchy once the films
are dried.?*>* Herein, we used the CaCl,-formic acid dissolu-
tion system and introduced the amino-functionalized POSS
(Fig. 1a-f). This new approach results in a uniform viscous

S

Fig.1 Visual appearance and structural characterization of the regenerated hybrid silk. (a) Visual appearance of the POSS/Silk/CaCl, mixture, (b)
RHS film, (c) polarized light microscopy image of the RHS film, and (d) FESEM image of the RHS film. After 24 hours, the AFM images (70 pm x 70
um) show that the silk fiber in the (e) CaCl,—formic acid and (f) POSS/CaCl,—formic acid solution partially dissolved into micro fibrils with
diameters of about 10 um and 5 um, respectively. False color is used in the AFM images. Scale bars are 60 um in (c) and 20 um in (d).
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solution (Fig. 1a) that produces films (Fig. 1b) with a micro-
fibrillar structure (Fig. 1c-f). Interestingly, the RHS film pres-
ents light diffraction (Fig. 1c) typical of nematic liquid-crystal
configuration. These viscous liquid crystals allow the orienta-
tion of the micro-fibrils along the drawing direction, as shown
below. The AFM and FESEM analyses on silk fibers dissoluted in
the POSS CaCl,-formic acid solution show how the silk disag-
gregates from macro fibers into a micro-fibril structure.

FTIR characterization was used to estimate the B-sheet
(crystalline) content (Fig. 2a). Deconvolution of the amide I
region (1580-1700 cm ') was performed via the Origin 9.0
software by smoothing the amide I region with a nine-point
Savitzky—-Golay smoothing filter, whereas deconvolution was
performed using Lorentzian line shape (see Fig. S17). The ratio
between the peak area in the wavenumber region of 1600-

View Article Online
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1640 cm ™', which is the main absorbance region of the B-sheet
crystal in amide 1, and the whole area of the amide I has been
used to estimate the B-sheet content. The deconvolution of the
amide I band* provides an estimation of 31 £ 3%, 35 £ 3%, and
48 + 3% content of the B-sheet structure in the RS, RHS, and ice
RHS, respectively, and the B-sheet structure content of the
degummed B. mori silkworm silk is 46 + 2% (Fig. 2b). The B-
sheet content in the RS-CNTs and ice RHS-CNTs was found to
be 39 + 3% and 51 + 3%, respectively (see Fig. S11). Changes in
the structure of the silk films prepared via various treatments
were also investigated by XRD analysis. In previous studies,
three silk fibroin conformations have been identified by X-ray
diffraction: random coil, silk I, and silk II.*® Fig. 2c shows the
XRD data for the degummed silk, RS, ice RS, RHS, and ice RHS
films. The degummed silk film showed the II silk structure,”
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Fig. 2

(a) FTIR spectra of the degummed silk, regenerated silk after water annealing (wet RS), regenerated silk after icing (ice RS), regenerated

hybrid silk (RHS), regenerated silk (RS), and regenerated hybrid silk after icing (ice RHS). (b) Calculated crystallinity of the prepared samples. (c)

XRD results of the degummed silk (a), RS (b), ice RS (c), RHS (d), and ice
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whereas the RS film exhibited an amorphous state, character-
ized by the presence of a broad peak in the 26 scattering angle
range from 5° to 40°. The ice RS film exhibited the typical X-ray
diffractogram of the silk I structure, having diffraction peaks at
20.4° and 29.4°.*” The ice RHS film was characterized by the
diffraction peaks at the 26 values of 9°, 20.4°, and 29.4°, corre-
sponding to the silk I and silk IT structures. Compared with that
of the RHS film, the silk II peak at 9° disappeared, and the POSS
peak at 8.3° appeared.”® The results indicate that both ice and
POSS addition have a significant influence on the formation of
the silk I structure.

Fig. 3 shows the DSC curves for RS, wet RS, ice RS, RHS, and
ice RHS; degummed silk is used as a control. RS, RHS, and RHS
after icing showed a small endothermic step below 170 °C, and
a degradation peak at about 250 °C thereinafter. The endo-
thermic step below 170 °C was due to glass transitions of the
samples, and its intensity increased with an increase in the
crystallinity of the films (see Fig. 2b).® After the appearance of
glass transition, no other peaks before thermal degradation
were detected; this implied that the PB-sheet crystals were
formed during the ice treatment and the thermal energy during
the DSC scan did not induce a significant increment of the B-
sheet content.

The mechanical characterizations of the degummed silk,
regenerated silk, wet-regenerated silk, and regenerated hybrid
silk (Fig. 4a) show that all these display a yield point followed
by the so-called strain-softening behaviour where the slope of
the stress—strain curves decreases with strain. In particular,
after losing the hierarchical structure of the degummed
natural silk, RS results in a material with poor crystalline

50 100 150 200 250

300
lceRHS[" ~ T T T ’

Heat flow (W/Q)

50 100 150 200 250 300
Temperature (°C)

Fig.3 DSC curves for the regenerated silk (RS), regenerated hybrid silk
(RHS), and ice regenerated hybrid silk (ice RHS). Degummed silk was
used as a control.
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fraction and thus with scarce mechanical properties. More-
over, since the RS film is composed of silk micro-fibrils and Ca
ions, its mechanics can be tuned by water annealing.” Hence,
calcium ion captures the water molecules, which acts as
plasticizers, resulting in soft and stretchable RS films. Thus,
wet-regenerated silk films showed a lower Young's modulus
and yield point and a higher elongation due to the plastici-
zation effect of water.” Although immersion in water helps in
the removal of both CaCl, and formic acid and induces the B-
sheet reconstruction, the RS films become more brittle in the
dry state (Fig. 4a) as compared to the wet samples. On the
contrary, after the yield point, the RS and RHS after icing
(Fig. 4b-c) show a strain-stiffening behaviour with the slope of
the stress-strain curves that thus increases with strain. This
strain-stiffening occurs in spider silk dragline®*** where first
the intra-molecule B-sheet unfolds (region between A and B in
Fig. 4c), and then, the tensile deformation causes breaking of
the crystallites; this gives rise to a strain-softening region
(region between B and C in Fig. 4c). Fig. 4d and e summarize
the trend of toughness, Young's modulus, and tensile strength
of the tested samples. The tensile strength of the RS film is 4.3
+ 0.9 MPa and the toughness is 0.10 £ 0.02 MJ m>; the
toughness of the RHS film is improved to 0.20 + 0.02 MJ m 3
with a tensile strength of 4.0 & 0.8 MPa. After icing, the tensile
strength and toughness of the RHS film improved to 8.0 +
1.6 MPa and 0.35 & 0.07 MJ m >, respectively. Thus, the RHS
film after icing shows highest mechanical properties,
demonstrating a stress—strain behaviour similar in shape to
that of spider silk. From the cross-section fracture morphology
of the RHS film after icing (Fig. 4f), it is clear that the silk
micro-fibrils show pull-out. This finding can support a crack
propagation model where the fracture mechanism is activated
in the strain-stiffening region by breaking of the bonds
between the amino-functionalized POSS nano-cages and the
silk chains that are stretched at the same time; this results in
the dissipation of mechanical energy. Finally, ice-regenerated
hybrid silk film shows a strain-stiffening strain ratio, defined
as the strain-stiffening-induced strain over the total strain of
the non-linear region, that is about 35%.

Fig. 5 shows the TGA results for the ice RS and ice RHS films
under both air and nitrogen atmosphere. Under the air atmo-
sphere (Fig. 5a), the addition of POSS improved the thermal
stability of the RS significantly at above 200 °C. The final
decomposition temperature increased from 610 °C to 700 °C,
with the incorporation of POSS. Under a nitrogen atmosphere
(Fig. 5b), the charyield increased up to 43% with the addition of
POSS.

Flame self-extinguishing is a desirable property for silk films
mainly if these films are used in silk textiles. Previous studies
demonstrated that chemically modified silk fibroin fibers
retained a high level of flame retardancy.** However, the flame
retardant finishing technology for silk is still challenging. Fig. 5
shows the burning behavior of the RS and RHS films after the
ice treatment. In the case of ice RS and ice RS-CNTs (Fig. 5¢ and
S31), the samples ignited instantly with the flame extended to
the entire sample with severe dripping of the flaming melt. For
the ice RHS film (Fig. 5d), the ignition behavior was found to be

This journal is © The Royal Society of Chemistry 2018
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(a) Tensile stress—strain average curves of the degummed silk, RS film after water annealing, and RHS and RS films (5 samples averaged). (b

and c) Tensile stress—strain curves of (b) RS and (c) RHS films after icing; the curves in the top panels are the first derivative lines of the stress—
strain curves reported in the bottom panels (solid black lines, 5 samples averaged). The strain-stiffening strain ratio is the strain-stiffening-
induced-strain (the strain from point A to point B) over the total strain of the non-linear region (from point A to the elongation break C). (d)
Toughness (circles) and Young's modulus (triangles), and (e) tensile strength of the samples. (f) Cross-sectional AFM image of the ice RHS after
tensile fracture, which reveals micro fibrils strained along the drawing direction indicated by the white arrow. The schematic of the proposed
mechanism of POSS for providing additional bonding sites between the silk chains is reported.
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Fig.5 Residual weight in percentage vs. temperature for ice RS and ice RHS films, with a heating rate of 10°C min~—* under an (a) air atmosphere
and under (b) a nitrogen atmosphere. Combustion process of (c) ice RS and (d) ice RHS films. The introduction of POSS into RS extinguishes the

flame and causes anti-dripping during the combustion process.

similar to that of the ice RS film; however, the flame vanished
with char formation. Since the burning process is reduced by
the formation of glassy char of POSS, it can be said that most of
the POSS molecules are dispersed homogeneously into the silk
chains. Hence, an adequate content of the POSS hybrid silk film
can generate char to prevent the flame from spreading.

Conclusions

In summary, a regenerated hybrid silk film was fabricated by
the solvent casting approach. We found that the addition of
amino-functionalized POSS to the CaCl,-formic acid/silk
mixture induced partial dissolution of natural fibers with
a micro-fibrillar structure. The attractive characteristic of these
films made of regenerated hybrid silk include the possibility to
tune the crystalline content via the icing method. After icing,
these films displayed a higher crystalline fraction and a higher
toughness as compared to the non-hybrid regenerated coun-
terpart. Finally, the strain-stiffening behaviour as well as anti-
dripping of the flaming melt were observed on the ice regen-
erated simple and hybrid silk. This simple and facile fabrication
method can be further exploited for incorporating different

9068 | RSC Adv., 2018, 8, 9063-9069

functional inorganic species to obtain thin films with unique
properties.
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