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or the fitting and prediction of J-
and S-shaped concentration–response curves†

Ze-Jun Wang,a Shu-Shen Liu *ab and Rui Qua

Most monotonic S-shaped concentration–response curves (CRCs) can be satisfactorily described by

a classical Hill equation. However, the Hill equation cannot effectively describe the non-monotonic J-

shaped CRCs that display stimulation at low concentrations and inhibition at high concentrations. On the

other hand, the physical meaning of the model parameters in current models describing the J-shaped

CRCs is not very clear. It is well known that both toxicity experiments and the fitting process inevitably

produce uncertainty. To effectively deal with the J-shaped concentration–response data with

uncertainty and make the model parameters meaningful, we developed a method for the fitting of the J-

shaped and/or S-shaped concentration–response data (simply called JSFit). The JSFit first uses one Hill

equation (S-shaped) or combines with two Hill equations (J-shaped) for fitting, then nonlinear least

squares fitting is performed by means of the Levenberg–Marquardt algorithm, and finally the

observation-based confidence intervals of the fitting curve are constructed by the delta procedure. For

the convenience of application, we wrote a computational program (JSFit) using the MATAB

programming language and introduced automation of the initial parameters into the program. The JSFit

was then successfully used in the fitting and prediction of the toxic data of pesticides, ionic liquids,

antibiotics, and personal skin-care products on Vibrio Qinghaiensis sp.-Q67.
Introduction

Hormesis is a biphasic concentration–response relationship
exhibiting low-concentration stimulation and high-
concentration inhibition.1 Since the discovery of hormesis in
the nineteenth century, many studies have described qualita-
tively the phenomena such as homeostasis, equilibrium,
stability, and optimization throughout the scientic elds as
diverse as physiology (e.g. temperature affecting the growth
rate2), ecology (e.g. disturbances affecting species diversity3),
and psychology (e.g. intensity of punishment affecting the rate
of training4) and economics (e.g. tax rate affecting tax revenue4).
In recent years, signicant research has shown that hormesis
can be induced by many chemicals, especially some poisonous
and harmful substances such as persistent organic pollutants,5

pesticides,6 metal ions,7 antibiotic8 and ionic liquids.9,10 The
quantitative description of the hormetic concentration–
response relationship has become an important step for gain-
ing a better understanding of hormesis and the inuence and
meaning of hormesis in environmental risk assessment.11
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tion (ESI) available. See DOI:
Fortunately, a few models4,12–16 can be used to quantitatively
describe the hormetic concentration–response relationship.
The most widely used is the model with ve parameters (simply
M5) cited by Ge et al. in 2011.9 In 2013, several biphasic models
were compared in terms of the goodness-of-t (GoF) statistics of
the adjusted coefficient of determination (Radj

2), the root mean
square error (RMSE), and the Akaike information criterion
(AIC), where M5 gave the best description of hermetic data
sets.11 Although the GoFs of these models were satisfactory, the
model coefficients were far away from the values represented by
their physical meaning.

Some scholars have directly tted hormetic data using the
sigmoidal equation, but this would miss some important
information at low concentration. In 2016, de Garcia et al. used
three logistic models, from a family of sigmoidal equations, to
t hormetic data of the bacterium Vibrio scheri exposed to
pharmaceuticals and personal care products for description of
the concentration–response behaviour.17 Since most of the
stimulative effects take place at low concentration levels, such
as EC0 and EC5, some conclusions obtained from the sigmoid
equation at these levels would not be correct.

In 2015, Di Veroli et al. developed an automated tting
procedure and soware, named as Dr-Fit, to t the concentra-
tion–response curves (CRCs) with multiple inection points by
a many Hill model.18 Without doubt the Dr-Fit soware was
a powerful tool for tting CRC. However, because the number of
data points was relatively few in the paper and as the
This journal is © The Royal Society of Chemistry 2018
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Fig. 1 The technical route used in this study, where Radj
2 refers to the

adjusted coefficient of determination, RMSE to the root mean square
error, and AIC to the Akaike information criterion, while FCIs and OCIs
are the function-based confidence intervals and observation-based
confidence intervals, and L–M is an acronym for “the Levenberg–
Marquardt algorithm”.
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experimental errors were not considered, the CRC model from
the Dr-Fit can only be used to t but not to predict.

In fact, there are some more or less errors with the experi-
mental data points and tting process, which are oen ignored
by scholars. So, it is necessary to examine the effects of experi-
mental errors and tting deviation on the CRC tting in the
construction of a CRC prediction model. Zhu et al.19 introduced
condence intervals (CIs): FCIs based on the function tting
and OCIs based on observation, into the CRC tting. The CIs
can be used to test the data points in turn and to judge whether
there is a large deviation from the experimental data points,
which could further improve the experimental method to
a certain extent.

Because hormesis describes a biphasic concentration–
response relationship, which is stimulation at low concentra-
tion and inhibition at high concentration, it is usually expressed
as a J-shaped concentration–response relationship or CRC.20 In
2008, Beckon et al. constructed a newmodel based on the theory
that the stimulation and inhibition effects in the two phases
could be separated into two different and independent sensi-
tivity threshold probability distributions.4 Trogl et al. used two
sigmoid equations tomodel the hormetic curves.21 However, the
regression coefficients in the models did not have any signi-
cant physical meaning. Therefore, it is necessary to enrich the
physical meaning of the model coefficients in the development
of a quantitative model.

The main purpose of this paper is to develop a model for the
tting and prediction of the monotonic S-shaped and/or non-
monotonic J-shaped concentration–response data. In the
model development, the observed concentration–response data
are tted to a Hill function (S-shaped) or an integration function
from the product of two Hill functions, and then automatic
initialization of themodel coefficients is performed, and the CIs
of the tted CRCs are nally constructed. On the basis of the
developed model, some characteristic parameters of J-shaped
CRC are given. Furthermore, the outlier and reliability of the
observational data are also analyzed.
Data and methods
Concentration–effect data set

The concentration–response/effect data set (C–E) used in this
paper comes from the literature.22 The data set consists of toxic
effects and luminescence inhibition ratios (each three replica-
tions) of 1-ethylpyridinium chloride ([epy]Cl) at 12 concentra-
tion levels in seven exposure times (0.25, 2, 4, 6, 8, 10 and 12 h)
on Vibrio Qinghaiensis sp.-Q67 (Q67) (Table S1 in the ESI†). In
the set, the CRCs of [epy]Cl in the rst 0.25 h and 2 h are S-
shaped, while those in the latter ve times (4, 6, 8, 10 and 12
h) are J-shaped (Fig. S1†).
General procedure of modelling

The modelling ow chart is shown in Fig. 1, and involves the
steps: (1) for the monotonic and hormetic data, a suitable
mathematical model is selected, such as a single Hill model or
a product of two Hill models. (2) Calculus is used to analyze the
This journal is © The Royal Society of Chemistry 2018
specic meaning of each model coefficient, where its initial
values are estimated by combining the information in the
original experimental data (initialization). (3) On the basis of
the Levenberg–Marquardt algorithm23 in MATLAB, experi-
mental data are tted by the selected model to obtain the model
coefficients. (4) The GoFs, such as Radj

2, RMSE and AIC, of the
model are calculated to evaluate the tting quality. (5) On the
basis of the tted CRC and experimental data, the FCIs and
OCIs are constructed. The reliability of the experimental data is
analyzed and outliers in the original experimental data are
picked out. (6) Using the hold-out method,24 the predictive
potential of the model is evaluated.
Model coefficient estimation

For a monotonic concentration–response relationship, the CRC
may be described quantitatively by the classical Hill equa-
tion.25,26 For a given concentration, C, the response/effect, E, can
be calculated by the Hill equation with four parameters:

EHillðC;EN;E0;ECmid;HÞ ¼ E0 þ EN � E0

1þ ðECmid=CÞH (1)

where H is the Hill exponent, E0 is the effect at the concentra-
tion of 0, EN is the effect at the concentration large enough and
ECmid is the concentration corresponding to the effect of (EN +
E0)/2.

For a non-monotonic concentration–response relationship,
the CRC can be described by an integration model combined
with two Hill equations. The hormetic concentration (C)–effect
(E) relationship has two inection points,18 which determine the
number of equations to be integrated, and one minimum,
which is break point of the integration model (Fig. 2).

Therefore, by means of the break point, a hormetic
concentration–response curve (HRC) could be split into two
independent and separate Hill equations, named as two phases:
RSC Adv., 2018, 8, 6572–6580 | 6573
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Fig. 2 The hormetic concentration–response curve (CRC) and its
related parameters (model coefficients and characteristic parameters)
diagram, where the black line refers to the CRC fitted by the model
integrating with two Hill functions, the red line to the CRC fitted by the
first Hill model for the first (decreasing) phase, the dark blue line to the
CRC fitted by the second Hill model for the second (ascending) phase,
E0 and Em are the minimum and maximum stimulative effect param-
eters of the first Hill model, Em and Emax are the minimum and
maximum inhibition effect parameters of the second Hill model, Emin

and ECmin are the minimum effect or maximum stimulative effect and
corresponding concentration and ZEP is the zero effect point, where
the effect is 0 and the concentration is ZEP. The effects at the lower
left of ZEP are the “stimulation zone”, while those at the upper right are
the “inhibition zone”. EC50 is the concentrations where the inhibitory
effects are 50%.
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one descendant phase (rst phase) and one ascendant phase
(second phase) (Fig. 2).

The monotonic CRC of each phase can be modelled by a Hill
equation. For the rst phase (the descendant phase), the Hill
equation (eqn (1)) can be rewritten as follows:

E1ðC;Em;E0;ECmid1;H1Þ ¼ E0 þ Em � E0

1þ ðECmid1=CÞH1
(2)

For the second phase (the ascendant phase), the Hill equa-
tion (eqn (1)) can be rewritten as follows:

E2ðC;Emax;Em;ECmid2;H2Þ ¼ Em þ Emax � Em

1þ ðECmid2=CÞH2
(3)

Combining eqn (2) with eqn (3), an integration model with
seven parameters (called HM7-1 in this paper) can be obtained
to describe the HRC. Since the minimum effect value of eqn (2)
and (3) is Em (Fig. 2), the integration model needs to be divided
by Em.

EðCÞ ¼ E1ðCÞ � E2ðCÞ
Em

¼

�
E0 þ Em � E0

1þ ðECmid1=CÞH1

!
�
 
Em þ Emax � Em

1þ ðECmid2=CÞH2

!

Em

(4)
6574 | RSC Adv., 2018, 8, 6572–6580
where E(C) is the tted effect at the concentration of C and E1(C)
and E2(C) are the effects tted by the rst phase Hill model (eqn
(2)) and the second phase Hill model (eqn (3)), respectively.

In many cases, E0 is oen approximately zero and Emax

approximately equals to 1. In this case, eqn (4) can be reduced to
eqn (5) (called HM5).

EðCÞ ¼ 1

1þ ðECmid1=CÞH1
�
 
Em þ 1� Em

1þ ðECmid2=CÞH2

!
(5)

However, due to some reasons, like solubility, Emax is oen
less than 1, and eqn (5) is transformed into eqn (6) (called
HM6).

EðCÞ ¼ 1

1þ ðECmid1=CÞH1
�
 
Em þ Emax � Em

1þ ðECmid2=CÞH2

!
(6)

If E0 is not zero, the HRC is upward translated E0 units. Thus,
eqn (6) is transformed into eqn (7) with seven parameters
(called HM7-2):4

EðCÞ ¼ 1

1þ ðECmid1=CÞH1
�
 
E 0

m þ E0
max � E 0

m

1þ ðECmid2=CÞH2

!
þ E0

(7)

Model coefficient initialization

In the integration model, HM7-1 (eqn (4)), there are seven
parameters: E0, Em, Emax, ECmid1, ECmid2, H1 and H2, to be
estimated. In this paper, these parameters were called the
model coefficients (MCj, j ¼ 1, 2, ., 7). Currently, the estima-
tion of the coefficients in the existing literature oen requires
the user to provide appropriate initial values to perform the
iteration operations, which is very difficult to do for users who
are not familiar with the algorithm and HRC. In this paper, an
automatic initialization method was thus given on the basis of
the specic meaning of the model coefficients.

At rst, coefficient estimation expressions were built by
calculus and then the model parameters were estimated with
discrete observation data points. The concentration–effect data
set (Ci, Ei; i¼ 1, 2,., n) was sorted by concentration from small
to large, and then the initial values (MCj,0) of the seven model
coefficients (MCj) were automatically assigned as follows:

E0,0 ¼ 0 or E0,0 ¼ E1 (8a)

Emax,0 ¼ 1 or Emax,0 ¼ En (8b)

Em,0 ¼ min(Ei) (8c)

H1;0 ¼ 4

ln 10Em;0

min
�
kj
�

(8d)

ECmid1,0 ¼ Cj(min(kj))
(8e)

H2;0 ¼ 4

ln 10ð1� Em;0ÞmaxðkkÞ (8f)
This journal is © The Royal Society of Chemistry 2018
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ECmid2,0 ¼ Ck(max(kk))
(8g)

where E0,0, Em,0, Emax,0, ECmid1,0, ECmid2,0, H1,0 and H2,0 are the
initial values of E0, Em, Emax, ECmid1, ECmid2, H1 and H2,
respectively, and j(min(kj)) and k(min(kk)) are series numbers of
concentrations, where min(kj) and max(kk) are, respectively, the
minimum slope in the descendant phase and the maximum
slope in the ascendant phase. Here, the slope ki (i ¼ 2, 3, .,
n�1) is dened by the central difference method as follows:27

ki ¼ Eiþ1 � Ei�1

log10ðCiþ1Þ � log10ðCi�1Þ (9)
Model prediction evaluation

The hold-out method24 is used to evaluate the prediction ability
of a model. The experimental C–E data were divided into two
sets: a training set of no. 1, 3, 4, 6, 7, 9, 10 and 12 and a test set of
no. 2, 5, 8 and 10. The training set was used to develop a model
and the test set was used to validate the model's predictive
power, which is expressed by the predictive determination
coefficient, qext

2, dened as follows:

qext
2 ¼ 1�

Xpn
i¼1

ðyi � ŷiÞ2

Xpn
i¼1

ðyi � ytrÞ2
(10)

where pn is the number of samples in the test set, yi and ŷi is the
experimental and predictive effect of the ith sample, �ytr is the
average value of experimental effects of samples in the training
set. The closer the qext

2 is to 1, the stronger the predictive power
of the model is.
Goodness-of-t

The goodness-of-t (GoF) of a model is oen expressed by the
coefficient of determination (R2), Radj

2, RMSE or AIC.28 The GoFs
are dened as follows:

R2 ¼ 1�

Xn
i¼1

ðyi � ŷÞ2

Xn
i¼1

ðyi � yÞ2
(11)

Radj
2 ¼ 1�

ðn� 1Þ
Xn
i¼1

ðyi � ŷÞ2

ðn�m� 1ÞPn

i¼1 ðyi � yÞ2 (12)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðyi � ŷÞ2
n�m

s
(13)

AIC ¼ n log

 Xn
i¼1

ðyi � ŷÞ2
.
n

!
þ 2ðmþ 1Þ (14)
This journal is © The Royal Society of Chemistry 2018
where yi is the experimental effect, ŷ is the tted effect, �y is the
average effect, n is the number of samples, andm is the number
of model coefficients.

At present, there are ve models: M1,12 M2,13 M3,15 M4 (ref. 4)
and M5 (ref. 9) that can describe the J-shaped CRC (Table S2†).
It has been proved that the M5 model is the best model among
the ve modes.11 The M5 model with ve model coefficients can
be written as follows:

E ¼ min� min

1þ 10bðC�aÞ þ
1�min

1þ 10qðp�CÞ (15)

where min is the minimum effect, b is the steepness of the
ascendant phase, a is the concentration at the midpoint of the
ascendant phase, q is the steepness of the descendant phase
and p is the concentration at the midpoint of the descendant
phase. When the concentration is 0, the tting effect of the M5
model tends to 0, and when the concentration is large enough,
the tting effect of the M5 model tends to 100%.
Condence intervals

There are two kinds of CIs: the FCI based on function and the
OCI based on observation. The FCI describes the uncertainty of
the function tting,29 and the OCI describes the uncertainty of
both the experimental observation and the function tting. The
FCIs and OCIs can be calculated by the delta procedure as
follows:19,30

FCI ¼ ŷ� t�
n�m; a

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v$CM$vT

p
(16)

OCI ¼ ŷ� t�
n�m; a

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2 þ v$CM$vT

p
(17)

where a is the signicant level (a ¼ 0.05), t is the critical value
searching in the t distribution table where the degree of
freedom is n�m and the signicance level is a, v is the row
vector of the Jacobi matrix corresponding to the independent
variable and CM is the covariance matrix of the model coeffi-
cient estimation by nonlinear least squares regression.

All the computations were implemented on the JSFit
program developed in our laboratory and written using the
MATLAB language.
Results
The tting model of J- and S-shaped CRCs

Using the JSFit program, the CRC models of [epy]Cl at seven
exposure time-points to Q67 were developed. The models
included 20 J-shaped CRC models at the times of 4, 6, 8, 10 and
12 h and two S-shaped CRC models at the times of 0.25 h and
2 h (Table 1).

From Table 1, all the tted Radj
2s are larger than 0.99, while

the RMSEs are less than 0.045 and AICs less than �21, which
shows that all the CRC models had a good tting ability to the
observed data. In particular, the seven-parameter models, HM7-
1 and HM7-2, were better than HM6 and HM5, with the Radj

2s of
HM7-1 and HM7-2 being larger than 0.998, RMSEs less than
RSC Adv., 2018, 8, 6572–6580 | 6575
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Table 1 Model coefficients and GoFs of 22 fitting CRC models for the luminescence inhibition effects of [epy]Cl against Q67

Time Model Em/E0m ECmid1 (E-3)
a H1 Emax/E0max ECmid2 (E-3)

a H2 E0 Radj
2 RMSE AIC

12 h HM6 �1.901 10.79 1.402 1.189 7.354 2.677 0.9955 0.03584 �23.26
HM7-1 �0.481 2.987 4.223 1.085 12.33 2.328 �0.066 0.9972 0.02832 �25.71
HM7-2 �0.409 2.999 4.298 1.151 12.36 2.334 �0.066 0.9972 0.02826 �25.73
HM5 �0.526 3.095 1.815 11.25 2.759 0.9931 0.04449 �21.00

10 h HM6 �1.450 8.095 1.544 1.094 6.908 2.809 0.9944 0.04082 �21.90
HM7-1 �0.394 2.752 6.731 1.027 10.87 2.629 �0.068 0.9985 0.02135 �28.66
HM7-2 �0.322 2.763 6.904 1.094 10.89 2.636 �0.068 0.9985 0.02132 �28.67
HM5 �0.602 3.612 1.872 9.291 2.709 0.9934 0.04439 �21.03

8 h HM6 �4.333 9.165 2.374 1.006 4.159 3.069 0.9963 0.03309 �24.09
HM7-1 �0.354 2.774 6.368 0.987 9.562 2.840 �0.046 0.9989 0.01761 �30.66
HM7-2 �0.305 2.783 6.451 1.033 9.574 2.846 �0.046 0.9989 0.01764 �30.65
HM5 �0.913 4.776 2.202 7.006 2.488 0.9962 0.03353 �23.95

6 h HM6 �0.432 3.525 2.431 0.939 8.009 3.141 0.9987 0.01920 �29.76
HM7-1 �0.263 2.671 5.591 0.931 8.979 3.407 �0.028 0.9995 0.01199 �34.67
HM7-2 �0.234 2.676 5.613 0.959 8.983 3.409 �0.028 0.9995 0.01198 �34.68
HM5 �0.688 6.369 1.645 6.942 3.882 0.9979 0.02427 �27.32

4 h HM6 �0.622 6.174 1.873 0.923 5.957 4.793 0.9987 0.01846 �30.17
HM7-1 �111.662 5.517 4.384 0.919 0.3921 1.822 �0.095 0.9994 0.01209 �34.58
HM7-2 �6.706 5.413 4.388 0.940 1.894 1.907 �0.024 0.9993 0.01348 �33.45
HM5 �153.843 4.900 4.367 0.1314 1.359 0.9960 0.03220 �24.38

2 h Hill �0.038 0.753 8.006 2.869 0.9917 0.03686 �22.96
0.25 h Hill �0.056 0.884 5.456 1.555 0.9967 0.02342 �27.69

a E-3 represents the unit of data as 10�3 mol L�1.
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0.022 and AICs less than �28.66, except for the models at 12 h.
As shown above, the integrated HM7-1 or HM7-2 model could
describe the J-shaped CRCs well, while the single Hill model
could describe the S-shaped CRCs well.
The characteristic parameters of J-shaped CRCs

For the monotonic S-shaped CRC that can be described by one
Hill equation with four model coefficients (Em, Emax, ECmid2 and
H2), the four coefficients can fully characterize the shape and
location of the S-shaped CRC, and the coefficients are the
characteristic parameters. However, seven model coefficients in
the integration model come from the two Hill equations and
cannot really depict the specic shape and location of a J-
shaped CRC. We think that at least ve parameters, such as
the median stimulative effect concentration in the descendant
phase (le) (ECmsL), the minimum effect concentration (ECmin),
the minimum effect or maximum stimulative effect (Emin), the
median effect concentration (EC50) and the zero effect concen-
tration point (ZEP), are needed to characterize the specic
shape and location of a J-shaped CRC or hormetic CRC (HRC).
Here, ECmin can be solved by letting the derivative of the J-
shaped CRC to the concentration variable be zero: vE(C)/vC ¼
0. Then, Emin can be solved by substituting the ECmin into eqn
(4) or (7). The values of ECmsL, EC50 and ZEP can be solved by
dichotomy, where we let the effect be Emin/2, 50% and 0,
respectively. We called the four concentrations and one effect
the characteristic parameters of a J-shaped CRC, and the char-
acteristic parameters of [epy]Cl obtained from the HM7-1 or
HM7-2 are shown in Table 2. The characteristic parameters are
some important points on a J-shaped CRC and show the change
regulation of the effect with the concentration, where each
characteristic parameter is part of the J-shaped CRCs. However,
6576 | RSC Adv., 2018, 8, 6572–6580
the model coefficients were only used to construct the model,
and they only indirectly reect the change regulation of the
effect with the concentration, but generally speaking, the model
coefficients can't reect the substantive characteristics of a J-
shaped CRC.

In JSFit program, at least ve model coefficients, one effect
(Em), two concentrations (ECmid1 and ECmid2) and two slopes (H1

and H2) are needed to construct a model, which implies that at
least ve characteristic parameters can fully characterize the J-
shaped CRC, and the combination of four concentrations and
one effect proposed in this paper is an optimal selection. When
the characteristic parameter Emin is determined, the shape and
location of the descendant phase can be characterized by two
concentrations (ECmin and ECmsL), while the shape and location
of the ascendant phase can be characterized by two concen-
trations (ZEP and EC50).

Whether a single model coefficient can reect the change of
the data depends on the model coefficient Em. Em is a virtual
parameter that can reect the size of Emin on a J-shaped CRC to
a certain extent, but it is always less than the real Emin. When Em
is closer to Emin, the model coefficient will be closer to the value
(including characteristic parameters) on the J-shaped CRC. For
example, at 12 h, when the model coefficient Em (from �190.1%
to �48.1%) is close to Emin (about �30%), the model coefficient
ECmid1, from 10.79 � 10�3 mol L�1 to 2.987 � 10�3 mol L�1, is
close to the characteristic parameters of ECmsL (about 2.0 �
10�3 mol L�1), and the other model coefficients are close to the
corresponding value for the J-shaped CRC.
Model coefficient initialization

On the one hand, because solution of the model coefficients is
an iterative process, each coefficient to be solved requires an
This journal is © The Royal Society of Chemistry 2018
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Table 2 Five characteristic parameters of J-shaped CRCs of [epy]Cl against Q67

Time Model ECmsL (E-3)a ZEP (E-3)a EC50 (E-3)
a ECmin (E-3)a Emin

12 h HM6 1.843 8.765 15.29 4.467 �0.283
HM7-1 2.241 8.696 15.40 4.169 �0.303
HM7-2 2.249 8.693 15.40 4.169 �0.304
HM5 1.767 8.909 15.05 4.365 �0.274

10 h HM6 1.817 7.635 13.16 4.121 �0.252
HM7-1 2.241 7.542 13.29 3.715 �0.283
HM7-2 2.351 7.542 13.29 3.715 �0.283
HM5 1.796 7.702 13.07 4.074 �0.248

8 h HM6 2.119 6.694 11.60 3.890 �0.224
HM7-1 2.361 6.663 11.65 3.631 �0.237
HM7-2 2.363 6.661 11.65 3.631 �0.237
HM5 2.011 6.754 11.55 3.936 �0.215

6 h HM6 2.020 6.255 10.57 3.802 �0.170
HM7-1 2.261 6.195 10.62 3.589 �0.182
HM7-2 2.267 6.193 10.62 3.589 �0.182
HM5 1.893 6.305 10.52 3.936 �0.162

4 h HM6 2.001 5.485 9.087 3.715 �0.133
HM7-1 2.225 5.468 9.120 3.758 �0.139
HM7-2 2.227 5.470 9.124 3.802 �0.140
HM5 2.273 5.348 9.342 5.470 �0.146

a E-3 represents the unit of data as 10�3 mol L�1.
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initial value. On the other hand, it is more difficult for people
who are not familiar with programming to set the initial values.
In this study, according to the physical meaning of the model
coefficient, several reliable initial value equations were provided
by combining discrete data with calculus (eqn (8(a–g))).
According to the equations, the corresponding initial coeffi-
cients could be calculated. For a certain time, selecting the
average value of observed effects (three replications), the slope
vectors, ki (i ¼ 2, 3, ., n�1) were calculated using eqn (9), and
the initial values (MCj,0) could be obtained by eqn (8(a–g)). The
initial values of the model coefficients are listed in Table 3.

From Table 3, the initial values (MCj,0) of HM7-1 and HM7-2
calculated by eqn (8(a–g)) have a strong regularity. For the J-
shaped data set, E0,0 is 0 all the time, and Emax,0 is the
twelh effect (average value), which corresponds to the
maximum concentration. Because the sixth concentration
point of the 12 concentration levels has the minimum inhib-
itory effect, so Em,0 is the sixth effect of the data set. ECmid1,0 is
the h concentration, and the corresponding slope is H1,0,
because the slope of the h concentration point is the
minimum in the descendant phase. At 4, 6 and 8 h, the
ECmid2,0 is the eighth concentration, and the corresponding
Table 3 Initial values of model coefficients of [epy]Cl against Q67

Time Em,0/E0m ECmid1,0 (E-3) H1,0

12 �0.314 2.637 3.4036
10 �0.286 2.637 3.5626
8 �0.234 2.637 3.7687
6 �0.179 2.637 3.8234
4 �0.137 2.637 3.8365
2 �0.048
0.25 �0.038

This journal is © The Royal Society of Chemistry 2018
slope is H2,0, while for 10 and 12 h, ECmid2,0 is the ninth
concentration and the corresponding slope is H2,0 based on
the maximum slope of the ascendant phase. For S-shaped
CRC, Em,0 and Emax,0 are the rst and twelh effects, which
correspond to the minimum and maximum concentrations,
respectively. Because the slope of the eighth concentration
point is the maximum, ECmid2,0 is the eighth concentration, its
corresponding slope is H2,0. For the HM6 and HM5 models,
the corresponding values are chosen as the initial values of the
model coefficients.
Model selecting

For the monotonic S-shaped concentration–effect data, there
are two manifestations: the effect increasing with concentration
(monotonic increasing S-shaped) and the effect decreasing with
concentration (monotonic decreasing S-shaped). For the non-
monotonic J-shaped/hormetic concentration–effect data, there
are three categories:

Hdata 1: the effect tends to 0 at low concentration and to 1 at
high concentration.

Hdata 2: the effect tends to 0 at low concentration and is less
than 1 at high concentration.
Emax,0/E0max ECmid2,0 (E-3) H2,0 E0,0

0.979 12.41 2.671 0
0.979 12.41 2.698 0
0.963 8.531 2.843 0
0.933 8.531 3.233 0
0.904 8.531 3.285 0
0.793 8.531 2.410 0
0.841 8.531 1.730 0

RSC Adv., 2018, 8, 6572–6580 | 6577

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra13220d


RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Fe

br
ua

ry
 2

01
8.

 D
ow

nl
oa

de
d 

on
 1

/1
1/

20
26

 2
:4

8:
12

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Hdata 3: the effect is larger than 0 at low concentration and
less than 1 at high concentration.

According to the characteristics of the concentration–effect
data, the appropriate model should be selected in the JSFit
program. For monotonic increasing S-shaped data, the
ascending Hill is chosen, while for monotonic descending S-
shaped data, the descending Hill is selected. The ascending
Hill and the descending Hill have different initial values for the
model coefficients. For non-monotonic hormetic data, the
model with fewer parameters should be chosen as much as
possible to avoid overtting. Therefore, the HM5 model is
selected for Hdata 1, the HM6 model for Hdata 2, and the HM7-
1 or HM7-2 model for Hdata 3.
Application of JSFit

JSFit can be used to t the concentration–effect data with S-
shaped and/or J-shaped CRC proles, whether the data are
from a single pollutant or mixture. Fig. S3† provides the
experimental concentration–effect scatters and the tting CRCs
for some chemical and mixture examples, including pesticide
metalaxyl (Met) using the ascending Hill model, ionic liquid
[epy]Br using the HM5 model (belonging to Hdata 1), antibiotic
polymyxin B sulfate (POL) using the HM7-1 model (Hdata 3),
and a complex personal care product mixture using the HM6
model (Hdata 2). From Fig. S3,† various CRCs could be well
tted to the experimental data.
Fig. 3 The CRCs of [epy]Cl against Q67 at different times of 4, 6, 8, 10
and 12 h where “C” refers to the scatters of the training set, “B” to the
scatters of the test set, “—” to the fitted CRC based on the training set
and “/” to the fitted CRC based on all the experimental data.
Discussion
Model prediction evaluation

Due to the limited number of observation data, 1/3 of the J-
shaped data was equidistantly selected as a test set, and the
remaining 2/3 concentration–effect data were used as training
sets. Because the effect at low concentration was near to 0, the
model coefficient E0 could be ignored. Furthermore, it was
found that HM6 was better than HM5. Therefore, HM6 was
chosen to analyze the model prediction ability. The training set
was used to model the J-shape data, and the effects of various
concentrations in the test set were predicted by the training set
model. The obtained qext

2 values are listed in Table S3.† Fig. 3
depicts the relationships between the experimental points and
the tting curves of [epy]Cl at 12, 10, 8, 6 and 4 h. As can be
clearly seen, apart from 4 h, all the experimental points at the
other times almost fall on the tting curves. The predictive qext

2

values at 12, 10, 8 and 6 h were 0.9884, 0.9940, 0.9989 and
0.9954, respectively, which were the same as the estimated R2

(0.9978, 0.9954, 0.9966 and 0.9992), showing a good prediction
ability of HM6.

It is noted that the tting curve (solid blue) of the lower le
panel in Fig. 3 partly deviates from the dashed line based on all
experimental data. However, if one data point (B) in the test set
is adjusted, the tting curve based on the training set overlaps
with the curve based on all the experimental data (see the lower
right panel in Fig. 3), which explains that the selection of the
training set affects the predictive potential of HM6. So, the
training set to be used to develop a predicable model has to
6578 | RSC Adv., 2018, 8, 6572–6580
contain enough data points and cannot lack some important
information of CRC, such as the minimum effect or the up and
down slope. In particular, the number of model coefficients
selected should be as little as possible, i.e. using a simple model
rather than a complex model18 and enough concentration–effect
data to develop the CRC model.
Model comparison analysis

Currently, compared with other models (M1, M2, M3 and M4),
the M5 model, which has been widely used to describe hor-
metically the concentration–response relationship, has a better
tting quality.9,11,22 However, the model coefficients obtained by
the M5 model tting the concentration–effect of [epy]Cl on
Vibrio Qinghaiensis Q67 distort the physical meaning. For
example, for the model coefficient min, the description of the
minimum inhibitory ratio of hormetic CRCs is more than
0 sometimes.22 Although, the M5model has such shortcomings,
the tting quality of M5 to the hormetic concentration–effect
data is acceptable, which is the reason why it is so widely used.

Five characteristic parameters (ECmsL, ECmin, Emin, EC50 and
ZEP) propounded in this paper can characterize the specic
shape and location of a J-shaped CRC or hormetic CRC (HRC).
The model coefficient Em in HM5 is similar to min in M5, but
the characteristic parameter Emin truly reects the minimum
effect of the J-shaped CRC. On the other hand, the tting quality
This journal is © The Royal Society of Chemistry 2018
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Fig. 4 Plot of the width of confident intervals, (CI+�CI�)/2, versus the
concentration, where “—” and “/” are based on FCIs and OCIs of the
fitted CRCs of [epy]Cl, respectively.
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of HM5 is more optimal than M5, as seen from the results of
three GoFs, Radj

2, RMSE and AIC in Table 4 (also see Fig. S4†).
Analysis of the condence intervals

The condent intervals (CIs), FCIs or OCIs, can describe the
uncertainty in toxicity experiments and the function t. The
condent interval width (CIW), dened as (CI+ � CI�)/2, can
quantitatively reect the tting quality. The CIWs from some
models, such as HM6, HM7-1, HM7-2 and HM5, change with
the concentration, as shown in Fig. 4.

It can clearly be seen that the variation regularity of CIW of
HM7-1 is similar to that of HM7-2, whether the CIW is based on
FCI or OCI. The CIW from HM6 was the minimum among the
four models, while the CIW from HM5 was the maximum. For
example, the CIW based on FCIs from HM6 at 12 h was 0.017,
while that from HM5 was 0.075, and the CIW from HM5 is 4.4
times that from HM5. On the other hand, the changes of CIWs
with concentration from the four models had a similar variation
regularity, that is, the CIW based on FCIs increased from 0 to
the maximum and then decreased from the maximum to 0,
while the CIW based on OCIs increased from a small value to
a maximum and then decreased from the maximum to another
small value. On the whole, the CIW based FCIs values are less
than those based on OCIs.

Although the variation regularity of the CIW based on OCIs
from different models with concentration was similar to that on
FCI, the steepness of change was smoother and the CIW value
Table 4 Three goodness-of-fit parameters (GoFs) of two models (HM5

GoFs

4 h 6 h 8 h

HM5 M5 HM5 M5 HM5

Radj
2 0.9960 0.9607 0.9979 0.9842 0.996

RMSE 0.03220 0.08343 0.02427 0.05475 0.033
AIC �24.38 �14.46 �27.32 �18.85 �23.9

This journal is © The Royal Society of Chemistry 2018
was larger. Since OCI is more dependent on RMSE, the differ-
ence in the CIW based on OCIs from different models can be
estimated simply according to RMSE, thus the choice of model
based on RMSE is equivalent to the choice of model based on
OCIs.

Of course, we can also test the reliability and identify outliers
in the original observation data. There is a way to judge outliers
by utilizing an expanded uncertainty;31 however, this method is
only used with repeat measurements made at the same
concentration, and the more data are measured, the more
accurate the test will be. For the CRCs data, the number of
measurement effects at the same concentration was limited,
and the variation regularity of the CRCs data with the change of
concentration is known, so we cannot test the reliability and
identify outliers by this method. Therefore, a method based on
OCIs to identify outliers was developed. A condence intervals
relative error (REOCI) was used to quantitatively describe the
relative deviation of the predictive value from the experimental
value. The REOCI is dened as follows.

REOCI ¼ y� ŷ

ðOCIþ �OCI�Þ=2 (18)

Substituting eqn (17) into eqn (18) gives:

jy� ŷj ¼ jREOCIðOCIþ �OCI�Þ=2j
¼
���REOCIt n�m; a

2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2 þ v$CM$vT

p ��� (19)

Referring to the expanded uncertainty31 and introducing an
adjusting factor (l) gives:

jy� ŷj ¼
���REOCIt n�m; a

2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2 þ v$CM$vT

p ���. l$K$RMSE

(20)

where K is a coverage factor whose value is oen 2 (condent
probability of 95%) or 3 (99%).

Therefore, when the following inequality is true, the corre-
sponding data point can be considered as an outlier:

jREOCIj.max

0
@ l$K$RMSE

tðn�m; a
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSE2 þ v$CM$vT

p
1
A ¼ l

K

tðn�m; a
2Þ
(21)

The ratio of the number of outliers in a CRC to all the data,
Pout, and the ratio of the number of non-outliers to all the data,
Prel, are respectively used to describe the proportion of outliers
and the reliability of the CRC data.
and M5) in five different times

10 h 12 h

M5 HM5 M5 HM5 M5

2 0.9879 0.9934 0.9892 0.9931 0.9922
53 0.04939 0.04439 0.0469 0.04449 0.03906
5 �19.92 �21.03 �20.46 �21.00 �22.37

RSC Adv., 2018, 8, 6572–6580 | 6579
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pout ¼
num

�jREOCIj. l$K
�
tðn�m;a=2Þ

�
n

(22)

prel ¼
num

�jREOCIj# l$K
�
tðn�m;a=2Þ

�
n

(23)

where num(Y) refers to the number of data when Y is true. If Prel
$ Pa or Pout < a, the original CRC data are reliable. Here, a ¼
0.05 and Pa ¼ 0.95 when l ¼ 2 and K ¼ 2. For a given model, the
value of lK/t(n�m,a/2) is a constant, being called the threshold.
The threshold values were 1.556, 1.635, 1.692 and 1.692 for
HM5, HM6, HM7-1 and HM7-2.

The above method based on OCIs was used to analyze the
experimental concentration–effect data of [epy]Cl at four expo-
sure times, and the results are listed in Table S4.† Although
some Pout values were slightly larger than 0.05, the theoretical
outliers were at most 1.8 of 36 experimental data points, while
the number of outliers calculated by all the models was not
more than 2, which still shows that the experimental data were
reliable and this set of data was believable. The way to deal with
these outliers is to use the average of other data instead of the
outliers when computing.

Conclusions

To process the J-shaped concentration–response data with
uncertainty, the JSFit method or program was developed to
quantitatively and rationally t the J-shaped (and the S-shaped)
CRC. JSFit could automatically initialize the model coefficients
on the basis of the specic meaning of each model coefficient
and then constructs the observation-based condent intervals
(OCIs) of the CRC. Also, it was used to analyze the reliability and
outliers of the experimental CRC data.
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