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Most monotonic S-shaped concentration—-response curves (CRCs) can be satisfactorily described by
a classical Hill equation. However, the Hill equation cannot effectively describe the non-monotonic J-
shaped CRCs that display stimulation at low concentrations and inhibition at high concentrations. On the
other hand, the physical meaning of the model parameters in current models describing the J-shaped
CRCs is not very clear. It is well known that both toxicity experiments and the fitting process inevitably
produce uncertainty. To effectively deal with the J-shaped concentration—response data with
uncertainty and make the model parameters meaningful, we developed a method for the fitting of the J-
shaped and/or S-shaped concentration—response data (simply called JSFit). The JSFit first uses one Hill
equation (S-shaped) or combines with two Hill equations (J-shaped) for fitting, then nonlinear least
squares fitting is performed by means of the Levenberg—Marquardt algorithm, and finally the

observation-based confidence intervals of the fitting curve are constructed by the delta procedure. For
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programming language and introduced automation of the initial parameters into the program. The JSFit
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Introduction

Hormesis is a biphasic concentration-response relationship
exhibiting  low-concentration  stimulation and  high-
concentration inhibition." Since the discovery of hormesis in
the nineteenth century, many studies have described qualita-
tively the phenomena such as homeostasis, equilibrium,
stability, and optimization throughout the scientific fields as
diverse as physiology (e.g. temperature affecting the growth
rate?), ecology (e.g. disturbances affecting species diversity?®),
and psychology (e.g. intensity of punishment affecting the rate
of training*) and economics (e.g. tax rate affecting tax revenue?).
In recent years, significant research has shown that hormesis
can be induced by many chemicals, especially some poisonous
and harmful substances such as persistent organic pollutants,®
pesticides,® metal ions,” antibiotic® and ionic liquids.>*® The
quantitative description of the hormetic concentration—-
response relationship has become an important step for gain-
ing a better understanding of hormesis and the influence and
meaning of hormesis in environmental risk assessment.™
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antibiotics, and personal skin-care products on Vibrio Qinghaiensis sp.-Q67.

Fortunately, a few models®**>™¢ can be used to quantitatively
describe the hormetic concentration-response relationship.
The most widely used is the model with five parameters (simply
MS5) cited by Ge et al. in 2011.° In 2013, several biphasic models
were compared in terms of the goodness-of-fit (GoF) statistics of
the adjusted coefficient of determination (R.g;”), the root mean
square error (RMSE), and the Akaike information criterion
(AIC), where M5 gave the best description of hermetic data
sets.”* Although the GoFs of these models were satisfactory, the
model coefficients were far away from the values represented by
their physical meaning.

Some scholars have directly fitted hormetic data using the
sigmoidal equation, but this would miss some important
information at low concentration. In 2016, de Garcia et al. used
three logistic models, from a family of sigmoidal equations, to
fit hormetic data of the bacterium Vibrio fischeri exposed to
pharmaceuticals and personal care products for description of
the concentration-response behaviour."” Since most of the
stimulative effects take place at low concentration levels, such
as EC, and ECs, some conclusions obtained from the sigmoid
equation at these levels would not be correct.

In 2015, Di Veroli et al. developed an automated fitting
procedure and software, named as Dr-Fit, to fit the concentra-
tion-response curves (CRCs) with multiple inflection points by
a many Hill model.** Without doubt the Dr-Fit software was
a powerful tool for fitting CRC. However, because the number of
data points was relatively few in the paper and as the

This journal is © The Royal Society of Chemistry 2018
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experimental errors were not considered, the CRC model from
the Dr-Fit can only be used to fit but not to predict.

In fact, there are some more or less errors with the experi-
mental data points and fitting process, which are often ignored
by scholars. So, it is necessary to examine the effects of experi-
mental errors and fitting deviation on the CRC fitting in the
construction of a CRC prediction model. Zhu et al.*® introduced
confidence intervals (CIs): FCIs based on the function fitting
and OCIs based on observation, into the CRC fitting. The CIs
can be used to test the data points in turn and to judge whether
there is a large deviation from the experimental data points,
which could further improve the experimental method to
a certain extent.

Because hormesis describes a biphasic concentration-
response relationship, which is stimulation at low concentra-
tion and inhibition at high concentration, it is usually expressed
as a J-shaped concentration-response relationship or CRC.** In
2008, Beckon et al. constructed a new model based on the theory
that the stimulation and inhibition effects in the two phases
could be separated into two different and independent sensi-
tivity threshold probability distributions.* Trogl et al. used two
sigmoid equations to model the hormetic curves.”* However, the
regression coefficients in the models did not have any signifi-
cant physical meaning. Therefore, it is necessary to enrich the
physical meaning of the model coefficients in the development
of a quantitative model.

The main purpose of this paper is to develop a model for the
fitting and prediction of the monotonic S-shaped and/or non-
monotonic J-shaped concentration-response data. In the
model development, the observed concentration-response data
are fitted to a Hill function (S-shaped) or an integration function
from the product of two Hill functions, and then automatic
initialization of the model coefficients is performed, and the CIs
of the fitted CRCs are finally constructed. On the basis of the
developed model, some characteristic parameters of J-shaped
CRC are given. Furthermore, the outlier and reliability of the
observational data are also analyzed.

Data and methods
Concentration-effect data set

The concentration-response/effect data set (C-E) used in this
paper comes from the literature.”” The data set consists of toxic
effects and luminescence inhibition ratios (each three replica-
tions) of 1-ethylpyridinium chloride ([epy]Cl) at 12 concentra-
tion levels in seven exposure times (0.25, 2, 4, 6, 8, 10 and 12 h)
on Vibrio Qinghaiensis sp.-Q67 (Q67) (Table S1 in the ESIT). In
the set, the CRCs of [epy]Cl in the first 0.25 h and 2 h are S-
shaped, while those in the latter five times (4, 6, 8, 10 and 12
h) are J-shaped (Fig. S1t).

General procedure of modelling

The modelling flow chart is shown in Fig. 1, and involves the
steps: (1) for the monotonic and hormetic data, a suitable
mathematical model is selected, such as a single Hill model or
a product of two Hill models. (2) Calculus is used to analyze the
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Fig.1 The technical route used in this study, where Radjz refers to the
adjusted coefficient of determination, RMSE to the root mean square
error, and AIC to the Akaike information criterion, while FCls and OCls
are the function-based confidence intervals and observation-based
confidence intervals, and L-M is an acronym for “the Levenberg—
Marquardt algorithm”.

Confidence interval

specific meaning of each model coefficient, where its initial
values are estimated by combining the information in the
original experimental data (initialization). (3) On the basis of
the Levenberg-Marquardt algorithm* in MATLAB, experi-
mental data are fitted by the selected model to obtain the model
coefficients. (4) The GoFs, such as Radjz, RMSE and AIC, of the
model are calculated to evaluate the fitting quality. (5) On the
basis of the fitted CRC and experimental data, the FCIs and
OCIs are constructed. The reliability of the experimental data is
analyzed and outliers in the original experimental data are
picked out. (6) Using the hold-out method,** the predictive
potential of the model is evaluated.

Model coefficient estimation

For a monotonic concentration-response relationship, the CRC
may be described quantitatively by the classical Hill equa-
tion.*>** For a given concentration, C, the response/effect, E, can
be calculated by the Hill equation with four parameters:

E. - E

Epin(C,Ew, Eo, ECpig, H) = By + ————————
in 0 4, H) 0 1+(ECmid/C)H

(1)
where H is the Hill exponent, E, is the effect at the concentra-
tion of 0, E. is the effect at the concentration large enough and
ECpiq is the concentration corresponding to the effect of (E. +
Ey)/2.

For a non-monotonic concentration-response relationship,
the CRC can be described by an integration model combined
with two Hill equations. The hormetic concentration (C)-effect
(E) relationship has two inflection points,*®* which determine the
number of equations to be integrated, and one minimum,
which is break point of the integration model (Fig. 2).

Therefore, by means of the break point, a hormetic
concentration-response curve (HRC) could be split into two
independent and separate Hill equations, named as two phases:
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Fig. 2 The hormetic concentration—-response curve (CRC) and its
related parameters (model coefficients and characteristic parameters)
diagram, where the black line refers to the CRC fitted by the model
integrating with two Hill functions, the red line to the CRC fitted by the
first Hill model for the first (decreasing) phase, the dark blue line to the
CRC fitted by the second Hill model for the second (ascending) phase,
Ep and E,, are the minimum and maximum stimulative effect param-
eters of the first Hill model, E,, and Enax are the minimum and
maximum inhibition effect parameters of the second Hill model, Enin
and EC,,, are the minimum effect or maximum stimulative effect and
corresponding concentration and ZEP is the zero effect point, where
the effect is 0 and the concentration is ZEP. The effects at the lower
left of ZEP are the “stimulation zone", while those at the upper right are
the “inhibition zone". ECs is the concentrations where the inhibitory
effects are 50%.

one descendant phase (first phase) and one ascendant phase
(second phase) (Fig. 2).

The monotonic CRC of each phase can be modelled by a Hill
equation. For the first phase (the descendant phase), the Hill
equation (eqn (1)) can be rewritten as follows:

En —Ey

E\(C,En, Ey, ECig1, H)) = Ey + ———2 =0
1 ( 0 ar, Hy) 0 1+(Ecmid]/C)H1

(2)

For the second phase (the ascendant phase), the Hill equa-
tion (eqn (1)) can be rewritten as follows:

Emax - Em

E CaEmaxaEmvECmi 7H :Em+—
! o 1) 1+ (ECpig2/ C)™

(3)

Combining eqn (2) with eqn (3), an integration model with
seven parameters (called HM7-1 in this paper) can be obtained
to describe the HRC. Since the minimum effect value of eqn (2)
and (3) is Ey, (Fig. 2), the integration model needs to be divided

by Ep,.

E., — E
<E0+—OH X | Em +
14+ (ECumia1/C)™

Emax Em
1+ (ECmidz/C)H2
E,

4)
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where E(C) is the fitted effect at the concentration of C and E;(C)
and E,(C) are the effects fitted by the first phase Hill model (eqn
(2)) and the second phase Hill model (eqn (3)), respectively.

In many cases, E, is often approximately zero and Ep.x
approximately equals to 1. In this case, eqn (4) can be reduced to
eqn (5) (called HM5).

1 I—Em
E(C) = 1+ (ECiar /O)™ % (E““ +W> ¥

However, due to some reasons, like solubility, E,.y is often
less than 1, and eqn (5) is transformed into eqn (6) (called
HMB6).

Emax — Em

E(C) = I (ECmid2/C)H2> (6)

1
— x| En,+
1+ (ECmidl/C)Hl (

If E, is not zero, the HRC is upward translated E, units. Thus,
eqn (6) is transformed into eqn (7) with seven parameters

(called HM7-2):*
E,max - Elm
W>+%

1
EC)=— x| E, 4 CmxTEm
O = T B/ O ( [+ (ECun/C
)

Model coefficient initialization

In the integration model, HM7-1 (eqn (4)), there are seven
parameters: Eg, En, Emaxy, ECmid1, ECmidz, Hi and H,, to be
estimated. In this paper, these parameters were called the
model coefficients (MC;, j = 1, 2, ..., 7). Currently, the estima-
tion of the coefficients in the existing literature often requires
the user to provide appropriate initial values to perform the
iteration operations, which is very difficult to do for users who
are not familiar with the algorithm and HRC. In this paper, an
automatic initialization method was thus given on the basis of
the specific meaning of the model coefficients.

At first, coefficient estimation expressions were built by
calculus and then the model parameters were estimated with
discrete observation data points. The concentration—-effect data
set (Cy, E;i=1,2,...,n)was sorted by concentration from small
to large, and then the initial values (MC;) of the seven model
coefficients (MC;) were automatically assigned as follows:

E0,0 = 0 or E(),o = E1 (83.)
Emax,O =1lor Emax,() =E, (Sb)
E, o= min(E) (8¢)

4

H o= —————min(k;

0= i 10E,. min (k;) (8d)
ECuidat.0 = Cimink) (8e)

4
Hyy = mmax(/{k) (8f)

This journal is © The Royal Society of Chemistry 2018
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EChia2,0 = Cramax(k)) (8g)

where Eg o, Em 0, Emax,00 ECmid1,00 ECmidz,0, H1,0 and H, o are the
initial values of E,, En, Emaxs ECmidi;, ECmidz, H1 and H,,
respectively, and j(min(k;)) and k(min(k)) are series numbers of
concentrations, where min(;) and max(k) are, respectively, the
minimum slope in the descendant phase and the maximum
slope in the ascendant phase. Here, the slope k; (i = 2, 3, ...,
n—1) is defined by the central difference method as follows:*

E - Ei
ki = 9
log;y(Cir1) —logo(Ci1) ©)

Model prediction evaluation

The hold-out method** is used to evaluate the prediction ability
of a model. The experimental C-E data were divided into two
sets: a training set of no. 1, 3, 4, 6,7,9,10 and 12 and a test set of
no. 2, 5, 8 and 10. The training set was used to develop a model
and the test set was used to validate the model's predictive
power, which is expressed by the predictive determination
coefficient, g, defined as follows:

pn

Z i — yi)z

2 i=1
Gext = 1- pn

Z(yl _ytr)z

i=1

(10)

where pn is the number of samples in the test set, y; and y; is the
experimental and predictive effect of the ith sample, yi, is the
average value of experimental effects of samples in the training
set. The closer the gy is to 1, the stronger the predictive power
of the model is.

Goodness-of-fit

The goodness-of-fit (GoF) of a model is often expressed by the
coefficient of determination (R?), Ryq;”, RMSE or AIC.? The GoFs
are defined as follows:

R=1--1L— (11)

Radj2 =1- = n 2 (12)
(n—m—=1)30, (=)

RMSE = |3 (yn’ - }f 1)2 (13)

AIC—nlog(i(y,-—f/)z/n> +2(m+1) (14)
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where y; is the experimental effect, j is the fitted effect, y is the
average effect, n is the number of samples, and m is the number
of model coefficients.

At present, there are five models: M1,"2 M2, M3,** M4 (ref. 4)
and M5 (ref. 9) that can describe the J-shaped CRC (Table S21).
It has been proved that the M5 model is the best model among
the five modes.'* The M5 model with five model coefficients can
be written as follows:

min 1 — min
11107 " T1 1000

E = min — (15)
where min is the minimum effect, b is the steepness of the
ascendant phase, a is the concentration at the midpoint of the
ascendant phase, g is the steepness of the descendant phase
and p is the concentration at the midpoint of the descendant
phase. When the concentration is 0, the fitting effect of the M5
model tends to 0, and when the concentration is large enough,
the fitting effect of the M5 model tends to 100%.

Confidence intervals

There are two kinds of CIs: the FCI based on function and the
OCI based on observation. The FCI describes the uncertainty of
the function fitting,>® and the OCI describes the uncertainty of
both the experimental observation and the function fitting. The
FCIs and OCIs can be calculated by the delta procedure as
follows: %

(16)

— Q
n—m,5

FCI:fzit< >m

(17)

n—m,$§

OCI = j + z< )\/RMSEZ +v-CM 7

where « is the significant level (« = 0.05), t is the critical value
searching in the ¢ distribution table where the degree of
freedom is n—m and the significance level is «, v is the row
vector of the Jacobi matrix corresponding to the independent
variable and CM is the covariance matrix of the model coeffi-
cient estimation by nonlinear least squares regression.

All the computations were implemented on the JSFit
program developed in our laboratory and written using the
MATLAB language.

Results
The fitting model of J- and S-shaped CRCs

Using the JSFit program, the CRC models of [epy]Cl at seven
exposure time-points to Q67 were developed. The models
included 20 J-shaped CRC models at the times of 4, 6, 8, 10 and
12 h and two S-shaped CRC models at the times of 0.25 h and
2 h (Table 1).

From Table 1, all the fitted Radjzs are larger than 0.99, while
the RMSEs are less than 0.045 and AICs less than —21, which
shows that all the CRC models had a good fitting ability to the
observed data. In particular, the seven-parameter models, HM7-
1 and HM7-2, were better than HM6 and HM5, with the Radj2s of
HM7-1 and HM7-2 being larger than 0.998, RMSEs less than

RSC Adv., 2018, 8, 6572-6580 | 6575
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Table 1 Model coefficients and GoFs of 22 fitting CRC models for the luminescence inhibition effects of [epy]Cl against Q67
Time Model EnlE ECmia1 (E-3)* H, EmaxE'max ECmiaz (E-3)*  H, E, Ragi” RMSE AIC
12 h HMe6 —-1.901 10.79 1.402 1.189 7.354 2.677 0.9955 0.03584 —23.26
HM7-1 —0.481 2.987 4.223 1.085 12.33 2.328 —0.066 0.9972 0.02832 —-25.71
HM7-2 —0.409 2.999 4.298 1.151 12.36 2.334 —0.066 0.9972 0.02826 —25.73
HM>5 —0.526 3.095 1.815 11.25 2.759 0.9931 0.04449 —21.00
10h HMe6 —1.450 8.095 1.544 1.094 6.908 2.809 0.9944 0.04082 —21.90
HM7-1 —0.394 2.752 6.731 1.027 10.87 2.629 —0.068 0.9985 0.02135 —28.66
HM7-2 —0.322 2.763 6.904 1.094 10.89 2.636 —0.068 0.9985 0.02132 —28.67
HM5 —0.602 3.612 1.872 9.291 2.709 0.9934 0.04439 —21.03
8h HMe6 —4.333 9.165 2.374 1.006 4.159 3.069 0.9963 0.03309 —24.09
HM7-1 —0.354 2.774 6.368 0.987 9.562 2.840 —0.046 0.9989 0.01761 —30.66
HM7-2 —0.305 2.783 6.451 1.033 9.574 2.846 —0.046 0.9989 0.01764 —30.65
HMS5 —0.913 4.776 2.202 7.006 2.488 0.9962 0.03353 —23.95
6h HMe6 —0.432 3.525 2.431 0.939 8.009 3.141 0.9987 0.01920 —29.76
HM7-1 —0.263 2.671 5.591 0.931 8.979 3.407 —0.028 0.9995 0.01199 —34.67
HM7-2 —0.234 2.676 5.613 0.959 8.983 3.409 —0.028 0.9995 0.01198 —34.68
HM5 —0.688 6.369 1.645 6.942 3.882 0.9979 0.02427 —27.32
4h HM6 —0.622 6.174 1.873 0.923 5.957 4.793 0.9987 0.01846 -30.17
HM7-1 —111.662 5.517 4.384 0.919 0.3921 1.822 —0.095 0.9994 0.01209 —34.58
HM7-2 —6.706 5.413 4.388 0.940 1.894 1.907 —0.024 0.9993 0.01348 —33.45
HM5 —153.843 4.900 4.367 0.1314 1.359 0.9960 0.03220 —24.38
2h Hill —0.038 0.753 8.006 2.869 0.9917 0.03686 —22.96
0.25 h Hill —0.056 0.884 5.456 1.555 0.9967 0.02342 —27.69

“ E-3 represents the unit of data as 10 ® mol L™".

0.022 and AICs less than —28.66, except for the models at 12 h.
As shown above, the integrated HM7-1 or HM7-2 model could
describe the J-shaped CRCs well, while the single Hill model
could describe the S-shaped CRCs well.

The characteristic parameters of J-shaped CRCs

For the monotonic S-shaped CRC that can be described by one
Hill equation with four model coefficients (Ey,, Emax, ECmiaz and
H,), the four coefficients can fully characterize the shape and
location of the S-shaped CRC, and the coefficients are the
characteristic parameters. However, seven model coefficients in
the integration model come from the two Hill equations and
cannot really depict the specific shape and location of a J-
shaped CRC. We think that at least five parameters, such as
the median stimulative effect concentration in the descendant
phase (left) (ECps1), the minimum effect concentration (ECyin),
the minimum effect or maximum stimulative effect (Ep,n), the
median effect concentration (ECs,) and the zero effect concen-
tration point (ZEP), are needed to characterize the specific
shape and location of a J-shaped CRC or hormetic CRC (HRC).
Here, EC,i, can be solved by letting the derivative of the J-
shaped CRC to the concentration variable be zero: 0E(C)/dC =
0. Then, En;, can be solved by substituting the EC,,,;, into eqn
(4) or (7). The values of ECy,sr, EC50 and ZEP can be solved by
dichotomy, where we let the effect be E;n/2, 50% and 0,
respectively. We called the four concentrations and one effect
the characteristic parameters of a J-shaped CRC, and the char-
acteristic parameters of [epy]Cl obtained from the HM7-1 or
HM7-2 are shown in Table 2. The characteristic parameters are
some important points on a J-shaped CRC and show the change
regulation of the effect with the concentration, where each
characteristic parameter is part of the J-shaped CRCs. However,

6576 | RSC Adv., 2018, 8, 6572-6580

the model coefficients were only used to construct the model,
and they only indirectly reflect the change regulation of the
effect with the concentration, but generally speaking, the model
coefficients can't reflect the substantive characteristics of a J-
shaped CRC.

In JSFit program, at least five model coefficients, one effect
(En), two concentrations (ECpniq1 and ECpyig,) and two slopes (H;
and H,) are needed to construct a model, which implies that at
least five characteristic parameters can fully characterize the J-
shaped CRC, and the combination of four concentrations and
one effect proposed in this paper is an optimal selection. When
the characteristic parameter E,,;, is determined, the shape and
location of the descendant phase can be characterized by two
concentrations (ECp;, and ECy,g1), while the shape and location
of the ascendant phase can be characterized by two concen-
trations (ZEP and ECs).

Whether a single model coefficient can reflect the change of
the data depends on the model coefficient E,,. E,, is a virtual
parameter that can reflect the size of E,,;,, on a J-shaped CRC to
a certain extent, but it is always less than the real E,;,. When E,,
is closer to Ei,, the model coefficient will be closer to the value
(including characteristic parameters) on the J-shaped CRC. For
example, at 12 h, when the model coefficient E,, (from —190.1%
to —48.1%) is close to En, (about —30%), the model coefficient
ECpmid1, from 10.79 x 10> mol L™ t0 2.987 x 10> mol L™, is
close to the characteristic parameters of EC,,g, (about 2.0 X
107> mol L"), and the other model coefficients are close to the
corresponding value for the J-shaped CRC.

Model coefficient initialization

On the one hand, because solution of the model coefficients is
an iterative process, each coefficient to be solved requires an

This journal is © The Royal Society of Chemistry 2018
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Table 2 Five characteristic parameters of J-shaped CRCs of [epy|Cl against Q67
Time Model ECmgr (E-3)° ZEP (E-3)* ECs (E-3)° ECnin (E-3)° Ermin
12 h HM6 1.843 8.765 15.29 4.467 —0.283
HM7-1 2.241 8.696 15.40 4.169 —0.303
HM7-2 2.249 8.693 15.40 4.169 —0.304
HMS5 1.767 8.909 15.05 4.365 —0.274
10 h HM6 1.817 7.635 13.16 4.121 —0.252
HM7-1 2.241 7.542 13.29 3.715 —0.283
HM?7-2 2.351 7.542 13.29 3.715 —0.283
HMS5 1.796 7.702 13.07 4.074 —0.248
8h HM6 2.119 6.694 11.60 3.890 —0.224
HM7-1 2.361 6.663 11.65 3.631 —0.237
HM7-2 2.363 6.661 11.65 3.631 —0.237
HMS5 2.011 6.754 11.55 3.936 —0.215
6h HM6 2.020 6.255 10.57 3.802 —0.170
HM7-1 2.261 6.195 10.62 3.589 —0.182
HM7-2 2.267 6.193 10.62 3.589 —0.182
HMS5 1.893 6.305 10.52 3.936 —0.162
4h HM6 2.001 5.485 9.087 3.715 —0.133
HM7-1 2.225 5.468 9.120 3.758 —0.139
HM7-2 2.227 5.470 9.124 3.802 —0.140
HMS5 2.273 5.348 9.342 5.470 —0.146

¢ E-3 represents the unit of data as 10 ° mol L.

initial value. On the other hand, it is more difficult for people
who are not familiar with programming to set the initial values.
In this study, according to the physical meaning of the model
coefficient, several reliable initial value equations were provided
by combining discrete data with calculus (eqn (8(a-g)))-
According to the equations, the corresponding initial coeffi-
cients could be calculated. For a certain time, selecting the
average value of observed effects (three replications), the slope
vectors, k; (i = 2, 3, ..., n—1) were calculated using eqn (9), and
the initial values (MC;,y) could be obtained by eqn (8(a-g)). The
initial values of the model coefficients are listed in Table 3.
From Table 3, the initial values (MC; ) of HM7-1 and HM7-2
calculated by eqn (8(a-g)) have a strong regularity. For the J-
shaped data set, E,o is 0 all the time, and Epaxo is the
twelfth effect (average value), which corresponds to the
maximum concentration. Because the sixth concentration
point of the 12 concentration levels has the minimum inhib-
itory effect, so E,, ¢ is the sixth effect of the data set. ECpiq1,0 iS
the fifth concentration, and the corresponding slope is Hj,,
because the slope of the fifth concentration point is the
minimum in the descendant phase. At 4, 6 and 8 h, the
ECmidz,0 is the eighth concentration, and the corresponding

slope is H,,, while for 10 and 12 h, ECpja2,0 is the ninth
concentration and the corresponding slope is H,, based on
the maximum slope of the ascendant phase. For S-shaped
CRC, Ep, and Epaxo are the first and twelfth effects, which
correspond to the minimum and maximum concentrations,
respectively. Because the slope of the eighth concentration
point is the maximum, ECpq2,0 is the eighth concentration, its
corresponding slope is H, . For the HM6 and HM5 models,
the corresponding values are chosen as the initial values of the
model coefficients.

Model selecting

For the monotonic S-shaped concentration-effect data, there
are two manifestations: the effect increasing with concentration
(monotonic increasing S-shaped) and the effect decreasing with
concentration (monotonic decreasing S-shaped). For the non-
monotonic J-shaped/hormetic concentration-effect data, there
are three categories:

Hdata 1: the effect tends to 0 at low concentration and to 1 at
high concentration.

Hdata 2: the effect tends to 0 at low concentration and is less
than 1 at high concentration.

Table 3 Initial values of model coefficients of [epy]Cl against Q67

Time Em,O/Elm ECmidl,O (E'S) Hl,O Emax,O/Elmax EcmidZ,O (E'S) HZ,O EO,O
12 —0.314 2.637 3.4036 0.979 12.41 2.671 0
10 —0.286 2.637 3.5626 0.979 12.41 2.698 0

8 —0.234 2.637 3.7687 0.963 8.531 2.843 0

6 —0.179 2.637 3.8234 0.933 8.531 3.233 0

4 —0.137 2.637 3.8365 0.904 8.531 3.285 0

2 —0.048 0.793 8.531 2.410 0
0.25 —0.038 0.841 8.531 1.730 0

This journal is © The Royal Society of Chemistry 2018
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Hdata 3: the effect is larger than 0 at low concentration and
less than 1 at high concentration.

According to the characteristics of the concentration-effect
data, the appropriate model should be selected in the JSFit
program. For monotonic increasing S-shaped data, the
ascending Hill is chosen, while for monotonic descending S-
shaped data, the descending Hill is selected. The ascending
Hill and the descending Hill have different initial values for the
model coefficients. For non-monotonic hormetic data, the
model with fewer parameters should be chosen as much as
possible to avoid overfitting. Therefore, the HM5 model is
selected for Hdata 1, the HM6 model for Hdata 2, and the HM7-
1 or HM7-2 model for Hdata 3.

Application of JSFit

JSFit can be used to fit the concentration-effect data with S-
shaped and/or J-shaped CRC profiles, whether the data are
from a single pollutant or mixture. Fig. S3f provides the
experimental concentration—effect scatters and the fitting CRCs
for some chemical and mixture examples, including pesticide
metalaxyl (Met) using the ascending Hill model, ionic liquid
[epy]Br using the HM5 model (belonging to Hdata 1), antibiotic
polymyxin B sulfate (POL) using the HM7-1 model (Hdata 3),
and a complex personal care product mixture using the HM6
model (Hdata 2). From Fig. S3,1 various CRCs could be well
fitted to the experimental data.

Discussion
Model prediction evaluation

Due to the limited number of observation data, 1/3 of the J-
shaped data was equidistantly selected as a test set, and the
remaining 2/3 concentration—effect data were used as training
sets. Because the effect at low concentration was near to 0, the
model coefficient E, could be ignored. Furthermore, it was
found that HM6 was better than HM5. Therefore, HM6 was
chosen to analyze the model prediction ability. The training set
was used to model the J-shape data, and the effects of various
concentrations in the test set were predicted by the training set
model. The obtained g.,.> values are listed in Table S3.} Fig. 3
depicts the relationships between the experimental points and
the fitting curves of [epy]Cl at 12, 10, 8, 6 and 4 h. As can be
clearly seen, apart from 4 h, all the experimental points at the
other times almost fall on the fitting curves. The predictive gey”
values at 12, 10, 8 and 6 h were 0.9884, 0.9940, 0.9989 and
0.9954, respectively, which were the same as the estimated R
(0.9978, 0.9954, 0.9966 and 0.9992), showing a good prediction
ability of HM6.

It is noted that the fitting curve (solid blue) of the lower left
panel in Fig. 3 partly deviates from the dashed line based on all
experimental data. However, if one data point (O) in the test set
is adjusted, the fitting curve based on the training set overlaps
with the curve based on all the experimental data (see the lower
right panel in Fig. 3), which explains that the selection of the
training set affects the predictive potential of HM6. So, the
training set to be used to develop a predicable model has to
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Fig. 3 The CRCs of [epy]Cl against Q67 at different times of 4, 6, 8, 10
and 12 h where " @ " refers to the scatters of the training set, “O" to the
scatters of the test set, “—" to the fitted CRC based on the training set
and “---" to the fitted CRC based on all the experimental data.

contain enough data points and cannot lack some important
information of CRC, such as the minimum effect or the up and
down slope. In particular, the number of model coefficients
selected should be as little as possible, i.e. using a simple model
rather than a complex model*® and enough concentration-effect
data to develop the CRC model.

Model comparison analysis

Currently, compared with other models (M1, M2, M3 and M4),
the M5 model, which has been widely used to describe hor-
metically the concentration-response relationship, has a better
fitting quality.>"** However, the model coefficients obtained by
the M5 model fitting the concentration-effect of [epy]|Cl on
Vibrio Qinghaiensis Q67 distort the physical meaning. For
example, for the model coefficient min, the description of the
minimum inhibitory ratio of hormetic CRCs is more than
0 sometimes.” Although, the M5 model has such shortcomings,
the fitting quality of M5 to the hormetic concentration-effect
data is acceptable, which is the reason why it is so widely used.

Five characteristic parameters (ECs., ECmin, Emin, ECs0 and
ZEP) propounded in this paper can characterize the specific
shape and location of a J-shaped CRC or hormetic CRC (HRC).
The model coefficient E,, in HMS5 is similar to min in M5, but
the characteristic parameter Ep,i, truly reflects the minimum
effect of the J-shaped CRC. On the other hand, the fitting quality

This journal is © The Royal Society of Chemistry 2018
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Fig.4 Plot of the width of confident intervals, (Cl, — Cl_)/2, versus the
concentration, where “—" and “---" are based on FCls and OCls of the
fitted CRCs of [epy]Cl, respectively.

of HM5 is more optimal than M5, as seen from the results of
three GoFs, R,qi”, RMSE and AIC in Table 4 (also see Fig. S41).

Analysis of the confidence intervals

The confident intervals (CIs), FCIs or OCIs, can describe the
uncertainty in toxicity experiments and the function fit. The
confident interval width (CIW), defined as (CL, — CI_)/2, can
quantitatively reflect the fitting quality. The CIWs from some
models, such as HM6, HM7-1, HM7-2 and HM5, change with
the concentration, as shown in Fig. 4.

It can clearly be seen that the variation regularity of CIW of
HM?7-1 is similar to that of HM7-2, whether the CIW is based on
FCI or OCI. The CIW from HM6 was the minimum among the
four models, while the CIW from HM5 was the maximum. For
example, the CIW based on FCIs from HM6 at 12 h was 0.017,
while that from HM5 was 0.075, and the CIW from HMS5 is 4.4
times that from HM5. On the other hand, the changes of CIWs
with concentration from the four models had a similar variation
regularity, that is, the CIW based on FCIs increased from 0 to
the maximum and then decreased from the maximum to 0,
while the CIW based on OCIs increased from a small value to
a maximum and then decreased from the maximum to another
small value. On the whole, the CIW based FCIs values are less
than those based on OCIs.

Although the variation regularity of the CIW based on OCIs
from different models with concentration was similar to that on
FCI, the steepness of change was smoother and the CIW value
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was larger. Since OCI is more dependent on RMSE, the differ-
ence in the CIW based on OCIs from different models can be
estimated simply according to RMSE, thus the choice of model
based on RMSE is equivalent to the choice of model based on
OCIs.

Of course, we can also test the reliability and identify outliers
in the original observation data. There is a way to judge outliers
by utilizing an expanded uncertainty;** however, this method is
only used with repeat measurements made at the same
concentration, and the more data are measured, the more
accurate the test will be. For the CRCs data, the number of
measurement effects at the same concentration was limited,
and the variation regularity of the CRCs data with the change of
concentration is known, so we cannot test the reliability and
identify outliers by this method. Therefore, a method based on
OCIs to identify outliers was developed. A confidence intervals
relative error (REoc;) was used to quantitatively describe the
relative deviation of the predictive value from the experimental
value. The REq(; is defined as follows.

Y-y
REoci = m——F5——7= 18
o™ (OCIL, —OCI)/2 (18)
Substituting eqn (17) into eqn (18) gives:
ly = 3| = [REoci (OCL. — OCL)/2|
= |REocif(,., ) VRMSE® + v-CMv|  (19)

Referring to the expanded uncertainty** and introducing an
adjusting factor (1) gives:

y—Jl= REOCI[(,,,,,,‘%) VRMSE? + v-CM V7| > 2-K-RMSE
(20)

where K is a coverage factor whose value is often 2 (confident
probability of 95%) or 3 (99%).

Therefore, when the following inequality is true, the corre-
sponding data point can be considered as an outlier:

1-K-RMSE _, K
T— VRMSE? + y-CM 7 (-, 5)
(21)

|REoci| > max

The ratio of the number of outliers in a CRC to all the data,
P, and the ratio of the number of non-outliers to all the data,
Py, are respectively used to describe the proportion of outliers
and the reliability of the CRC data.

Table 4 Three goodness-of-fit parameters (GoFs) of two models (HM5 and M5) in five different times

4h 6h 8h 10h 12h
GoFs HM5 M5 HM5 M5 HM5 M5 HM5 M5 HM5 M5
Radj2 0.9960 0.9607 0.9979 0.9842 0.9962 0.9879 0.9934 0.9892 0.9931 0.9922
RMSE 0.03220 0.08343 0.02427 0.05475 0.03353 0.04939 0.04439 0.0469 0.04449 0.03906
AIC —24.38 —14.46 —27.32 —18.85 —23.95 —19.92 —21.03 —20.46 —21.00 —22.37

This journal is © The Royal Society of Chemistry 2018
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num RE >A-K tnfm.a
Pout = (| OCI‘ / ( - /2)) (22)
n
num(|RE =A K/t ma
Prd = (| OCI‘ / ( /2)) (23)

n

where num(Y) refers to the number of data when Yis true. If P,
= P, or Py, < «, the original CRC data are reliable. Here, o =
0.05 and P, = 0.95 when A = 2 and K = 2. For a given model, the
value of AK/t(,_m ) is @ constant, being called the threshold.
The threshold values were 1.556, 1.635, 1.692 and 1.692 for
HM5, HM6, HM7-1 and HM7-2.

The above method based on OCIs was used to analyze the
experimental concentration-effect data of [epy]Cl at four expo-
sure times, and the results are listed in Table S4.1 Although
some P, values were slightly larger than 0.05, the theoretical
outliers were at most 1.8 of 36 experimental data points, while
the number of outliers calculated by all the models was not
more than 2, which still shows that the experimental data were
reliable and this set of data was believable. The way to deal with
these outliers is to use the average of other data instead of the
outliers when computing.

Conclusions

To process the J-shaped concentration-response data with
uncertainty, the JSFit method or program was developed to
quantitatively and rationally fit the J-shaped (and the S-shaped)
CRC. JSFit could automatically initialize the model coefficients
on the basis of the specific meaning of each model coefficient
and then constructs the observation-based confident intervals
(OCIs) of the CRC. Also, it was used to analyze the reliability and
outliers of the experimental CRC data.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors are thankful to the National Natural Science
Foundation of China (21677113 and 21377097) for their finan-
cial support.

References

1 E. ]J. Calabrese and L. A. Baldwin, Hum. Exp. Toxicol., 2002,
21, 91-97.

2 B. Bjornsson, A. Steinarsson and M. Oddgeirsson, ICES J.
Mar. Sci., 2001, 58, 29-38.

3 J. H. Connell, Science, 1978, 199, 1302-1310.

4 W. Beckon, C. Parkins, A. Maximovich and A. V. Beckon,
Environ. Sci. Technol., 2008, 42, 1308-1314.

5 Y. X. Chen, K. L. Shen, C. F. Shen, L. Chen and X. C. Chen, J.
Hazard. Mater., 2010, 180, 773-776.

6580 | RSC Aadv., 2018, 8, 6572-6580

View Article Online

Paper

6 H. M. Qiu, J. J. Geng, H. Q. Ren, X. M. Xia, X. R. Wang and
Y. Yu, J. Hazard. Mater., 2013, 248, 172-176.

7 X.M. Zou, X. Y. Xiao, Y. He, L. J. Hu, C. Hu and X. F. Huang, /.
Hazard. Mater., 2017, 322, 454-460.

8 Y. Liu, S. Chen, X. Chen, J. Zhang and B. Y. Gao, J. Hazard.
Mater., 2015, 297, 83-91.

9 H. L. Ge, S. S. Liu, X. W. Zhu, H. L. Liu and L. J. Wang,
Environ. Sci. Technol., 2011, 45, 1623-1629.

10 Z.Y. Yu and J. Zhang, J. Hazard. Mater., 2016, 312, 114-122.

11 X. W. Zhuy, S. S. Liu, L. T. Qin, F. Chen and H. L. Liu,
Ecotoxicol. Environ. Saf., 2013, 89, 130-136.

12 P. Brain and R. Cousens, Weed Res., 1989, 29, 93-96.

13 P. H. Vanewijk and J. A. Hoekstra, Ecotoxicol. Environ. Saf.,
1993, 25, 25-32.

14 O. Schabenberger, B. E. Tharp, J. J. Kells and D. Penner,
Agron. J., 1999, 91, 713-721.

15 N. Cedergreen, C. Ritz and ]. C. Streibig, Environ. Toxicol.
Chem., 2005, 24, 3166-3172.

16 L. T. Qin, S. S. Liu, H. L. Liu and Y. H. Zhang, Chemosphere,
2010, 78, 327-334.

17 S. O. de Garcia, P. A. Garcia-Encina and R. Irusta-Mata,
Ecotoxicology, 2016, 25, 141-162.

18 G. Y. Di Veroli, C. Fornari, I. Goldlust, G. Mills, S. B. Koh,
J. L. Bramhall, F. M. Richards and D. L. Jodrell , Sci. Rep.,
2015, 5, 14701.

19 X. W. Zhu, S. S. Liu, H. L. Ge and Y. Liu, China Environ. Sci.,
2009, 29, 113-117.

20 E. ]. Calabrese, Homeopathy, 2015, 104, 69-82.

21 ]. Trogl, G. Kuncova, L. Kubicova, P. Parik, J. Halova,
K. Demnerova, S. Ripp and G. S. Sayler, Folia Microbiol.,
2007, 52, 3-14.

22 R. Qu, S. S. Liu, Q. F. Zheng and T. Li, Sci. Rep., 2017, 7,
43473.

23 M. Cui, Y. Zhao, B. B. Xu and X. W. Gao, Int. J. Heat Mass
Transfer, 2017, 107, 747-754.

24 Nurhayati, I. K. Hadihardaja, I. Soekarno and M. Cahyono,
Informatics, Management, Engineering, and Environment
(Time-E 2014), Ieee, 2014 2nd International Conference on
Technology, 2014, pp. 228-233.

25 H. Prinz, J. Chem. Biol., 2010, 3, 37-44.

26 J. Trogl and K. Benediktova, Int. J. Environ. Res., 2011, 5, 989-
998.

27 X. Y. Huang, D. H. Yang, P. Tong and Y. J. Zhou, Bull.
Seismol. Soc. Am., 2016, 106, 2877-2899.

28 K. Yamaoka, T. Nakagawa and T. Uno, J. Pharmacokinet.
Biopharm., 1978, 6, 165-175.

29 J. Tarasinska, Stat. Probabil. Lett., 2005, 73, 125-130.

30 J. R. Donaldson and R. B. Schnabel, Technometrics, 1987, 29,
67-82.

31 Y. C. Kuang, M. P. L. Ooi, A. Rajan and S. Demidenko, Ieee,
2015 Ieee International Instrumentation and Measurement
Technology Conference (I2mtc), 2015, pp. 1729-1734.

This journal is © The Royal Society of Chemistry 2018


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra13220d

	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d

	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d

	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d

	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d
	JSFit: a method for the fitting and prediction of J- and S-shaped concentrationtnqh_x2013response curvesElectronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13220d


