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A highly efficient nano-sized Cu,0/SiO, egg-shell
catalyst for C—C coupling reactionst
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Mesoporous SiO,-supported Cu,O nanoparticles as an egg-shell type catalyst were prepared by
impregnation method. The obtained Cu,O/SiO, egg-shell nanocatalyst had a large surface area and
narrow pore size distribution. In addition, most of the Cu,O nanoparticles, with sizes around 2.0 nm,
were highly dispersed in the mesoporous silica. Accordingly, fast reactant diffusion to the active sites
would occur, especially when the active metal sites are selectively located on the outer part of the
support, i.e., the outer region of the egg shell. In solvent-free Sonogashira reactions for the synthesis of
ynones from acyl chlorides and terminal alkynes, this catalyst exhibited a very high catalytic activity. The
excellent catalytic performance can be attributed to the synergistic advantages of mesoporous structure
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Introduction

Supported nanocatalysts exploiting robust metal-oxide struc-
tures have been effectively used for various heterogeneous
catalytic processes.'” In particular, mesoporous silica supports
have been widely used as catalyst support based on their high
thermal stability and controllable surfaces as well as their high
pore volumes and large surface areas.*® For example, many
types of metal/silica nanocatalysts, such as metal@silica yolk-
shell® and core-shell catalysts,'™"* have been developed to
enhance the catalytic activity and stability against sintering or
agglomeration problems of active metal sites.

In recent years, silica-»** and alumina-based***® egg-shell-
type catalysts in millimeter scale have been prepared in order
to avoid the diffusional restrictions of the reactants for some
catalytic reactions, such as Fischer-Tropsch synthesis.”'®
Simply, fast reactant diffusion to the active sites would occur,
especially when the active metal sites are selectively located on
the outer part of the support, such as the outer region of the egg
shell. However, most egg-shell-type catalysts prepared using the
controlled penetration of molten salt have still been focused on
the millimeter scale, not the micrometer or nanometer scale.

Accordingly, we utilized the synthesized egg-shell nano-sized
particles in the catalytic system. The benefits of the number of
potentially reactive small-sized atoms exposed on the surface
are expected to include high activity and selectivity.” Due to

“Department of Chemistry, Chemistry Institute for Functional Materials, Pusan
National University, Busan, 46241, Republic of Korea. E-mail: chemistry@pusan.ac.kr
*Clean Fuel Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Korea.
E-mail: jepark@kier.re.kr

available. See DOLI:

T Electronic  supplementary  information

10.1039/c7ra13490h

(ES)

6200 | RSC Adv., 2018, 8, 6200-6205

and monodispersed Cu,O nanoparticles.

these significant properties, Cu nanoparticles have been used as
catalysts for a very broad range of organic transformations, such
as click reactions, A®> coupling, C-H functionalization, bor-
ylation, cross-coupling and so on.**"*

In this work, we set out to use the Sonogashira protocol,
which has emerged as one of the most straightforward and
powerful methods for carbon-carbon formation.?® The products
of ynones are a kind of conjugated alkynyl ketones which are
useful intermediates of heterocyclic compounds as building
blocks for natural products, pharmaceuticals, and molecular
organic materials.”””** Herein, we report a new type of Cu,0/SiO,
egg-shell nanocatalyst as an active and stable catalyst for the
synthesis of 1,3-diphenyl-2-propyn-1-one from benzoyl chloride
and phenylacetylene.

Experimental

Materials

Copper(u) nitrate trihydrate (Cu(NO3),-3H,0, =98%), tetraethyl
orthosilicate (TEOS, 98%) and hexadecyltrimethylammonium
bromide (C;cTAB, =98%) were purchased from Aldrich.
Ammonium hydroxide (NH,OH, 28% in water) and ethanol
(99.9%) were obtained from Junsei and Baker, respectively. The
reagents were used as received without further purification.

Synthesis of mSiO, egg-shell support

NH,OH aqueous solution (2.5 mL) was added to a mixture of
ethanol (100 mL) and distilled water (8.0 mL), and then stirred
for 5 min. TEOS (10 mL) was added to the prepared solution and
stirred for 2 h at room temperature. The resulting silica parti-
cles were precipitated by centrifugation at 8000 rpm for 20 min,
then washed thoroughly with ethanol (100 mL). The dispersed
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silica in ethanol (100 mL) was diluted with distilled water
(200 mL). A solution of C;,TAB (1.2 g, 3.3 mmol) dissolved in
a solvent mixture of distilled water (20 mL) and ethanol (10 mL)
was injected into the diluted silica solution. This mixture was
vigorously stirred under ambient conditions for 30 min. After
30 min, TEOS (2.15 mL, 9.6 mmol) was added to the reaction
solution and stirred for 12 h. The resulting mSiO, egg-shell
nanoparticles were precipitated by centrifugation at 8000 rpm
for 10 min, and then washed thoroughly with ethanol (150 mL)
and acetone (150 mL). After drying at 100 °C in a drying oven,
the white powder was placed in an alumina boat in a tube-type
furnace, heated at a ramp rate of 4 °C min ' to 500 °C, and
calcined at 500 °C for 8 h in air.

Synthesis of nano-sized Cu,0/SiO, egg-shell catalyst

For synthesis of the Cu,O/SiO, egg-shell nanocatalyst containing
10 wt% Cu, aqueous copper nitrate solution (8.74 M, 0.1 mL) was
added dropwise onto the mSiO, egg-shell support (0.5 g). Infil-
tration was performed by grinding the mixture under ambient
conditions for 10 min until the powder was homogeneously pale
blue. Next, the mixed powder was placed in an autoclave reactor
and aged in an oven at 120 °C. After aging for 24 h, the sample was
cooled in ambient atmosphere and transferred into an alumina
boat in a tube-type furnace. Finally, the copper-incorporated silica
powder with pale blue color was slowly heated under H, flow of
200 mL min~", at a ramp rate of 2.7 °C min', to 350 °C. The
sample was thermally treated under continuous H, flow at 350 °C
for 4 h. After calcination, the resulting powder with pale green
color was cooled down to room temperature.

Characterization

High-resolution transmission electron microscopy (HRTEM)
was performed using a Tecnai TF30 ST and a Titan double Cs-
corrected TEM instrument (Titan cubed G2 60-300). Energy-
dispersive X-ray spectroscopy (EDS) elemental mapping data
were collected using a higher-efficiency detection system
(Super-X detector). High-power X-ray powder diffraction (XRD)
(Rigaku D/MAX-2500, 18 kW) was also used for the analysis. N,
sorption isotherms were measured at 77 K with a Tristar II 3020
surface area analyser. Before the measurement, the sample was
degassed under N, flow at 300 °C for 4 h.

Activity tests

In a typical run of the solvent-free Sonogashira coupling reac-
tion,* 0.50 mmol phenylacetylene, 0.75 mmol benzoyl chloride,
4.0 equiv. triethylamine (base) and 1.0 mol% Cu,O/SiO, egg-
shell nanocatalyst were mixed in a 25 mL oven-dried Schlenk

Cu(NO,);:3H,0
Mesoporous silica coating 5 " P
O (using CTAB) ,©\ Impreguation 4 O\
=——11 | ——) (| )
Calcination 5 JThermal decomposition under H, \‘_/

(Organic moiety removal)
mSiO, egg-shell support Cu,0/SiO, egg-shell

nanocatalyst

Solid silica ball

Fig. 1 Schematic illustration of the synthesis of the Cu,O/SiO, egg-
shell nanocatalyst.
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reaction tube. After reacting in argon atmosphere at 80 °C for
12.0 h, the reaction mixture was filtered and extracted with
dichloromethane, then analyzed using a gas chromatograph
(SHIMADZU, GCMS-QP2010 SE).

Results and discussion
Preparation of Cu,0/SiO, egg-shell nanocatalyst

Fig. 1 shows a brief synthetic scheme for the Cu,0/SiO, egg-
shell nanocatalyst. The solid SiO, cores within mesoporous SiO,
shells (mSiO, egg-shell supports) were prepared by a modified
sol-gel method as reported in the literature.** The transmission
electron microscopy (TEM) images show uniform silica nano-
spheres with average diameter of 305 + 18 nm (Fig. 2a and b).
Mesoporous silica shells were coated onto the silica nano-
spheres using the cationic surfactant C;4TAB, both as a struc-
ture-directing agent and a sacrificial porogen. The TEM
images show mSiO, egg-shell supports around 435 nm, larger
than the initial SiO, nanospheres (Fig. 2c). The thickness of the
uniformly coated mesoporous silica shell on the solid silica core
was observed as approximately 65 nm in the HRTEM image
(Fig. 2d). Ordered mesoporous channels in the silica shell
could be generated by thermal removal of C,,TAB.

Next, the copper(1) oxide/silica catalyst (designated as Cu,O/
SiO, egg-shell nanocatalyst), with controlled Cu content of
10 wt% on the basis of Cu converted from the copper nitrate salt
after thermal treatment, was prepared by incorporating Cu,O
particles formed inside the pores of mSiO, egg-shell supports.
Impregnation of copper nitrate and subsequent hydrogen
reduction yielded small and uniform Cu,O particles in channel-
like SiO, pores. The chemical reaction for the thermal decom-
position of Cu(NO;), and Cu,O formation is proposed to be:

2Cu(NO3)z (s) + Ha (g) = Cu 0 (s) +4NO; (g) + HyO (2) + 02 (2)

The TEM image indicates that the Cu,O nanoparticles were
incorporated well into the mesopores of silica (Fig. 3a). The

Y v.w'?..i';f 8 w-
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Fig.2 (aand b) TEM images of silica nanospheres, and (c) TEM and (d)
HRTEM images of mSiO, egg-shell support. The bars represent 2 um
(a), 200 nm (b, c), and 20 nm (d).
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Fig. 3 (a) TEM and (b) HADDF images, (c—e) scanning TEM image with
elemental mapping, and (f and g) HRTEM images with the corre-
sponding FT pattern (inset of g), and (h) XRD spectrum of Cu,O/SiO,
egg-shell nanocatalyst. The bars represent 200 nm (a—e), 20 nm (f),
and 2 nm (g).

high-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) image also shows regions of varying
brightness. Relatively bright spots correspond to Cu,O nano-
particles (Fig. 3b). In the elemental mapping, Cu (green) and Si
(red) are confirmed (Fig. 3c-e). The magnified TEM image
shows black dots in channel-like pores, indicating small Cu,O
crystals (Fig. 3f). The HRTEM image and the corresponding
Fourier-transform (FT) pattern indicate the single crystalline
nature of the Cu,O particle (Fig. 3g). The inside particle size was
observed to be between 2 and 3 nm. The lattice distance of
0.246 nm between neighbouring fringes corresponds to the
(111) lattice spacing in cubic phase Cu,O. In the XRD pattern,
Cu,0/SiO, egg-shell nanocatalyst is also well matched with
cuprite (Fig. 3h, space group: Pn3m, JCPDS no. 77-0199). The
broad peak at 26 = 36.5° corresponds to the (111) plane of Cu,O.
The mean particle size was estimated to be 2.0 nm using the
Debye-Scherrer equation from the full width at half maximum
(fwhm) of the (111) peak.

N, sorption experiments for the pristine mSiO, egg-shell
support and the Cu,O/SiO, egg-shell nanocatalyst show type
IV adsorption-desorption hysteresis (Fig. 4a). The Brunauer—
Emmett-Teller (BET) surface areas were calculated to be
481.2 m> g ' for the pristine mSiO, egg-shell support and
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Fig. 4 (a) N, adsorption/desorption isotherms and (b) pore size
distribution diagrams using the Barrett—Joyner—Halenda (BJH)
method from the adsorption branches of the mSiO, egg-shell support
and the Cu,O/SiO, egg-shell nanocatalyst.

228.9 m”> g~ for the Cu,0/SiO, egg-shell nanocatalyst, respec-
tively. The total pore volume of the Cu,0/SiO, egg-shell nano-
catalyst was found to be 0.19 cm?® g™, which is about 54% of the
pristine mSiO, egg-shell support (0.35 cm® g~ ). The significant
decrease in pore volume of the Cu,0/SiO, egg-shell nanocatalyst
was attributed to the occupied copper oxide nanoparticle in the
silica pore. The pore size distributions of the initial mSiO, egg-
shell support and Cu,0O/SiO, egg-shell nanocatalyst were iden-
tically observed in the range of 2-3 nm, well reflecting the
embedded Cu,O crystallite size (Fig. 4b).

Sonogashira coupling reactions

We explored the catalytic performance of the synthesized Cu,O/
SiO, egg-shell nanocatalyst toward Sonogashira coupling reac-
tions. It was found that supported copper nanoparticles effi-
ciently catalyzed the synthesis of ynones of acyl chlorides and
alkynes.**** In this type of reaction, Cu,O nanoparticles activate
phenylacetylene to form copper(i) acetylide compounds, which
subsequently react with acyl chloride.**® In addition, this
reaction does not require any ligand and palladium source
under solvent-free conditions.

The effect of several factors, such as reaction time, tempera-
ture, base, and amount of catalyst, was studied. The results are
listed in Table 1. Initially, it was demonstrated that changes in the
catalyst loading have marked impacts on the conversions. It was
shown that increasing the amount of catalyst loading from
1 mol% to 1.5 mol% resulted in higher conversion (86%) (Table 1,
entries 1 and 2). In order to improve the conversion of the
reaction, we increased the temperature to 80 °C, which resulted
in higher conversion than at 40 °C (Table 1, entries 3 and 4).
Thereafter, when the reaction time was extended to 12 h, the
conversion of 99% was achieved (Table 1, entry 5). In addition,

This journal is © The Royal Society of Chemistry 2018
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Table 1 Solvent-free Sonogashira reactions for the synthesis of ynones from acyl chlorides and terminal alkynes catalyzed by Cu,O/SiO, egg-
shell nanocatalyst®

&
o, ©/

Cu,0/SiO, egg-shell

nanocatalyst O
—_—

Entry Cat. (mol%) Temp (°C) Base (eq.) Time (h) Conv. (%) Select. (%)
1 1 40 3 8 66 99
2 1.5 40 3 8 86 98
3 1 80 3 8 93 97
4 1.5 80 3 8 100 98
5 1 80 3 12 99 97
6 — 80 4 12 8 0
7 1 80 — 12 5 0
8 1 80 4 12 100 99
9 Recover from #8 80 4 12 100 99
10 Recover from #9 80 4 12 98 99
11 Recover from #10 80 4 12 94 99
12? 1 80 4 12 76 99
13¢ 1 80 4 12 100 91
14 Recover from 13 80 4 12 7 0

“ Reaction conditions: phenylacetylene (0.50 mmol), benzoyl chloride (0.75 mmol), base Et;N, cat. Cu,0/SiO, egg-shell nanocatalyst, Ar atmosphere.
Determined by using gas chromatography-mass spectrometery (GC-MS). ? Cat. commercial Cu,0 powder purchased from Aldrich (no. 208825).
¢ Cat. conventional SiO,-supported Cu,O catalyst.

when the amount of base was increased (4.0 equiv.), the
conversion was 100% (Table 1, entry 8), and the selectivity was
99% owing to Cu,0/SiO, egg-shell nanocatalyst hindering the
homocoupling of benzoyl chloride and phenylacetylene.
Subsequently, the optimized reaction conditions were

phenylacetylene (0.5 mmol), benzoyl chloride (0.75 mmol),
Cu,0/Si0, egg-shell nanocatalyst (1 mol%), and Et;N (4 equiv.)
at 80 °C for 12 h under Ar atmosphere. Furthermore, when we
conducted the reaction without base or catalysts under the
optimized reaction conditions, each reaction hardly proceeded

Table 2 Substrate study for the coupling reaction of alkynes and acyl chlorides®

Entry Acyl chloride Alkyne Product Conv. (%) Select. (%)
[e] o
HsCO— >7:
1 @AC‘ o™ ® 66 100
'OCH3
[e] _ o
2 @A o = (> 0 98 99
o o
3 @A‘ o= o™~ O 88 87
1 ol )= I
4 ©)k°‘ (> 89 98
O CN
o . 4@{ 9
5 ©)k°‘ (> 98 85
O F
o o
6 Mﬁ“ O—= o o O 100 100

¢ Reaction conditions: alkyne (0.5 mmol), acyl chloride (0.75 mmol), Et;N (4.0 equiv.), 1.0 mol% Cu,0/SiO, egg-shell nanocatalyst, 80 °C, 12.0 h.

This journal is © The Royal Society of Chemistry 2018

RSC Adv., 2018, 8, 6200-6205 | 6203


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra13490h

Open Access Article. Published on 07 February 2018. Downloaded on 10/18/2025 2:51:19 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

(Table 1, entries 6 and 7). Thus, a basic medium is essential for
these cross-coupling reactions. However, under the same
condition, but replacing the Cu,0/SiO, egg-shell nanocatalyst
with commercial Cu,O powder as catalyst, the coupling reaction
was obtained with lower conversion and selectivity (Table 1,
entry 12). Even though the conventional SiO,-supported Cu,O
catalyst showed similar catalytic activity, low reusability was
obtained due to decomposed catalyst structures (Table 1,
entries 13 and 14). The Cu,0/SiO, egg-shell nanocatalyst was
recycled up to three times without any loss of its initial high
activity (>94%) in subsequent experiments (Table 1, entries
9-11). Therefore, this indicates that the high dispersion and
excellent accessibility of the Cu,O NPs cause the high efficiency
of the Cu,O/SiO, egg-shell nanocatalysts. Moreover, they
showed enhanced catalytic activity and facilitated considerably
positive synergistic effects with nanosized porous support
substrates,**° as compared to Cu,O nanoparticles without the
mesoporous support.** All reactions are carried out in the void
inside the shell. In other words, the egg-shell structure acts as
a “nanoreactor framework”, which contains enough space
between the core and shell. Each of the active nanoparticles
experiences a homogeneous environment in a void surrounded
by the silica shell. We also studied the role of solvent system
under the optimized conditions (ESI, Table S11).** In addition,
when we carried out the reactions with dipolar aprotic solvents
such as dimethylformamide (DMF) and tetrahydrofuran (THF),
results were inferior because of the formation of the corre-
sponding anhydride as a by-product. However, the reaction
under nonpolar solvent, such as toluene, gave 84% conversion.
Therefore, all reactions were performed neat under anhydrous
conditions. Encouraged by the above results, with these opti-
mized reaction conditions, the scope of the developed protocol
was extended for the synthesis of ynone derivatives using
different substrates (Table 2). As shown in Table 2, most of the
substrates gave good conversions despite electron-donating
substituents (methyl, tert-butyl and methoxy groups) and
electron-withdrawing substituents (fluoro, cyano groups).
Furthermore, benzoyl chloride substituted with a nitro group
still gave the corresponding ynones with good conversion rate
(Table 2, entry 6).

Conclusions

In this paper, egg-shell-type mesoporous silica-supported
copper nanoparticle catalyst was prepared. The obtained
Cu,0/Si0, egg-shell nanocatalyst had a large surface area and
narrow pore size distribution. In addition, most of the Cu,O
nanoparticles, with sizes around 2.0 nm, were highly dispersed
in the mesoporous silica. Accordingly, fast reactant diffusion to
the active sites would occur, especially when the active metal
sites are selectively located on the outer part of the support, i.e.,
the outer region of the egg shell. As a result, they enhanced the
reaction kinetics. In palladium-free, ligand-free and solvent-free
Sonogashira reactions for the synthesis of ynones from acyl
chlorides and terminal alkynes, this catalyst exhibited a very
high catalytic activity. The excellent catalytic performance can
be attributed to the synergistic advantages of the mesoporous
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structure and the monodispersed Cu,O nanoparticles. The egg-
shell structure acts as a “nanoreactor framework”, which
contains sufficient space and catalytically active surface within
its structure. The egg-shell nanoparticles have potential for
application as nanoreactors and catalysts, drug delivery
carriers, and surface-enhanced Raman scattering substrates.
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