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One-pot three-component reactions using copper() acetylide, azide, allyl iodide, and NaOH have been
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developed. The reactions proceed smoothly at room temperature to afford 5-allyl-1,2,3-triazoles, which

can be further transformed into a variety of 1,2,3-triazole-fused bi-/tricyclic scaffolds. This method offers

DOI: 10.1039/c7ra12889d

rsc.li/rsc-advances excellent yields.

Introduction

1,2,3-Triazoles* are very important heterocycles in chemistry
and biology.” Synthetic molecules containing a 1,2,3-triazole
scaffold exhibit diverse biological activities, which have drawn
the attention of medicinal chemists in the drug discovery field.
Currently, there are several 1,2,3-triazole-containing medicines
on the market, and the number of potential pharmaceuticals
based on these scaffolds keeps increasing.’* Beyond the drug
market, 1,2,3-triazoles are utilized in a variety of areas including
bioconjugation,* polymer and materials science,” and related
areas® including supramolecular chemistry,” DNA labeling® and
oligonucleotide synthesis.” Such wide applications of 1,2,3-tri-
azoles are due to their facile synthesis through Cu(i)-catalyzed
azide-alkyne cycloaddition (CuAAC), so-called ‘click chemistry’.
Since it was first introduced by Sharpless and co-workers,
CuAAC has been rapidly adopted as a universal coupling
process. However, in terms of substrate scope, CuAAC is
restricted to terminal alkynes, leading to 1,4-disubstituted 1,2,3-
triazoles, and the one-pot synthetic methods for the fully
substituted 1,2,3-triazoles are still relatively few.*

In one-pot three-component reactions used to obtain 5-halo
1,2,3-triazoles, an electrophile X' (X = Cl, Br, and I) is added
into the CUAAC reaction to trap X' with an in situ generated 5-
copper(i) 1,2,3-triazole intermediate A (Scheme 1)."* However,
the result is usually the formation of a mixture of the desired 5-
substituted 1,2,3-triazole 3 and the byproduct 1,4-disubstituted
1,2,3-triazole 4, which is generated from a competitive proton-
ation of the 5-copper(i) 1,2,3-triazole intermediate A.*> This
competitive protonation is accelerated by a proton source,
provided from the terminal alkyne substrate in the normal
CuAAC. Therefore, this problem cannot be avoided in the
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the most efficient, convenient, and practical route towards useful polycyclic scaffolds in moderate to

presence of terminal alkyne substrates or protic polar solvents.
Recently, this drawback was smartly overcome by using cop-
per(1) acetylide instead of a terminal alkyne in the halogena-
tion'* and acylation, by Y. Hu's group.*®

Copper(1) acetylides are highly crystalline polymeric
complexes, (RC=CCu),."* They are stable to air, water, acid/
base and heat™ so they can be kept on the shelf for several
months without the quality deteriorating. In the absence of
exogenous ligands or additives, copper(i) phenylacetylide,
PhC=CCu, is not effective under typical CuAAC conditions:** It
did not undergo a cycloaddition with azide and did not provide
a 1,2,3-triazole product. However, when it was combined with
both azide and acyl chloride, it quickly provided 5-acyl-1,2,3-
triazoles." The presence of acyl chloride accelerated the cyclo-
addition of copper(i) phenylacetylide and azide.* This
intriguing result motivated us to investigate one-pot three-
component reactions using copper(i) phenylacetylide. We are
particularly interested in 5-allyl-1,2,3-triazoles as precursors for
the development of new anticancer agents. However, efficient

E* N=N

[Cu(]

RI———H + N;—R? S

1 2 [Cu]

H*

4
N
N=MN
’ N-R? E* =N
R Cu + N3—RZ2 —— SS N—R?
R1 =
1 2 [cul R
E

E=Cl,Br, |, acyl

Scheme 1 Cu(l)-catalyzed azide—alkyne cycloaddition methods for
the synthesis of 5-substituted 1,2,3-triazoles.
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methods for the synthesis of 5-allyl-1,2,3-triazoles are rare.'**?
Interestingly, copper() acetylide has never been used directly as
a substrate for the synthesis of 5-allyl-1,2,3-triazoles, although it
is known to be a key intermediate. Herein, we report one-pot
three-component reactions for the synthesis of 5-allyl-1,2,3-
triazoles from copper(1) acetylides.

Results and discussion

To assess the feasibility of the tandem CuAAC-allylation reac-
tion, we started to investigate one-pot three component reac-
tions in the presence of copper(i) phenylacetylide (1a), 4-
cyanobenzyl azide (2a), allyl iodide, and base (Table 1). In
preliminary screening of reaction conditions, we obtained the
desired product 5-allyl-1,2,3-triazole 3a and a byproduct enyne
5a with 47% and 42% yield respectively after 4 h at room
temperature when 1.5 equivalents of cyanobenzyl azide (2a), 3
equivalents of allyl iodide, and 2 equivalents of Et;N were
employed (entry 1). The yield of the desired product 3a
increased to 60% and the yield of the byproduct enyne 5a

Table 1 Optimization of reaction conditions®

N3A©\ 3a
2a CN

/N = L
— Base, solvent, rt N=N CN
1a XN 4a
5a
Yield” (%)
Entry Base Solvent Time (h) 3a 4a 5a
1° Et;N CH,Cl, 4 47 0 42
2 Et;N CH,Cl, 4 60 0 36
3 Quinine CH,CI, 24 74 2 0
4 Pyridine CH,Cl, 24 63 0 0
5 NazPO, CH,Cl, 24 47 0 0
6 K;PO, CH,Cl, 24 45 0 0
7 Na,CO, CH,Cl, 24 62 0 0
8 K,CO; CH,Cl, 21 71 0 0
9 Cs,CO; CH,Cl, 24 67 0 0
10 NaOH CH,Cl, 24 84 0 0
11 KOH CH,Cl, 24 83 0 0
12 — CH,Cl, 24 52 0 0
13 NaOH Dioxane 24 89 0 0
14 NaOH THF 24 85 0 0
15 NaOH Toluene 24 94 0 0
16 NaOH CH;CN 24 68 0 0

“ Reaction conditions: 1a (65.8 mg, 400 pmol), 2a (94.9 mg, 600 umol),
base (800 umol), allyl iodide (146 pL, 1.60 mmol), solvent (1 mL). All
reactions were carried out under Ar. ” Isolated yields. © 1.20 mmol of
allyl iodide was used.
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decreased to 36% when the amount of allyl iodide increased to 4
equivalents (entry 2). The use of Et;N appeared to decompose
the stable polymeric complex with the structure [(PhC=CCu),],
into a lower polymeric or a more reactive monomeric structure.
As soon as Et;N was added, the heterogeneous reaction mixture
became clear and rapidly yielded both an undesired byproduct
as well as the desired product. However, replacing Et;N with
pyridine, quinine, or inorganic bases such as Na;PO,, K;PO,,
Na,CO;, K,CO;, Cs,COz, NaOH, or KOH did not change the
heterogeneity of the reaction. The copper(1) phenylacetylide (1a)
remained suspended in CH,Cl,, which not only slowed reaction
progress but also significantly reduced byproduct formation.
The reaction using quinine increased the yield of desired
product 3a up to 74%, but interestingly 2% of a protonated
byproduct 4a was isolated instead of the allyl alkyne byproduct
5a (entry 3). The reaction using pyridine did not significantly
increase the yield compared to the reaction of Et;N. However,
the formation of byproducts 4a and 5a was not observed (entry
4). Similarly, the reactions using inorganic bases also generated
5-allyl-1,2,3-triazole 3a as a sole product (entries 5-11).
Hydroxide bases (KOH, NaOH: entries 10 and 11) are better than
phosphate bases (NazPO,, K3PO,: entries 5 and 6) or carbonate
bases (Na,COj3, K,COj3, Cs,COj3: entries 7-9) in terms of yield.
Among bases used, the best result was obtained with NaOH
(84%, entry 10). It appears the use of base is essential for the
reaction. Without a base, 5-allyl-1,2,3-triazole 3a was isolated
with only a moderate yield (52%, entry 12). The role of NaOH is
not clear, and it is still under investigation. It is also noteworthy
that the byproduct 1,4-disubstituted 1,2,3-triazole 4a, which is
generated from a competitive protonation of 5-copper(i) 1,2,3-
triazole intermediate A, was not detected in reactions using
copper(1) phenylacetylide (1a) with the exception of quinine.

Next, we investigated the solvent effect on the yield of Cu(i)-
catalyzed azide-alkyne cycloaddition-allylation reactions of
copper(r) acetylides in the presence of NaOH. The reactions were
effective in various solvents including CH,Cl,, dioxane, THF,
toluene, and CH3CN (entries 13-16). Considering yield of the
product, toluene (entry 15) was the best solvent for the reaction.
On the basis of Table 1, we chose NaOH as a base and the
relatively nonpolar solvent, toluene, for further study.

Once we had established optimal reaction conditions, we
examined the scope of one-pot three-component reactions
(Table 2). We applied the copper(i) acetylide system to various
azides in toluene at room temperature. All reactions using
copper(i) acetylides in Table 2 smoothly furnished 5-allyl-1,4-
disubstituted 1,2,3-triazoles 3b-u and a trace amount of enyne
byproduct 5b-u at room temperature. As anticipated, the 1,4-
disubstituted 1,2,3-triazoles 4, which are unavoidable in the
typical CuAAC reactions, were not detected. First, we explored
the reaction scope with benzyl azides. The reaction yields were
independent of the electronic nature of azides. Substrates 2c-e
bearing electron-donating substituents and substrates 2f-h
bearing electron-withdrawing substituents underwent the one-
pot three-component reactions very smoothly, and provided
the corresponding 5-allyl-1,4-disubstituted 1,2,3-triazoles 3c-h
at room temperature, in good to excellent yields (85-97%). The
reaction scope was not limited to only benzyl azides, but was

n
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Table 2 Cu()-catalyzed azide—alkyne cycloaddition—allylation reac-
tions under optimized conditions®

j

N;—R? (2) _R?
R— R— |
NaOH, toluene, rt =N

1
3
R4JY\I

RS

\ \

3b (89%, 24 h)

/N
N= N~

N
COCL
N~ OMe

3c (85%, 24 h) 3d (88%, 24 h)

3e (94%, 24 h) £ (97%, 24 h) (93%, 24 h)
: ; L \ on
//’T‘/\©\ 7N 7N
i NO, NN NN

3i (89%, 24 h) 3j (65%, 24 h)

n-CgHyz
N N
/) F /)
N=N N=N

31(90%, 24 h)

3k (63%, 24 h)

3m (70%, 48 h)

3n (54%, 48 h) 30 (57%, 48 h)

3p (75%, 48 h)

O
S0 OO

3q (90%, 24 h) 3r (86%, 24 h)

/ w/\©
n=N

3s (73%, 24 h)

\

/ ']‘/\© /\@
N=N N’N

3t (53%, 48 h) 3u (77%, 48 h)

4 Reaction conditions: 1 (400 pmol), 2 (600 pmol), NaOH (32.0 mg, 800
umol), allyl iodide (1.60 mmol), toluene (1 mL). All reactions were
carried out under Ar.

also compatible with aryl azides 2i-k and aliphatic azide 2I. In
addition, a variety of copper(1) arylacetylides were also tested.
Regardless of the electronic influence of substituents on cop-
per(1) arylacetylides, desired products 3m-p were obtained in
moderate to good yields (54-75%). It is worth noting that this
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Table 3 Synthesis of fused 1,2,3-triazoles using Cu(l)-catalyzed
azide—alkyne cycloaddition—allylation reactions® and ring closing
metathesis”

—R@) —
NaOH
toluene, rt Grubbs cat. N
= ! N — 7 !
N=N CH,Cl, N~

6
Entry Yield of 3¢ Yield of 6°
\
1 / w/\&
NCN
6\/(79%
3v (80%)
AN =
2 Y NN J r;l
— ,l‘ N=N
N
3w (75%) 6w (87%)
N
A
3 7N S N
=N ﬁN
3 (65%) 6x (65%)
' C%a
3y (53%)
;N
3z (55%) 6z (70%)°

¢ Reaction conditions: 1a (65.8 mg, 400 pmol), 2 (600 umol), NaOH
(32.0 mg, 800 umol), allyl iodide (146 ;,LL 1.60 mmol), toluene (1 mL).
All reactions were carrled out under Ar. ? Reaction conditions: 3 (200
umol), Grubbs' 1 generation catalyst (5 mol%), CH,Cl, (9.3 mL).
¢ Isolated yields. 180 pumol of 3 was used. 150 pumol of 3 and
Hoveyda-Grubbs' 2" generation catalyst (5 mol%) were used.

method is not limited to the use of simple allyl iodide. Other
various substituted allyl iodides could be used for one-pot three-
component reactions, and produced the corresponding 5-allyl-
1,4-disubstituted 1,2,3-triazoles 3q-t with yields in the
range of 53-90%. Delightfully, the reaction scope was also
expandable to copper(1) alkylacetylide, which afforded 4-alkyl
1,2,3-triazole 3u.

Finally, we studied further transformations of 5-allyl-1,4-
disubstituted 1,2,3-triazoles into various fused polyhetero-
cycles in order to demonstrate the synthetic utility of the 5-allyl-
1,4-disubstituted 1,2,3-triazoles as versatile building blocks
(Table 3). The alkene-tethered 5-allyl-1,2,3-triazoles 3v—x were
synthesized based on Cu(i)-catalyzed azide-alkyne cycloaddi-
tion-allylation reactions of copper(r) acetylides in good yields

RSC Adv., 2018, 8, 2759-2767 | 2761
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(entries 1-3, 65-80%) and these were converted into fused 1,2,3-
triazoles 6v—x by ring-closing metathesis reactions, which were
effective for the synthesis of 7-, 8- and 9-membered fused 1,2,3-
triazoles with good yields (entries 1-3, 65-87%). The trans-
formations were also applicable to substrates bearing styrene-
type alkenes 3y and 3z. The ring-closing metathesis of 3y and
3z proceeded smoothly to afford fused tricyclic 1,2,3-triazoles
(entries 4 and 5, 70-92%).

On the basis of previous mechanistic studies® and our own
observation, we speculate that Cu() acetylide 1 coordinates with
the azide 2 to form the intermediate I-1 and following cycliza-
tion leads to the metallocycle intermediate I-2. The 6-membered
Cu(r)-intermediate contracts to the Cu(1)-1,2,3-triazole interme-
diate I-3, which is readily trapped by allyl iodide to yield the
desired 5-allyl-1,4-disubstituted 1,2,3-triazole 3 (Scheme 2).

Scheme 2 Plausible mechanism of Cu()-mediated one-pot three
component synthesis of 5-allyl-1,2,3-triazoles.

Conclusions

In conclusion, we have developed a novel one-pot three
component reaction method for the synthesis of 5-allyl-1,4-
disubstituted 1,2,3-triazoles from copper(i) acetylides. The 5-
allyl-1,4-disubstituted 1,2,3-triazoles were produced via 1,3-
dipolar cycloaddition followed by in situ trapping of the C(sp®)-
Cu intermediate. The byproduct 1,4-disubstituted 1,2,3-triazole
4, which is generated from a competitive protonation of 5-
copper(i) 1,2,3-triazole intermediate A, was not isolated. The
present method was successfully applied to achieve production
of synthetically useful heterocycles. This domino reaction is
characterized by mild conditions and no protonated byproduct
formation, and allows for the efficient construction of func-
tionalized fused polycyclic 1,2,3-triazoles.

Experimental
General

All reactions were performed in oven-dried glassware fitted with
glass stoppers under positive pressure of Ar with magnetic
stirring, unless otherwise noted. Air- and moisture-sensitive
liquids and solutions were transferred via syringe or stainless-
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steel cannula. TLC was performed on 0.25 mm E. Merck silica
gel 60 F,5, plates and visualized under UV light (254 nm) or by
staining with cerium ammonium molybdenate (CAM), potas-
sium permanganate (KMnO,) or p-anisaldehyde. Flash chro-
matography was performed on E. Merck 230-400 mesh silica gel
60. Reagents were purchased from commercial suppliers, and
used without further purification unless otherwise noted.
Solvents were distilled from proper drying agents (CaH, or Na
wire) under Ar atmosphere at 760 mmHg. NMR spectra were
recorded at 24 °C. Chemical shifts are expressed in ppm relative
to TMS (*H, 0 ppm), CDCl; (*H, 7.26 ppm; "*C, 77.2 ppm), and
Ce¢HsF (*°F, —113.15 ppm); coupling constants are expressed
in Hz. High resolution mass spectra (HRMS) were obtained by
electrospray ionization (ESI, TOF) or electron ionization (EI,
magnetic sector). Infrared spectra were recorded with peaks

reported in cm ™.

General procedure for the Cu(1)-catalyzed azide-alkyne
cycloaddition-allylation reactions

Copper(r) acetylide (400 umol) was placed in a 25 mL one-arm
roundbottom flask. A solution of azide (600 pmol) in anhy-
drous toluene (1 mL), allyl iodide (268 mg, 1.60 mmol) and
NaOH (32.0 mg, 800 umol) were sequentially added to the
reaction mixture. The resulting suspension was stirred at room
temperature for 24 h or 48 h as indicated in Table 1. The
mixture was filtered and washed with CH,Cl, (20 mL). To
scavenge Cu, polymer-bound ethylenediaminetriacetic acid
acetamide (3.0-4.0 mmol g~ ', 200 mg) was added to the filtrate,
and stirred for 2 h. The polymer was filtered off and the filtrate
was concentrated by rotary evaporation. Purification of crude
residue by column chromatography yielded 3a-z. The reaction
of 3y was carried out for 3 days at room temperature.

4-((5-Allyl-4-phenyl-1H-1,2,3-triazol-1-yl)methyl)benzonitrile
(3a). TLC: R 0.25 (2 : 1 hexane/EtOAc). White solid (113 mg,
94%). Mp = 113-115 °C. "H NMR (400 MHz, CDCl,): 6 7.68-7.63
(m, 4H), 7.45-7.41 (m, 2H), 7.38-7.34 (m, 1H), 7.28 (d, J =
8.4 Hz, 2H), 5.83 (m, 1H), 5.57 (s, 2H), 5.15 (dd, J = 10.4 Hz,
1.2 Hz, 1H), 4.88 (dd, / = 16.8 Hz, 1.2 Hz, 1H), 3.45 (m, 2H). *C
NMR (100 MHz, CDCl,): 6 146.2, 140.3, 132.9, 132.1, 131.0,
130.4, 128.9, 128.3, 128.0, 127.3, 118.3, 118.2, 112.6, 51.4, 27.1.
HRMS (ESI) m/z calculated for CyoH;,N, [M + H]" 301.1448,
found 301.1451. IR (KBr film): » 3061, 2229, 1639, 1506, 920,
820, 777, 699 cm .

5-Allyl-1-benzyl-4-phenyl-1H-1,2,3-triazole (3b). TLC: R; 0.52
(2 : 1 hexane/EtOAc). Pale yellow liquid (97.9 mg, 89%). 'H NMR
(400 MHz, CDCl,): 6 7.70-7.67 (m, 2H), 7.44-7.40 (m, 2H), 7.36~
7.30 (m, 4H), 7.20-7.18 (m, 2H), 5.83 (m, 1H), 5.54 (s, 2H), 5.15
(dm, J = 12.0 Hz, 1H), 4.92 (dm, J = 15.2 Hz, 1H), 3.45 (m, 2H).
3C NMR (100 MHz, CDCl,): 6 146.0, 135.1, 132.4, 131.5, 130.4,
129.1, 128.8, 128.5, 128.0, 127.3, 117.9, 52.1, 27.1. HRMS (ESI)
m/z calculated for C,3H;gN; [M + H]" 276.1495, found 276.1501.
IR (KBr film): » 3063, 3033, 1639, 1608, 1496, 918, 800, 764 cm ~*

5-Allyl-1-(4-methylbenzyl)-4-phenyl-1H-1,2,3-triazole (3c).
TLC: R; 0.55 (2 : 1 hexane/EtOAc). White solid (97.9 mg, 85%).
Mp = 42-44 °C. 'H NMR (400 MHz, CDCl,): 6 7.69-7.66 (m,
2H), 7.44-7.39 (m, 2H), 7.36-7.31 (m, 1H), 7.14 (d, J = 8.0 Hz,

This journal is © The Royal Society of Chemistry 2018
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2H), 7.09 (d, J = 8.0 Hz, 2H), 5.84 (m, 1H), 5.49 (s, 2H), 5.17
(dq,J = 10.4 Hz, 2.0 Hz, 1H), 4.93 (dq, ] = 17.2 Hz, 2.0 Hz, 1H),
3.45 (m, 2H), 2.33 (s, 3H). *C NMR (100 MHz, CDCl;): 6 146.0,
138.3, 132.5, 132.1, 131.5, 130.4, 129.8, 128.8, 128.0, 127.3,
117.9, 52.0, 27.2, 21.3. HRMS (ESI) m/z calculated for
C10H,0N; [M + H]" 290.1652, found 290.1657. IR (KBr film): »
3056, 3031, 1639, 1495, 1360, 919, 792, 716 cm ™ .
5-Allyl-1-(4-methoxybenzyl)-4-phenyl-1H-1,2 3-triazole  (3d).
TLC: R 0.35 (2 : 1 hexane/EtOAc). Pale yellow liquid (107 mg,
88%). "H NMR (400 MHz, CDCl,): 6 7.68-7.65 (m, 2H), 7.43-7.39
(m, 2H), 7.35-7.31 (m, 1H), 7.15 (dm, J = 9.6 Hz, 2H), 6.86 (dm, J
= 9.6 Hz, 2H), 5.84 (m, 1H), 5.46 (s, 2H), 5.16 (dq, J = 10.4 Hz,
2.0 Hz, 1H), 4.92 (dq, J = 16.8 Hz, 2.0 Hz, 1H), 3.78 (s, 3H), 3.46
(m, 2H). **C NMR (100 MHz, CDCl,): 6 159.7, 146.0, 132.5, 131.5,
130.3, 128.9, 128.8, 128.0, 127.3, 127.1, 117.8, 114.5, 55.4, 51.7,
27.1. HRMS (ESI) m/z calculated for C;oH,oN;O [M + H]"
306.1601, found 306.1595. IR (KBr film): » 3063, 3005, 1639,
1514, 1250, 1032, 921, 825, 715 cm ™"
5-Allyl-1-(3,5-dimethoxybenzyl)-4-phenyl-1H-1,2,3-triazole (3e).
TLC: R¢ 0.37 (2 : 1 hexane/EtOAc). White solid (126 mg, 94%). Mp
= 80-82 °C. "H NMR (400 MHz, CDCl,): § 7.64-7.61 (m, 2H), 7.38-
7.34 (m, 2H), 7.27 (tt, ] = 6.4 Hz, 1.2 Hz, 1H), 6.33 (t, ] = 2.0 Hz,
1H), 6.27 (d,J = 2.0 Hz, 2H), 5.79 (m, 1H), 5.39 (s, 2H), 5.10 (dq, /
= 12.0 Hz, 2.0 Hz, 1H), 4.88 (dq,J = 18.8 Hz, 2.0 Hz, 1H), 3.67 (s,
6H), 3.40 (m, 2H). *C NMR (100 MHz, CDCl;): 6 161.4, 145.9,
137.3,132.4, 131.4, 130.5, 128.7, 127.9, 127.2, 117.8, 105.3, 100.0,
55.5, 52.1, 27.1. HRMS (ESI) m/z calculated for C,,H,,N30, [M +
H]" 336.1707, found 336.1708. IR (KBr film): » 3003, 2938, 1598,
1206, 1066, 921, 777 cm ™.
5-Allyl-1-(4-fluorobenzyl)-4-phenyl-1H-1,2,3-triazole (3f). TLC:
R; 0.45 (2 : 1 hexane/EtOAc). Pale yellow liquid (114 mg, 97%). "H
NMR (400 MHz, CDCly): 6 7.68-7.66 (m, 2H), 7.44-7.40 (m, 2H),
7.34 (tt,] = 6.4 Hz, 1.2 Hz, 1H), 7.20 (dd, J = 8.8 Hz, 5.6 Hz, 2H),
7.03 (t, ] = 8.8 Hz, 2H), 5.84 (m, 1H), 5.50 (s, 2H), 5.16 (dm, J =
10.0 Hz, 1H), 4.91 (dm, J = 16.4 Hz, 1H), 3.45 (m, 2H). "*C NMR
(100 MHz, CDCl,): 6 162.8 (d, Jo_r = 246.0 Hz), 146.1,132.3, 131.3,
130.9 (d, Jor = 3.1 Hz), 130.3, 129.3 (d, Jc.r = 7.8 Hz), 128.9,
128.1, 127.3, 118.0, 116.1 (d, Jo_r = 21.7 Hz), 51.4, 27.1. "°F NMR
(376 MHz, CDCl;): 6 —113.1. HRMS (ESI) m/z calculated for
C1sHi,FN; [M + H]" 294.1401, found 294.1405. IR (KBr film): »
3066, 3011, 1640, 1512, 1015, 920, 715, 698 cm™ .
5-Allyl-4-phenyl-1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazole
(3g). TLC: R;0.47 (2 : 1 hexane/EtOAc). Light yellow solid (128 mg,
93%). Mp = 63-65 °C. "H NMR (400 MHz, CDCl,): 6 7.69 (d, J =
8.8 Hz, 2H), 7.59 (d, / = 8.0 Hz, 2H), 7.42 (t, ] = 8.0 Hz, 2H), 7.36~
7.29 (m, 3H), 5.84 (m, 1H), 5.57 (s, 2H), 5.15 (d,/ = 10.0 Hz, 1H),
4.90 (d, ] = 17.2 Hz, 1H), 3.45 (dm, J = 3.2 Hz, 2H). "*C NMR (100
MHz, CDCL,): 6 146.1, 139.1 (q, Jo-r = 1.5 Hz), 132.1, 131.2, 130.8
(9, Jo_r = 32.5 Hz), 130.5, 128.8, 128.1, 127.6, 127.3, 126.1 (q, Jc_r
= 3.9 Hz), 124.0 (q, Jo_r = 270.9 Hz), 118.0, 51.4, 27.1. °F NMR
(376 MHz, CDCl;): 6 —63.1. HRMS (ESI) m/z calculated for
C1oH,N3F; [M + H]" 344.1369, found 344.1374. IR (KBr film): v
3064, 1640, 1496, 1125, 824, 779, 699 cm .
5-Allyl-1-(4-nitrobenzyl)-4-phenyl-1H-1,2,3-triazole (3h). TLC:
R; 0.35 (2 : 1 hexane/EtOAc). Light yellow solid (110 mg, 86%).
Mp = 93-95 °C. '"H NMR (400 MHz, CDCl;): 6 8.19 (dm, J =
8.8 Hz, 2H), 7.67 (dm, J = 8.8 Hz, 2H), 7.44-7.41 (m, 2H), 7.37-
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7.33 (m, 3H), 5.84 (m, 1H), 5.61 (s, 2H), 5.14 (dm, J = 12.0 Hz,
1H), 4.89 (dm, J = 17.2 Hz, 1H), 3.47 (m, 2H). "*C NMR (100
MHz, CDCl,): 6 148.0, 146.2, 142.2, 132.1, 131.0, 130.5, 128.9,
128.3, 128.2, 127.3, 124.3, 118.2, 51.1, 27.1. HRMS (ESI) m/z
calculated for C,3H;,N,0, [M + H]" 321.1346, found 321.1348.
IR (KBr film): » 3081, 1608, 1520, 1495, 1347, 805, 734 cm ™.
5-Allyl-4-phenyl-1-(p-tolyl)-1H-1,2,3-triazole (3i). TLC: R; 0.72
(2 : 1 hexane/EtOAc). White solid (98.3 mg, 89%). Mp = 106-
108 °C. "H NMR (400 MHz, CDCl,): 6 7.82 (d, J = 8.4 Hz, 2H),
7.48-4.37 (m, 5H), 7.33 (d,J = 8.4 Hz, 2H), 5.91 (m, 1H), 5.19 (d, J
= 9.6 Hz, 1H), 4.93 (d, J = 17.2 Hz, 1H), 3.57 (dm, J = 4.0 Hz,
2H), 2.45 (s, 3H). *C NMR (100 MHz, CDCl,): 6 145.4, 140.1,
134.1, 133.4, 131.4, 131.1, 130.1, 128.9, 128.1, 127.3, 125.5,
118.2, 27.7, 21.4. HRMS (ESI) m/z calculated for C,3H;gNz [M +
H]" 276.1495, found 276.1501. IR (KBr film): » 2919, 1517, 992,
934, 710 cm ™.
5-Allyl-1-(4-methoxyphenyl)-4-phenyl-1H-1,2,3-triazole (3j).
TLC: R; 0.37 (3 : 1 hexane/EtOAc). Light brown solid (76.0 mg,
65%). Mp = 97-99 °C. "H NMR (400 MHz, CDCl5): 6 7.81 (d, ] =
7.2 Hz, 2H), 7.47-7.34 (m, 5H), 7.03 (d,J = 9.2 Hz, 2H), 5.91 (m,
1H), 5.19 (dd, J = 10.0 Hz, 1.2 Hz, 1H), 4.92 (dd, J = 17.6 Hz,
1.2 Hz, 1H), 3.88 (s, 3H), 3.56 (m, 2H). *C NMR (100 MHz,
CDCly): 6 160.6, 133.4, 131.4, 129.4, 128.9, 128.8, 128.0, 127.2,
127.1, 118.1, 114.7, 114.6, 55.8, 27.7. HRMS (ESI) m/z calcu-
lated for Cy5H;gN;0 [M + H]" 292.1444, found 292.1449. IR
(KBr film): » 3081, 1639, 1508, 1260, 1030, 835, 714 cm ™.
5-Allyl-1-(4-fluorophenyl)-4-phenyl-1H-1,2,3-triazole (3k). TLC:
R; 0.45 (2 : 1 hexane/EtOAc). Light yellow solid (70.0 mg, 63%).
Mp = 121-123 °C. '"H NMR (400 MHz, CDCL,): 6 7.81 (d, J =
7.2 Hz, 2H), 7.54-7.48 (m, 2H), 7.48-7.44 (m, 2H), 7.40-7.36 (m,
1H), 7.24 (t, ] = 8.4 Hz, 2H), 5.92 (m, 1H), 5.21 (dd, J = 10.4 Hz,
1.2 Hz, 1H), 4.92 (dd, J = 17.2 Hz, 1.2 Hz, 1H), 3.57 (m, 2H). **C
NMR (100 MHz, CDCLy): 6 163.3 (d, Jo-r = 249.2 Hz), 145.6, 133.2,
132.6 (d, Jo_r = 3.1 Hz), 131.2 (d, Jo_r = 6.2 Hz), 128.9, 128.3,127.7
(d, Jo-r = 9.3 Hz), 127.3, 126.1, 118.4, 116.7 (d, Jo_r = 22.5 Hz),
27.7. F NMR (376 MHz, CDCl;): 6 —110.9. HRMS (EI) m/z
calculated for C;;H;,FN; [M]" 279.1171, found 279.1172. IR (KBr
film): v 3082, 1514, 1244, 992, 846, 721, 701 cm .
5-Allyl-1-octyl-4-phenyl-1H-1,2 3-triazole (31). TLC: R; 0.65
(2 : 1 hexane/EtOAc). Pale yellow liquid (107 mg, 90%). "H NMR
(400 MHz, CDCl,): 6 7.68 (dm, J = 8.4 Hz, 2H), 7.42 (tm, J =
8.4 Hz, 2H), 7.35-7.31 (m, 1H), 5.96 (m, 1H), 5.20 (dd, J =
10.4 Hz, 1.2 Hz, 1H), 4.96 (dd, J = 16.8 Hz, 1.2 Hz, 1H), 4.23 (t,]
= 7.2 Hz, 2H), 3.58 (m, 2H), 1.92 (quin, J = 7.2 Hz, 2H), 1.40-
1.26 (m, 10H), 0.87 (t, ] = 7.2 Hz, 3H). *C NMR (100 MHz,
CDCly): 6 145.3, 132.9, 131.7, 129.9, 128.8, 127.9, 127.3, 117.8,
48.3,31.8, 30.3,29.3,29.2, 27.2, 26.8, 22.7, 14.2. HRMS (ESI) m/z
calculated for C;oH,gN; [M + H]" 298.2278, found 298.2278. IR
(KBr film): v 2954, 2926, 1640, 1495, 1361, 765, 698 cm ™ .
5-Allyl-1-benzyl-4-(4-fluorophenyl)-1H-1,2,3-triazole (3m).
TLC: Rf 0.6 (3 : 1 hexane/EtOAc). White solid (81.6 mg, 70%).
Mp = 79-81 °C. '"H NMR (400 MHz, CDCl;): 6 7.65 (dd, J =
8.8 Hz, 5.6 Hz, 2H), 7.36-7.30 (m, 3H), 7.20-7.18 (m, 2H), 7.11
(t, J = 8.8 Hz, 2H), 5.81 (m, 1H), 5.53 (s, 2H), 5.15 (dd, J =
10.4 Hz, 1.2 Hz, 1H), 4.90 (dd, J = 17.2 Hz, 1.2 Hz, 1H), 3.42
(m, 2H). "*C NMR (100 MHz, CDCl;): 6 162.7 (d, Jo_p = 245.3
Hz), 145.2, 135.0, 132.2, 130.2, 129.2, 129.1 (d, Jo_r = 8.5 Hz),
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128.5, 127.6 (d, Jc_r = 3.1 Hz), 127.4, 118.0, 115.8 (d, Jc.r =
20.9 Hz), 52.2, 27.1. "’F NMR (376 MHz, CDCl;): 6 —110.9.
HRMS (ESI) m/z calculated for CygH;,FN; [M + H]' 294.1401,
found 294.1404. IR (KBr film): » 3081, 1640, 1510, 1224, 992,
841, 764, 698 cm .
5-Allyl-1-benzyl-4-(2-chlorophenyl)-1H-1,2,3-triazole  (3n).
TLC: R 0.37 (2 : 1 hexane/EtOAc). Pale yellow liquid (66.7 mg,
54%). "H NMR (400 MHz, CDCl3): 6 7.47-7.42 (m, 2H), 7.38-
7.29 (m, 5H), 7.18 (d, J = 8.0 Hz, 2H), 5.65 (m, 1H), 5.58 (s, 2H),
5.05 (dd, J = 10.0 Hz, 1.2 Hz, 1H), 4.92 (dd, J = 16.8 Hz, 1.2 Hz,
1H), 3.27 (m, 2H). *C NMR (100 MHz, CDCl;): 6 144.1, 135.0,
134.1, 132.6, 132.4, 132.2, 130.4, 130.1, 129.8, 129.1, 128.4,
127.2, 126.9, 117.9, 52.3, 27.5. HRMS (EI) m/z calculated for
C15H16CIN; [M]" 309.1031, found 309.1033. IR (KBr film): v
3064, 3032, 1639, 1497, 920, 760, 736, 694 cm ™.
5-Allyl-1-benzyl-4-(4-methoxyphenyl)-1H-1,2,3-triazole (30).
TLC: R 0.37 (3 : 1 hexane/EtOAc). Pale yellow liquid (70.0 mg,
57%). "H NMR (400 MHz, CDCl;): 6 7.61 (d, ] = 8.8 Hz, 2H),
7.36-7.30 (m, 3H), 7.20-7.18 (m, 2H), 6.96 (d, J = 8.8 Hz, 2H),
5.82 (m, 1H), 5.52 (s, 2H), 5.13 (dd, J = 12.0 Hz, 1.6 Hz, 1H),
4.91(dd,J = 17.2 Hz, 1.6 Hz, 1H), 3.83 (s, 3H), 3.42 (m, 2H). *C
NMR (100 MHz, CDCl;): 6 159.6, 145.9, 135.3, 132.5, 129.8,
129.1, 128.6, 128.4, 127.3, 124.1, 117.8, 114.3, 55.5, 52.2, 27.2.
HRMS (ESI) m/z calculated for C;oH,,N;0 [M + H]" 306.1601,
found 306.1604. IR (KBr film): » 2932, 1616, 1508, 1251, 1015,
836, 727, 696 cm ™ .
5-Allyl-1-benzyl-4-(6-methoxynaphthalen-2-yl)-1H-1,2,3-tri-
azole (3p). TLC: R; 0.37 (2 : 1 hexane/EtOAc). Light yellow solid
(106 mg, 75%). Mp = 113-115 °C. '"H NMR (400 MHz, CDCl,):
48.04 (d, ] = 0.8 Hz, 1H), 7.83 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 7.79 (d,
J = 8.4 Hz, 1H), 7.76 (d, ] = 7.6 Hz, 1H), 7.38-7.31 (m, 3H), 7.23-
7.21 (m, 2H), 7.17-7.14 (m, 2H), 5.87 (m, 1H), 5.57 (s, 2H), 5.18
(dd, J = 10.4 Hz, 1.2 Hz, 1H), 4.98 (dd, J = 17.2 Hz, 1.2 Hz, 1H),
3.93 (s, 3H), 3.52 (m, 2H). ">C NMR (100 MHz, CDCl,): ¢ 158.1,
146.2, 135.2, 134.2, 132.5, 130.4, 129.9, 129.2, 129.1, 128.5, 127.4
(2C), 126.8, 126.1, 126.0, 119.3, 118.0, 105.8, 55.5, 52.2, 27.3.
HRMS (EI) m/z calculated for C,3H,;N;0 355.1687, found
355.1685. IR (KBr film): » 2936, 2840, 1634, 1600, 1263, 1029, 726,
695 cm™ .
1-Benzyl-5-(2-methylallyl)-4-phenyl-1H-1,2,3-triazole (3q). TLC:
R¢0.73 (2 : 1 hexane/EtOAc). Light yellow solid (104 mg, 90%). Mp
= 56-58 °C. "H NMR (400 MHz, CDCL;): 6 7.67 (d, ] = 7.2 Hz, 2H),
7.42 (t,] = 7.2 Hz, 2H), 7.39-7.28 (m, 4H), 7.19 (dd, ] = 7.6, 1.6 Hz,
2H), 5.51 (s, 2H), 4.90 (t,] = 1.2 Hz, 1H), 4.44 (s, 1H), 3.32 (s, 2H),
1.77 (d, J = 0.4 Hz, 3H). >C NMR (100 MHz, CDCl,): 6 146.1,
140.3, 135.0, 131.4, 130.6, 128.9, 128.7, 128.3, 127.8, 127.2, 127.1,
112.8, 52.0, 30.9, 22.9. HRMS (ESI) m/z calculated for C;oH,,N; [M
+H]" 290.1652, found 290.1654. IR (KBr film): » 3063, 3031, 1605,
1496, 1251, 890, 770, 729 cm ™ .
1-Benzyl-4-phenyl-5-(2-phenylallyl)-1H-1,2,3-triazole (3r). TLC:
R; 0.54 (2 : 1 hexane/EtOAc). Colorless liquid (120 mg, 86%). 'H
NMR (400 MHz, CDCl,): 6 7.69 (dt,] = 7.2, 1.6 Hz, 2H), 7.41 (t,] =
7.2 Hz, 2H), 7.37-7.28 (m, 9H), 7.22-7.13 (m, 2H), 5.52 (s, 2H),
5.47 (t,J = 1.6 Hz, 1H), 4.65 (t,J = 2.0 Hz, 1H), 3.82 (t,/ = 2.0 Hz,
2H). >C NMR (100 MHz, CDCLy): § 146.4, 142.6, 139.7, 134.9,
131.2, 130.3, 129.0, 128.8, 128.6, 128.4, 128.3, 128.0, 127.4, 127.1,
125.7,114.3, 52.2, 28.5. HRMS (ESI) m/z calculated for C,4H,,N3
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M + H:|+ 352.1808, found 352.1807. IR (KBr film): » 3058, 3032,
1954, 1628 cm™ .

1-Benzyl-5-(3-methylbut-2-en-1-yl)-4-phenyl-1H-1,2,3-triazole
(3s). TLC: R¢ 0.37 (2 : 1 hexane/EtOAc). White solid (89.0 mg,
73%). Mp = 86-88 °C. 'H NMR (400 MHz, CDCl;): 6 7.67 (d, ] =
7.2 Hz, 2H), 7.42 (t, ] = 7.2 Hz, 2H), 7.38-7.28 (m, 4H), 7.16 (d, J
= 6.4 Hz, 2H), 5.54 (s, 2H), 4.93 (m, 1H), 3.41 (d, J = 6.4 Hz, 2H),
1.65 (d,J = 1.6 Hz, 3H), 1.62 (d, J = 0.8 Hz, 3H). ">C NMR (100
MHz, CDCl,): 6 145.1, 135.2, 135.1, 132.6, 131.6, 128.9, 128.6,
128.1, 127.7, 127.4, 127.0, 118.5, 52.0, 25.5, 22.3, 18.1. HRMS
(ESI) m/z calculated for C,oH,,N; [M + H]" 304.1808, found
304.1811. IR (KBr film): » 3025, 1654, 1602, 1494, 1249, 968, 728,
708 cm .

1-Benzyl-5-cinnamyl-4-phenyl-1H-1,2,3-triazole (3t). TLC: R¢
0.51 (2 : 1 hexane/EtOAc). White solid (74.5 mg, 53%). Mp =
100-102 °C. *H NMR (400 MHz, CDCl,): 6 7.72 (d, J = 7.2 Hz,
2H), 7.43 (t, J = 7.2 Hz, 2H), 7.38-7.26 (m, 6H), 7.25-7.18 (m,
5H), 6.21 (d,J = 16.0 Hz, 1H), 6.12 (dt, ] = 16.0, 5.2 Hz, 1H), 5.58
(s, 2H), 3.61 (dd, J = 5.2, 1.2 Hz, 2H). "*C NMR (100 MHz,
CDCl,): 6 145.9, 136.3, 135.0, 132.5, 131.3, 130.5, 129.0, 128.7,
128.6, 128.3, 129.9, 127.8, 127.3, 127.2, 126.2, 123.6, 52.2, 26.3.
HRMS (ESI) m/z calculated for C,,H,;N; [M + H]" 352.1808,
found 352.1812. IR (KBr film): » 3082, 3025, 1955, 1654,
727 cm .

5-Allyl-1-benzyl-4-hexyl-1H-1,2,3-triazole (3u). TLC: R; 0.54
(2 : 1 hexane/EtOAc). Colorless oil (87.2 mg, 77%). "H NMR (400
MHz, CDCL,): 6 7.36-7.27 (m, 3H), 7.12 (dd, J = 8.0 Hz, 2.0 Hz,
2H), 5.72-5.58 (m, 1H), 5.46 (s, 2H), 5.07 (dq, J = 10.4 Hz, 1.6 Hz,
1H), 4.89 (dq, J = 16.8 Hz, 1.6 Hz, 1H), 3.22 (dt, ] = 5.6 Hz,
1.6 Hz, 2H), 2.60 (t, ] = 7.6 Hz, 2H), 1.66 (quintet, ] = 6.4 Hz,
2H), 1.41-1.22 (m, 6H), 0.87 (t, ] = 6.8 Hz, 3H). "*C NMR (100
MHz, DMSO-d): 6 144.8, 136.1, 133.3, 130.4, 128.6, 127.8, 127.2,
116.7, 50.6, 30.9, 28.9, 28.2, 25.9, 24.2, 22.0, 13.8. HRMS (ESI) m/
z calculated for C,5H,sN; [M + H]' 284.2121, found 284.2127. IR
(KBr film): » 3065, 3033, 2928, 1640, 1456, 992, 729 cm ™ *.

5-Allyl-1-(but-3-en-1-yl)-4-phenyl-1H-1,2,3-triazole (3v). TLC:
R; 0.55 (2 : 1 hexane/EtOAc). Pale yellow liquid (76.8 mg, 80%).
'H NMR (400 MHz, CDCL,): 6 7.67 (d, ] = 6.8 Hz, 2H), 7.42 (t,] =
6.8 Hz, 2H), 7.33 (tt, ] = 6.8 Hz, 1.2 Hz, 1H), 5.97 (m, 1H), 5.78
(m, 1H), 5.21 (dq, J = 10.0 Hz, 0.8 Hz, 1H), 5.14-5.08 (m, 2H),
4.94 (dq,J = 17.2 Hz, 0.8 Hz, 1H), 4.29 (t, J = 7.2 Hz, 2H), 3.58
(m, 2H), 2.70 (q, J = 7.2 Hz, 2H). "*C NMR (100 MHz, CDCl,):
6 145.3, 133.5, 132.8, 131.6, 130.1, 128.8, 127.9, 127.3, 118.2,
117.9, 47.5, 34.4, 27.2. HRMS (ESI) m/z calculated for C;5H;gN3
[M + H]" 240.1495, found 240.1502. IR (KBr film): » 3080, 1640,
1495, 918, 766, 699 cm ™ .

5-Allyl-1-(pent-4-en-1-yl)-4-phenyl-1H-1,2,3-triazole (3w). TLC:
R;0.70 (2 : 1 hexane/EtOAc). Pale yellow liquid (77.7 mg, 77%). 'H
NMR (400 MHz, CDCl3): 6 7.67 (d, J = 7.2 Hz, 2H), 7.41 (t, ] =
7.2 Hz, 2H), 7.33 (t,J = 7.2 Hz, 1H), 5.95 (m, 1H), 5.79 (m, 1H),
5.20 (d, J = 10.0 Hz, 1H), 5.07 (d,J = 10.0 Hz, 1H), 5.03 (d, ] =
17.2 Hz, 1H), 4.95 (d,] = 17.2 Hz, 1H), 4.23 (t,] = 7.2 Hz, 2H), 3.57
(m, 2H), 2.14 (q, ] = 7.2 Hz, 2H), 2.04 (quin, / = 7.2 Hz, 2H). **C
NMR (100 MHz, CDCl,): 6 145.3, 136.8, 132.8, 131.6, 130.0, 128.7,
127.8, 127.2, 117.8, 116.1, 47.4, 30.7, 29.1, 27.1. HRMS (ESI) m/z
calculated for C;¢H,oN; [M + H]" 254.1652, found 254.1660. IR
(KBr film): » 3079, 2979, 1640, 1495, 916, 765, 700 cm ™.
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5-Allyl-1-(hex-5-en-1-yl)-4-phenyl-1H-1,2,3-triazole (3x). TLC:
R; 0.65 (2 : 1 hexane/EtOAc). Pale yellow liquid (69.5 mg, 65%).
"H NMR (400 MHz, CDCl;): 6 7.68-7.65 (m, 2H), 7.43-7.39 (m,
2H), 7.34-7.31 (m, 1H), 5.95 (m, 1H), 5.76 (m, 1H), 5.20 (dd, J =
10.0 Hz, 0.8 Hz, 1H), 5.04-4.98 (m, 2H), 4.94 (dd, J = 8.8 Hz,
0.8 Hz, 1H), 4.23 (t, /] = 7.6 Hz, 2H), 3.57 (m, 2H), 2.10 (q, ] =
7.6 Hz, 2H), 1.94 (quin, J = 7.6 Hz, 2H), 1.47 (quin, J = 7.6 Hz,
2H). "*C NMR (100 MHz, CDCl3): ¢ 145.3, 138.0, 132.8, 131.6,
129.9, 128.8, 127.8, 127.3, 117.8, 115.3, 48.0, 33.2, 29.5, 27.1,
25.9. HRMS (ESI) m/z calculated for C,5H,,N3 [M + H]" 268.1808,
found 268.1814. IR (KBr film): » 3079, 2978, 1640, 1495, 914,
769, 698 cm .

5-Allyl-4-phenyl-1-(2-vinylphenyl)-1H-1,2,3-triazole (3y). TLC:
R; 0.6 (2 : 1 hexane/EtOAc). Light yellow solid (60.8 mg, 53%).
Mp = 81-83 °C. "H NMR (400 MHz, CDCl;): 6 7.83 (d, J = 7.6 Hz,
2H), 7.74 (d, J = 8.0 Hz, 1H), 7.54 (t,J = 7.6 Hz, 1H), 7.47 (t,] =
7.6 Hz, 2H), 7.44-7.36 (m, 2H), 7.31 (d, J = 7.6 Hz, 1H), 6.18 (dd,
17.6 Hz, 11.2 Hz, 1H), 5.73 (d, J = 17.6 Hz, 1H), 5.72-5.65 (m,
1H), 5.27 (d,J = 10.8 Hz, 1H), 5.02 (d, J = 10.0 Hz, 1H), 4.81 (d,/
= 16.4 Hz, 1H), 3.43 (d, J = 5.2 Hz, 2H). "*C NMR (100 MHz,
CDCl,): 6 144.9, 135.5, 133.7, 132.8, 132.3, 131.3, 130.9, 130.7,
128.9, 128.5, 128.1, 127.2 (2C), 126.4, 118.2, 117.9, 27.5. HRMS
(EST) m/z calculated for CyoH;gN; [M + H]" 288.1495, found
288.1492. IR (KBr film): » 3063, 2964, 1640, 1494, 991, 769,
698 cm ™.

5-Allyl-4-phenyl-1-(2-vinylbenzyl)-1H-1,2,3-triazole (3z). TLC:
R¢0.35 (6 : 1 hexane/EtOAc). Light brown liquid (66.6 mg, 55%).
"H NMR (400 MHz, CDCl,): 6 7.70 (d, J = 6.8 Hz, 2H), 7.50 (d, ] =
8.0 Hz, 1H), 7.43 (t,] = 7.6 Hz, 2H), 7.35 (t,] = 7.6 Hz, 1H), 7.30
(t,J = 7.6 Hz, 1H), 7.20 (t, ] = 7.6 Hz, 1H), 7.03 (dd, ] = 16.8 Hz,
10.8 Hz, 1H), 6.81 (d, J = 7.6 Hz, 1H), 5.80 (m, 1H), 5.67 (dd, J =
17.2 Hz, 0.8 Hz, 1H), 5.63 (s, 2H), 5.42 (dd, J = 12.0 Hz, 0.8 Hz,
1H), 5.13 (d,J = 10.4 Hz, 1H), 4.88 (d, J = 17.2 Hz, 1H), 3.41 (m,
2H). *C NMR (100 MHz, CDCl3): ¢ 146.0, 136.7, 133.4, 132.3,
132.1, 131.4, 130.7, 128.9, 128.6, 128.4, 128.0, 127.5, 127.3,
126.8, 118.2, 117.8, 49.8, 27.1. HRMS (ESI) m/z calculated for
Ca0H20N; [M + H]" 302.1652, found 302.1646. IR (KBr film): »
3062, 3033, 1639, 1608, 1495, 919, 771, 699 cm ™.

Experimental procedure for ring closing metathesis

Synthesis of 3-phenyl-7,8-dihydro-4H-1,2,3]triazolo[1,5-«]
azepine (6v). The diene 3v (47.9 mg, 200 umol) was dissolved in
anhydrous CH,Cl, (6 mL). A solution of Grubbs' 1% generation
catalyst (8.2 mg, 10.0 pmol) in anhydrous CH,Cl, (3.3 mL) was
added to the reaction mixture via a cannula, and stirred at room
temperature for 19 h. Upon completion of the reaction, the
solvent was removed in vacuo. The residue was purified by
column chromatography to afford 6v as a pale green liquid
(33.3 mg, 79%). TLC: R 0.3 (2 : 1 hexane/EtOAc). '"H NMR (400
MHz, CDCl,): 6 7.60 (d, J = 7.2 Hz, 2H), 7.44 (t, ] = 7.2 Hz, 2H),
7.35 (t,J = 7.2 Hz, 1H), 5.75-5.73 (m, 2H), 4.71 (t,] = 6.0 Hz, 2H),
3.70-3.69 (m, 2H), 2.55-2.52 (m, 2H). "*C NMR (100 MHz,
CDCl,): 6 144.7, 133.2, 131.5, 129.0, 128.8, 127.9, 127.8, 123.2,
47.9, 27.9, 25.5. HRMS (ESI) m/z calculated for C;3H4,N3 [M +
H]" 212.1182, found 212.1185. IR (KBr film): » 3058, 1660, 1624,

1498, 772, 699 cm ™.
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Synthesis of 3-phenyl-4,7,8,9-tetrahydro-[1,2,3]triazolo[1,5-a]
azocine (6w). The diene 3w (50.7 mg, 200 umol) was dissolved in
anhydrous CH,Cl, (6 mL). A solution of Grubbs' 1°* generation
catalyst (8.2 mg, 10.0 umol) in anhydrous CH,Cl, (3.3 mL) was
added to the reaction mixture via a cannula. The reaction
mixture was stirred at room temperature for overnight, and was
brought to reflux for 6 h. Upon completion of the reaction, the
solvent was removed in vacuo. The residue was purified by
column chromatography to afford 6w as pale yellow liquid
(39.0 mg, 87%). TLC: R¢ 0.35 (2 : 1 hexane/EtOAc). "H NMR (400
MHz, CDCl,): 6 7.61 (d, ] = 7.6 Hz, 2H), 7.44 (t,] = 7.6 Hz, 2H),
7.35 (t,J = 7.6 Hz, 1H), 5.79-5.67 (m, 2H), 4.53 (t,/ = 5.2 Hz, 2H),
3.64 (d, J = 4.8 Hz, 2H), 1.90-1.82 (m, 4H). *C NMR (100 MHz,
CDCly): 6 144.4, 132.9, 131.7, 128.8, 128.4, 127.9, 127.8, 127.1,
47.2, 27.2, 24.4, 23.1. HRMS (ESI) m/z calculated for C;,H;¢N3
[M + H]" 226.1339, found 226.1336. IR (KBr film): » 2929, 1665,
1626, 1447, 733, 698 cm ™ .

Synthesis of (Z)-3-phenyl-7,8,9,10-tetrahydro-4H-[1,2,3]tri-
azolo[1,5-a]Jazonine (6x) and (E)-1,10-bis(5-allyl-4-phenyl-1H-
1,2,3-triazol-1-yl)dec-5-ene (6x'). The diene 3x (53.5 mg, 200
umol) was dissolved in anhydrous CH,Cl, (6 mL). A solution of
Grubbs' 1% generation catalyst (8.2 mg, 10.0 umol) in anhydrous
CH,Cl, (3.3 mL) was added to the reaction mixture via
a cannula. The reaction mixture was brought to reflux for 8 h.
Upon completion of the reaction, the solvent was removed in
vacuo. The residue was purified by column chromatography to
afford 6x as a white solid (31.0 mg, 65%) and a dimer 6x’ as
colorless liquid (8.0 mg, 8%). 6x: TLC: R; 0.2 (2:1 hexane/
EtOAc). Mp = 201-203 °C. 'H NMR (400 MHz, CDCl;): 6 7.68
(d,J = 7.6 Hz, 2H), 7.45 (t, ] = 7.6 Hz, 2H), 7.36 (t, ] = 7.6 Hz,
1H), 5.81 (m, 1H), 5.66 (m, 1H), 4.51 (t, ] = 6.0 Hz, 2H), 3.61 (d,J
= 7.6 Hz, 2H), 2.35-2.30 (m, 2H), 2.01 (quin, J = 6.4 Hz, 2H),
1.67-1.61 (m, 2H). *C NMR (100 MHz, CDCl): 6 145.2, 131.7,
131.5, 131.0, 128.9, 128.0, 127.6, 126.3, 45.8, 25.9, 25.1, 23.0,
21.9. HRMS (ESI) m/z calculated for C;5H;sN; [M + H]" 240.1495,
found 240.1498. IR (KBr film): » 2959, 2932, 1491, 733, 720,
697 cm .

6X': TLC: R; 0.17 (2 : 1 hexane/EtOAc). "H NMR (400 MHz,
CDCLy): 67.67 (d,] = 7.2 Hz, 4H), 7.42 (t, ] = 7.2 Hz, 4H), 7.34 (t,]
= 7.2 Hz, 2H), 6.00-5.91 (m, 2H), 5.39-5.35 (m, 2H), 5.21 (d, ] =
10.4 Hz, 2H), 4.95 (d, J = 17.2 Hz, 2H), 4.25-4.22 (m, 4H), 3.59-
3.57 (m, 4H), 2.09-2.01 (m, 4H), 1.96-1.89 (m, 4H), 1.43 (quin, J
= 7.6 Hz, 4H). ">C NMR (100 MHz, CDCl,): 6 145.2, 132.8, 131.4,
130.3, 130.1, 128.9, 128.0, 127.4, 117.9, 48.2, 32.0, 29.6, 27.2,
26.6. HRMS (ESI) m/z calculated for C33H30Ng [M + H]' 507.3231,
found 507.3232. IR (KBr film): » 2925, 1660, 1600, 1495, 917,
770, 698 cm ™.

Synthesis of 3-phenyl-4H-benzol[f][1,2,3]triazolo[1,5-c]aze-
pine (6y). The diene 3y (52.0 mg, 180 umol) was dissolved in
anhydrous CH,Cl, (6 mL). A solution of Grubbs' 1** generation
catalyst (8.2 mg, 10.0 umol) in anhydrous CH,Cl, (3.3 mL) was
added to the reaction mixture via a cannula. The reaction
mixture was stirred at room temperature for 8 h. Upon
completion of the reaction, the solvent was removed in vacuo.
The residue was purified by column chromatography to afford
6y as a white solid (43.0 mg, 92%). TLC: R; 0.37 (6 : 1 hexane/
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EtOAc). Mp = 96-98 °C. "H NMR (400 MHz, CDCl,): 6 8.15 (dd, J
=7.6 Hz, 1.2 Hz, 1H), 7.71 (d, ] = 7.6 Hz, 2H), 7.50-7.41 (m, 4H),
7.41-7.36 (m, 2H), 6.65 (d, ] = 10.4 Hz, 1H), 6.18 (m, 1H), 3.51 (d,
J = 6.4 Hz, 2H). "*C NMR (100 MHz, CDCl,): é 142.2, 135.0,
134.9, 130.9, 130.8, 130.2, 129.0, 128.8, 128.7, 128.2, 128.1,
127.9, 127.6, 124.0, 21.2. HRMS (ESI) m/z calculated for
Cy7HyuN; [M + H]" 260.1182, found 260.1179. IR (KBr film): »
2919, 1700, 1600, 1491, 992, 772, 699 cm ™.

Synthesis of (Z)-3-phenyl-4,11-dihydrobenzo[f][1,2,3]triazolo
[1,5-a]azocine (6z). The diene 3z (47.0 mg, 150 umol) was dis-
solved in anhydrous CH,Cl, (6 mL). A solution of Hoveyda-
Grubbs' 2™ generation catalyst (5.0 mg, 7.9 umol) in anhydrous
CH,Cl, (3.3 mL) was added to the reaction mixture via
a cannula. The reaction mixture was stirred at room tempera-
ture for 4 h. Upon completion of the reaction, the solvent was
removed in vacuo. The residue was purified by column chro-
matography to afford 6z as a pale green solid (29.5 mg, 72%).
TLC: R¢ 0.27 (6 : 1 hexane/EtOAc). Mp = 159-161 °C. '"H NMR
(400 MHz, CDCl,): 6 7.58-7.54 (m, 3H), 7.45-7.38 (m, 3H), 7.37-
7.35 (m, 2H), 7.30 (d, J = 8.4 Hz, 1H), 7.08 (d, J = 10.4 Hz, 1H),
6.03 (dt,J = 10.4 Hz, 7.6 Hz, 1H), 5.49 (s, 2H), 3.30 (d, J = 8.0 Hz,
2H). *C NMR (100 MHz, CDCl3): ¢ 144.8, 139.2, 134.0, 131.5,
131.3, 130.9, 129.3, 128.8, 128.7, 128.6, 128.2, 128.0, 127.7,
126.2, 53.4, 22.6. HRMS (ESI) m/z calculated for C13H;6N3 [M +
H]" 274.1339, found 274.1336. IR (KBr film): » 3025, 2360, 1494,
995, 754, 735, 699 cm ™.
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