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i heterostructure films for high
capacity Li-ion batteries

M. J. Loveridge, *a R. Malik,a S. Paul,b K. N. Manjunatha,b S. Gallanti,a C. Tan,a

M. Lain,a A. J. Robertsa and R. Bhagata

This study fabricated and demonstrated a functional, stable electrode structure for a high capacity Li-ion

battery (LIB) anode. Effective performance is assessed in terms of reversible lithiation for a significant

number of charge–discharge cycles to 80% of initial capacity. The materials selected for this study are

silicon and tin and are co-deposited using an advanced manufacturing technique (plasma-enhanced

chemical vapour deposition), shown to be a scalable process that can facilitate film growth on 3D

substrates. Uniform and hybrid crystalline–amorphous Si nanowire (SiNW) growth is achieved via

a vapour–liquid–solid mechanism using a Sn metal catalyst. SiNWs of less than 300 nm diameter are

known to be less susceptible to fracture and when grown this way have direct electrical conductivity to

the current collector, with sufficient room for expansion. Electrochemical characterisation shows stable

cycling at capacities of 1400 mA h g�1 (>4 � the capacity limit of graphite). This hybrid system

demonstrates promising electrochemical performance, can be grown at large scale and has also been

successfully grown on flexible carbon paper current collectors. These findings will have impact on the

development of flexible batteries and wearable energy storage.
1 Introduction

The US Dept. of Energy cost target for all electric vehicles is $125
per kWh of usable energy but the current cost of commercial
batteries is $400–500 per kWh.1 Cost reductions are possible
through evolution away from conventional electrode fabrication
practices to alternative battery manufacturing schemes.2–4 This
focuses on processes that do not require multi-stage dispersion,
indirect materials (solvents that do not end up in the product),
other chemical processes, drying and solvent recovery. At the
same time the energy storage community remains heavily
engaged in trying to better understand the implications of
electron and ion transport within electrode architectures and
their inuence on electrochemical performance – this is made
challenging when there is little control over the electrode
structure.5 With a better understanding, it is possible to design
efficient battery components to overcome such transport issues.
Development of electrodes that can retain their microstructure
as they are charged and discharged over thousands of cycles is
a critical element in creating batteries that will overcome range
anxiety in electried vehicles.6

Non-conventional manufacturing methods have been
explored to create battery electrodes1 yet none of them have
inspired commercial uptake into mainstream manufacturing
7AL, UK. E-mail: M.Loveridge@warwick.

, LE19BH, UK
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methodology. These include: (1) solvent-based electrostatic
spray deposition,7 (2) spray painting/electrostatic spraying, (3)
dry electrode manufacturing e.g. pulsed laser and sputter
deposition,8 (4) magnetron sputtering.9 Better understanding of
the process itself has added valuable insight into directly
improving the process for fabricating Li-ion battery electrodes,
especially the means by which materials are uniformly
deposited.10

Intense and widespread research efforts into new materials
for Li-ion batteries (LIBs) have focused a lot of interest on the
group IV elements (Si and Sn primarily).11,12 Si and Sn are the
two most studied materials both individually and as an alloy
negative electrode materials and both have made some progress
towards entering the commercial arena. Cost analysis for these
materials shows Sn be clearly the more economical on a unit
cost per Ah basis (graphite : Si : Sn ¼ 0.81 : 0.08 : 1.51 c per Ah)
with Si being the second most abundant element on earth.
These elements have high lithiation capacities of 3579 and
994 mA h g�1 respectively, compared with mature graphite
anodes of limited capacity of 372 mA h g�1.11 However, the
group IV metals and metalloids interact with Li ions differ-
ently13 (compared with graphite) and instead of intercalating,
they alloy with Li+ to the extent of incurring a deleterious
volume expansion upon reversible cycling reactions.14,15 This
volume increase can reach up to 300% when approaching the
maximum capacity of Si and such expansion in turn leads to
particle pulverisation (Fig. 1), electrode cracking and the
progressive growth of a solid-electrolyte interface (SEI).16–18
This journal is © The Royal Society of Chemistry 2018
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Fig. 1 Illustration of lithiation-induced Si particle fracture.
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In contrast to the cathode electrolyte interface (CEI), as is
common with materials such as lithium iron phosphate, and
the stable SEI formed on graphite, with silicon the SEI is
unstable19 and continues to grow.20 This represents a cumula-
tive, irreversible loss of the Li “inventory” as well as a progres-
sive increase in surface resistance on the Si particles, which
results in pronounced and premature capacity decrease as
a function of cycle number. This has precluded anodes based on
Si from serious attempts at incorporating such materials into
batteries for vehicle electrication. There have been an exten-
sive number of studies on both Si and Sn as separate active
materials for Li-ion batteries21–24 but it is not the purpose of this
article to incorporate an extensive review of these studies – here
we focus on the hybridisation of these elements in a non-
conventional manufacturing approach.

More recently there have been attempts at hybridising Si and
Sn within the same electrode, e.g. an investigation using Sn
nanoparticles as an effective, conductive additive for Si-based
anodes in Li-ion half-cells.25–27 The rst study claimed that the
presence of the Sn (as low as 2%) dramatically improves the
electrode's performance in terms of both charge capacity and
cycling stability.26 It proposed to have achieved this by being
uniformly dispersed in the Si network but also reducing the
electrical resistance of the electrode structure as a whole. As
such, Mangolini et al. the synergistic effects between the
materials lead to batteries that exceed the performance of each
of the two components alone.25 This is attributed to the high
electrical conductivity and good reversibly energy storage
capacity of Sn. Other researchers have looked at silicon–tin
hybrid anode systems for solid-state Li-ion batteries achieving
reversible capacities up to 700 mA h g�1.28 Combining hybri-
dised “yin-yang” silicon–tin porous nanocomposites with gra-
phene has also been used as an approach for generating low-
cost and low energy consumption materials with promising
electrochemical performance.29

When considering silicon as the predominant anode active
material, the one-dimensional aspect of silicon nanowires
(SiNWs) has received widespread attention30,31 but will not be
discussed at length here. It reported to be structurally benecial
as an anode active material as it: (1) allows sufficient space
between collections of nanowires to accommodate the volume
changes brought about by lithiation, and (2) allows axial/radial
stress relaxation of the nanowires.32 This relaxation is thought
This journal is © The Royal Society of Chemistry 2018
to alleviate any progressive pulverisation that is commonly
observed in the bulk and thick lm Si structures during oper-
ational cycling.33,34 Metal-assisted vapour–liquid–solid (VLS)
mechanism is a widely used approach to obtain anisotropic 1D
nanowires owing to its simplicity and versatility with regards to
semiconductor nanowires.35,36 This method represents an
alternative manufacturing route beyond conventional
composite electrode fabrication methodology, and could
constitute an economically viable, less energy-intense produc-
tion route within energy storage manufacturing.37

The crystalline properties of nanowires grown this way is
considered to be of good quality and sometimes referred to as
“defect-free”, with the exception of multiple twin defects that
can cut across the nanowires (described further on in this
paper).35 Si is a commonly used alloying element in several
grades of aluminium and steel38 but does not alloy to a high
degree with Sn since the solubility of Sn in Si is very low (z5 �
1019 cm�3)39 as illustrated by the binary phase diagram for the
silicon-tin alloy system (see Fig. 2).

Consistent with the Hume-Rothery limits of binary solu-
bility, Sn and Si have atomic radii differences signicantly >15%
and as a result have limited solubility in each other. This is
despite their other favourable common properties in this
respect, namely crystal structure, valence and electronega-
tivity.41 It is this limited solubility with Si that makes Sn a good
catalyst in this instance as it tends to generate atomically sharp
heterostructures.42 With this in mind, this study essentially
integrates a Sn granular thin lm with nano-crystalline and
amorphous phase Si nanowires (SiNWs), to generate a degra-
dation-resistant, high capacity anode system. In order to syn-
thesise the Si nanowires use of Radio-Frequency Plasma
Enhanced Chemical Vapour Deposition (RF-PECVD) technique
for the nanowire growth that incorporates vapour–liquid–solid
(VLS) catalyst mediated growth process, which is described as
a “bottom–up” method.43 In this process, the substrate coated
with Sn as a catalyst is heated in the presence of a hydrogen and
silane precursor gas, which preferentially absorbs Si atoms and
precipitated out of the Sn catalyst. Upon dissolution into the Sn
droplet, Si atoms form a liquid eutectic alloy with the under-
lying Sn catalyst. Eventually – with continuous ow of SiH4 – the
alloy becomes supersaturated whereby the nucleation barrier is
surpassed and Si precipitates at the liquid–solid interface,
minimising the free energy of the system.44 Because the mech-
anism consists of adsorption, dissolution, diffusion and
precipitation in the liquid phase – these are thermodynamic
processes that work towards equilibrium – one can refer to the
Sn–Si equilibrium phase diagram in Fig. 2 to understand cata-
lyst mediated growth of solid SiNWs from a liquid catalyst.

As illustrated in the schematic in Fig. 3, the kinetics of the
VLS mechanism consist of four major steps:

(1) Mass transport of precursor in the gas phase.
(2) Chemical reactions at the vapour–liquid interface.
(3) Diffusion in the liquid phase.
(4) Incorporation and arrangement of atoms in a crystal

lattice.37

Whilst studies on VLS SiNW growth are established using Sn
as a catalyst,45 the application of such lms as anode systems for
RSC Adv., 2018, 8, 16726–16737 | 16727
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Fig. 2 The Si–Sn equilibrium phase diagram40.
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Li-ion energy storage has not been comprehensively explored.
The feasibility of growing these hybrid systems on alternative
current collectors is tested here using exible conductive
carbon paper mesh as an advanced 3D electrode manufacturing
approach. Flexible free-standing Li-ion batteries have been
fabricated using carbon paper (with enhanced conductivity) as
the current collector, specically N-doped 3D porous carbon
paper.46
2 Methods/experimental
a. Plasma enhanced chemical vapour deposition & vapour–
liquid–solid SiNW growth

Copper (Cu) foil and Cu mesh sheets were obtained from Dex-
met Corporation and were cut to 30 � 30 mm and cleaned with
a stream of nitrogen gas. Carbon paper Spectracarb 2050A-0850
was obtained from Toray through-plane resistivity of 18 mU

cm2. Corning glass (Alkali Free Borosilicate-7059) and P-Silicon
wafer (500 mm thickness, 1–20 ohm cm, 100 orientation) were
cleaned using an RCA process and the native oxide on Si wafers
was removed by immersing wafers in a buffered hydrouoric
(HF) acid solution for 10 seconds. The residual HF was removed
by rinsing thoroughly with deionised water. The aforemen-
tioned substrates (Cu foil, Cu mesh, glass, carbon paper and Si
wafer) were loaded in a thermal evaporator (Edwards AUTO 306)
16728 | RSC Adv., 2018, 8, 16726–16737
for deposition of 100 nm (mass thickness) thin lm of tin
(99.999% purity) at 10 Å s�1 at 8 � 10�7 mbar base pressure.

Real-time thicknesses were monitored using a quartz
microbalance. All substrates coated with tin on one side of the
substrates were loaded into a capacitive-coupled RF-PECVD
(Radio Frequency-Plasma Enhanced Chemical Vapour Deposi-
tion) chamber (Oxford PlasmaLab) and pumped down to 5
mtorr base pressure. The temperature was raised to 400 �C and
maintained for 5 min followed by hydrogen plasma pre-
treatment (hydrogen gas ow at 100 sccm, 500 mtorr chamber
pressure and, 33 mW cm�2 RF power density) for 5 min.
Without breaking the vacuum, 20 sccm of SiH4 gas was intro-
duced to existing H-plasma to initiate the growth process and
growth of silicon nanowires (SiNWs) continued for 15 min.
Samples were removed aer PECVD chamber was let to cool
down to below 50 �C.
b. X-ray diffraction analysis

In this work, Bruker–D2 phaser equipped with 1-D LYNXEYE
detector with a resolution of �0.02� is utilised for the investi-
gation. All scans were performed by Cu anode to produce X-rays
at 30 kV and 10 mA to generate monochromatic X-rays with
1.54056 Å wavelengths. Ni lter is used to remove Kbeta X-rays,
thereby only Kalpha is incident over the sample. SiNWs grown
This journal is © The Royal Society of Chemistry 2018
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Fig. 3 Schematic illustration of the growth of SiNWs via vapour–liquid–solid mechanism. Sn film coated substrate is exposed to H-plasma to
obtain self-assembled Sn spherical nanoparticles. Si atoms are adsorbed and precipitated from Sn nanoparticles to obtain nanowires that are
directly grown from the substrate (i.e. nanowires are electrically welded to the bottom conductive Cu sheet or any chosen substrate).
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on glass substrates from a tin catalyst with mass thickness
100 nm is used for investigating structural signature/phase
identication.
c. Electrochemical characterisation

All lms were tested in Hohsen 2032 coin cells vs. a lithium foil
counter electrode. The separator is PP/PE/PP microporous tri-
layer membrane (Celgard 2325) and the electrolyte is RD265
(PuriEL, SoulBrain, US) and is composed of EC, EMC, FEC and
VC. The cell was cycled galvanostatically using a BioLogic VMP3
potentiostat with a low current module (10 nA limit). Compar-
ison electrodes based on powder Si and Sn hybrids were fabri-
cated using 50 : 50 active mass ratios (Elkem BV and Sigma
Aldrich respectively) in mass proportions of 70 : 16 : 10 of active
material : polyacrylic acid (450 k Sigma Aldrich) : Super-P
(Timcal). Both cells used the same electrolyte solvent and
charge–discharge cycling parameters.
Fig. 4 Sputtered coated Pt over the surface of SiNW–Sn film section
for FIB-sectioning.
d. Scanning electron microscopy and focused ion beam
cross-section preparation

SEM images were obtained using a Carl Zeiss Sigma Ultra
microscope using a working distance of 2–7 mm and acceler-
ating voltage of 2 kV. Cross-section analysis was performed
using a 1 nA current at 30 kV. For the cross-section analysis Pt
was deposited (Fig. 4) to mitigate beam damage to the lms.
Different currents were used to dig the trench, ranging from 50,
then 30, 7 and nal nishing with a 1 nA current, all at 30 kV
accelerating voltage.
This journal is © The Royal Society of Chemistry 2018
3 Results and discussion

The morphology and vertical cross-section microstructure of
the vapour deposited Sn–SiNWs lm is shown in Fig. 5(a) and
(b). The Pt layer seen in the cross-section Fig. 5(b) is used to
protect the sample from any damage induced by the ion beam.
Identication of the phase composition of the intermetallic Cu–
Sn layer by X-ray diffraction was challenging due to the thick-
ness of the lms making detection of the intermetallics very
difficult. The Sn catalyst layer in Fig. 5(c) deposited prior to any
Si alloying and precipitation, can be seen to appear as quite
a uniformly self-assembled series of spherical deposits that are
crystalline. The catalyst is subsequently treated under a H-
plasma before the growth of SiNWs following introduction of
the silane gas.

The assembly of layered thin lms relies on interfacial
integrity has been found to have a profound effect on the
resulting function.47 The formation of intermetallics between Si,
RSC Adv., 2018, 8, 16726–16737 | 16729
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Fig. 5 (a) Morphology of vapour deposited Sn–SiNWs film (top-view). (b) FIB cross-section of SiNW–Sn hybrid film deposited over copper foil. (c)
Self-assembled spherical Sn catalyst nanoparticles layer.
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Sn and the underlying Cu substrate may signicantly affect the
stability of the interface – this could promote adhesion quality
of the active anode lm and warrants deeper investigation
beyond the experimental scope of this investigation.

The SiNWs have a very high aspect ratio, as can be seen in
Fig. 6(a), with diameters typically around 100–150 nm and
lengths of up to 10 mm, incorporating a signicant mass of SiO2

shell. This cannot be directly or very easily quantied as the
nanowires are combined with a Sn layer that will have its own
associated oxide layer. With higher magnication it is evident
that many of the NWs have kinks in their 2D morphology as
shown in Fig. 6(a). The zig-zag morphology found in some of the
nanowires is due to stacking-fault energy of Si (50 mJm�2) – this
generates twins during crystallisation35 as shown in Fig. 6(b).
Twin defects are a special type of grain boundary occurring
commonly in many different minerals and are perpendicular to
the growth direction of the nanowire. Likely crystalline
parameters are illustrated: single crystalline wires are con-
nected by a 120� angle joint.
16730 | RSC Adv., 2018, 8, 16726–16737
Two h112ic or h110ic vectors in a cubic crystal structure and
two h11–20ih or h1–100ih vectors in a hexagonal structure can
form such a 120� joint when rotating about the h111ic and
h0001ih zone axes respectively.48 From the selected area electron
diffraction (SAED) patterns in Fig. 7(a) and (b) there is evidence
of both crystalline and amorphous phases within the hybrid
lms deposited in this work. This will have implications in the
lithiation behaviour of the anode active materials during
charging, this being attributable to charge transfer kinetics in
amorphous – compared with crystalline – silicon.49 The complex
two-phase lithiation of crystalline Si, subsequent lithiation
phases that evolve in amorphous Si50 and the recrystallization of
Si51 has received much attention and are still yet some way from
being denitively concluded.

The crystallinity of these lms are further analysed by XRD as
shown in Fig. 8. Characteristic peaks that correspond to
diffraction planes of Si (blue) and Sn (red) are identied. The
diffraction patterns of the deposited composite is purely
composed of elemental state of Si and Sn. Similar patterns
This journal is © The Royal Society of Chemistry 2018
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Fig. 6 SEM image of Si–Sn showing (a) the Sn catalyst particles at the tip of SiNWs grown on a copper foil substrate and (b) single SiNW with
angular kinks with crystalline phase identification of twinning regions.
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corresponding to pure elements have been observed for Si–Sn
composites.52 The diffraction peak of Si indicates the cubic
phase of SiNWs. These nanowires grown with tin at tempera-
tures used here show increased lattice constants that is attrib-
uted to the bending of SiNWs, kinks in the nanowire and
incorporation of Sn in the nanowire during the low temperature
Fig. 7 HRTEM and selected area electron diffraction imaging of SiNW
amorphous SiNW (c and d).

This journal is © The Royal Society of Chemistry 2018
growth process. The lattice constant of tin is approximately 20%
larger than silicon.53 The tetragonal Sn phase structure is evi-
denced by the peaks appearing at: 30.6�, 32.0�, 43.9�, 55.3�,
62.5� and 79.5� (JCPDS card no. 04-0673).

Fig. 9(a) shows the 1st cycle (formation) for the lithiation and
delithiation to 1 V. Five different regions of varying slope can be
with both crystalline and amorphous regions (a and b) and purely

RSC Adv., 2018, 8, 16726–16737 | 16731
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Fig. 8 X-ray Diffraction pattern of Sn–SiNW film. Characteristic peaks that correspond to diffraction planes of Si (blue) and Sn (red) are
highlighted.
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identied for the lithiation (charging) reactions. These regions
correspond to the evolution of a series of lithiated tin and
silicon phases beginning with Li2Sn5 and ending with forma-
tion of Li17Sn4 for the Sn component of the active mass of the
hybrid. In these lms, interpreting the SiNW lithiation species
as a function of voltage is somewhat more complicated
compared with typical voltage proles of the lithiation of bulk
crystalline Si, as there are fewer dened voltage-specic
plateaus.

Fig. 9(b) has more of a gradual slope rather than a series of
plateaus, as is usual in the case with Sn lithiation voltage
proles. Additionally as the SiNWs are a combination of crys-
talline and amorphous phases, there will be less transition from
crystalline-to-amorphous phase. In Fig. 9(b) the initial lithiation
of crystalline bulk silicon results in a low voltage plateau cor-
responding to a two-phase region in which lithiated amorphous
silicon is formed (a-LixSi).54,55 Limiting the capacity to around
1000 mA h g�1 will avoid the deleterious volume expansion,
which occurs when the highest lithiated Si species Li15Si4 is
formed through recrystallisation. This phase formation is
associated with an entire amorphous to crystalline trans-
formation, whose onset occurs at around 60 mV and continues
when the voltage < 50 mV. Such a phase transition can result in
high internal stresses, leading to particle fracture and resulting
capacity fade – a relationship has been suggested between lm
delamination and increased Li15Si4 formation.56 This is attrib-
utable to the Li15Si4 crystallization introducing grain bound-
aries which can in turn cause crack formation to propagate
during delithiation, which may result in delamination.

Therefore, if the amorphous phase is maintained by
remaining above 50 mV the electrode can in turn retain some
structural stability. This is because conventional electrode
manufacturing generates electrode architectures (microstruc-
tures) that cannot accommodate particle volume expansion to
280 vol% whilst retaining the cohesive, composite integrity of
the as manufactured electrode coating. Obrovac states that the
partial lithiation of crystalline Si results in particles composed
of lithiated amorphous Si and completely non-lithiated crys-
talline Si, as shown schematically at the maximum capacity
attained in Fig. 9.54

The reversible lithiation characteristics of amorphous
silicon have been shown to retain longer structural stability
16732 | RSC Adv., 2018, 8, 16726–16737
than the crystalline material, attributable to increased tolerance
to intrinsic stress and strain.49 Specically the amorphous
advantage lies in the ability to facilitate the isotropic stress and
strain moments during the lithiation and delithiation
processes.49

The Sn/Si nanowire hybrid electrode structures (Region ii in
Fig. 9a) showed the tin plateaus during the rst part of lith-
iation, and then the silicon lithiation pseudo equilibrium
beyond 500 mA h g�1. The plateau voltage was higher than
typically observed for pure silicon electrodes (see Fig. 10). There
was a large rst cycle loss, and no observable Sn plateaus during
delithiation. Part of this was due to the high surface area of the
silicon nanowires. However, the absence of the tin voltage
features suggests that some of the lithiated tin particles may
have become isolated during the silicon expansion and
contraction.

The Sn/Si particle electrode (Region iii in Fig. 9a) showed the
tin voltage plateaus during delithiation, but not during lith-
iation, when they were “smeared” out and dominated by the
voltage curve where the silicon is undergoing progressive lith-
iation. The electrode resistance was higher than the nanowire
hybrid, due to the reduced number of contact points within the
electrode structure. The voltage decreased during the silicon
pseudo-equilibrium stage, since the decrease in silicon pseudo
OCV was not matched by the usual decrease in resistance.

The discharge capacity as a function of cycle number is
shown in 10 and there is a relatively good cycling performance
to 100 cycles. However, this electrochemical testing was per-
formed in half-cells against Li foil and this can compensate for
the low columbic efficiency (CE) by supplying excessive Li ions
as needed (which would not be the case in a full cell that has
a nite Li inventory). In commercial cells to achieve industry-
relevant cycling performance the CE needs to be $99.93% to
achieve a target number of charge–discharge cycles (at least 300)
before it reaches 80% capacity retention.

The electrochemical performance of physical vapour depos-
ited (PVD) Sn–Si lms was compared with conventional anodes
containing powdered (Pwd) Sn–Si hybrid lms as outlined in
Fig. 11. The anode in (ii) was formulated by conventional means
and comprised a polyacrylic acid binder with conductive carbon
additives, consistent with conventional electrode
manufacturing approaches. The powder hybrid system shows
This journal is © The Royal Society of Chemistry 2018
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Fig. 9 Voltage–capacity plots for the formation cycle showing key lithiation plateaus and associated voltage ranges (a) SnSi powder hybrid
anodes (b) Si powder anodes lithiated to full capacity. NB schematic particles are not intended to be illustrative of scale.
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clear accelerated capacity fade rate beyond 80 cycles. The elec-
trode microstructures of the two systems compared are entirely
different on several levels, in terms of the electrode lm
composition and microstructure. Electrodes generated using
a conventional composite lm deposition approach are oen
susceptible to delamination phenomena, which result in
progressive capacity fade.57,58 This can be attributable to the
adhesive efficacy of the polymer binder fraction of the
composite, oen inuenced by the polymer's functional
This journal is © The Royal Society of Chemistry 2018
groups.59 The growth of lms of active masses directly from
a current collector represents an alternative route to mitigating
this effect. This comparative test was carried out to establish
whether there is any clear performance benet to generating
a morphologically distinctive, less dense active mass, polymer-
free lm without the need for conductive additives.

Fig. 12 shows low and high resolution images of VLS-grown
SnSi NWs grown on conductive carbon paper, presenting
exciting possibilities to generate exible free-standing
RSC Adv., 2018, 8, 16726–16737 | 16733

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7ra13489d


Fig. 10 Discharge capacity & columbic efficiency vs. cycle number for Sn–SiNWs anode vs. Li/Li+.

Fig. 11 Discharge capacity vs. cycle number (i) PVD deposited Si–Sn electrodes, (ii) Pwd coated Si–Sn hybrid anodes vs. Li/Li+.
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Fig. 12 SEM images of Sn–Si hybrid nanowires grown on carbon cloth at (a) lowmagnification and (b) higher magnification down to lowmicron
scale.
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electrodes incorporating 3D current collector substrates. The
electrochemical characterisation of these electrodes will be
presented elsewhere in a separate study following the further
optimisation of this lm growth. nSi–C composites have been
fabricated by ultra-sonication and positive-pressure ltration60

and were shown to stably cycle for a few hundred cycles. The
development of exible electrodes using carbon substrates has
the potential to offer excellent thermal, electrical and mechan-
ical properties – especially in applications that require the need
to endure cyclical mechanical deformation.

4 Conclusion

A relatively low temperature deposition technique was shown to
generate a binary anode system composed of both crystalline
and amorphous SiNWs, a dense Sn layer and some interfacial
copper–tin intermetallic phases. Sn has been shown to be an
interesting catalyst for SiNW growth as it is isoelectric with Si
thus a neutral “impurity”. PECVD of Si in combination with Sn
catalyst seeds opens up exciting possibilities at low tempera-
tures. This is facilitated by the dissociation of the precursor gas
in a low power plasma, allowing lowering of the substrate
temperature whilst maintaining high SiNW growth rate. This
non-optimised lm was able to endure reversible lithiation for
100 cycles at nearly four times the maximum capacity of
graphite. Conventional powder-binder-additive containing
electrodes did not achieve this level of performance in a direct
cycle life comparison.

Subsequent work will follow on the systematic investigation
into optimal SiNW density, morphology, crystallinity, lm
thickness parameters and alternative 3D current collectors. Also
to be investigated is how to control and optimise deposition
parameters on a variety of exible, conductive substrates.
Additional optimisation extending into ternary chemistries may
be a possible route to generating more stable amorphous alloy
lms/metastable structures capable of efficient, reversible lith-
iation for several hundreds of charge–discharge cycles.

Alternative manufacturing routes such as low temperature
PECVD do not require indirect materials or energy-intensive
processing, and could be a key enabler generating cheaper
and long lasting electrode architectures. Their ability to deposit
onto three-dimensional structures could present opportunities
beyond the capability of conventional coating techniques. This
can enable the use of metallic foam or carbon-based current
This journal is © The Royal Society of Chemistry 2018
collectors in batteries for very high rate applications. The
potential for use in exible or wearable energy storage could
also become increasingly possible by this approach. Further
developing the capability to generate wearable energy storage is
of much practical interest although it is far from being at a level
ready for commercial exploitation. PECVD is an established,
scalable technology that is well-suited to depositing functional
semiconductor coatings. Our strategy presents new possibilities
to explore and better understand the approaches to designing
and understanding new electrode materials and microstruc-
tures, to correlate structure with performance, and how to
better optimise energy storage components.
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