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ombined emulsion process to
encapsulate methylene blue into PLGA
nanoparticles

Cindy Alejandra Gutiérrez-Valenzuela,a Reynaldo Esquivel,b Patricia Guerrero-
Germán, c Paul Zavala-Rivera,c José Carlos Rodŕıguez-Figueroa,c

Roberto Guzmán-Zd and Armando Lucero-Acuña *c

The delivery of photosensitizer compounds using biodegradable nanoparticles could improve dosage,

controlled release and its bioavailability. In this study, methylene blue (MB) loaded PLGA nanoparticles

(MB-PNP) are prepared by a new approach combining single and double emulsification techniques.

Comparisons of MB-PNP obtained with the combined and the individual techniques are presented.

Nanoparticles are characterized by dynamic light scattering, laser Doppler electrophoresis and scanning

electron microscopy. Particles prepared by the combined technique presented hydrodynamic diameters

of 186 nm. The sizes of MB-PNP obtained from the single emulsion technique are similar to the

combined technique, while the diameter of particles prepared by double emulsion increased from

201 nm to 287 nm as the TDL increased. MB-PNP displayed an average zeta potential between �21 mV

and �28 mV for all formulations. MB loading ranges between 0.3–1.4%, while the encapsulation

efficiency ranges from 8–14%, both depending on the TDL and the preparation technique. In vitro

release studies show a monophasic release profile that was analyzed by considering the mechanisms of

initial burst, drug diffusion and a combination of them. Experimental results could be better described

using a mathematical model of release that simultaneously combines the mechanisms of initial burst and

drug diffusion. The approach presented to encapsulate MB and also to analyze the drug release could be

extended to other drugs with partial solubility.
Introduction

Drug delivery has become an ideal strategy to overcome prob-
lems associated with the degradation of drugs, dosage, target-
ing, among others. Drug delivery approaches have been
receiving continuous efforts to develop and optimize the
methods of drug entrapment. Within these approaches, nano-
carriers are getting more attention due to the great potential to
comply with the requirements of an ideal drug delivery system,
as they may increase drug bioavailability, reduce toxicity,
improve efficiency, provide controlled drug release, recognize
specic tissues and protect drugs from undesirable interaction
with other tissues.1–5 The materials used in the preparation of
nanocarriers are polymers, inorganic materials such as ceramic
rtment of Physics, University of Sonora,

y of Mexico, Ciudad de Mexico, Mexico

Engineering, University of Sonora, Blvd.

rmosillo, Sonora, 83000, Mexico. E-mail:

59-2105

tal Engineering, University of Arizona,
based and silica-based nanostructures, metallic and magnetic
nanoparticles, quantum dots and carbon materials, as well as
organic materials that include liposomes, micelles, poly-
saccharides and dendrimers.6,7 From these materials, poly-DL-
lactic-co-glycolic acid (PLGA) is extensively used in research as
a nanocarrier. PLGA is a biodegradable and biocompatible
poly(ester) that can be easily functionalized with different
ligands prior8 and aer nanoparticle preparations. PLGA
degradation rates depends on its molecular weight and copol-
ymer composition.9 PLGA is also a polymer approved by the
Food and Drug Administration (FDA) for drug delivery
nanosystems.3,9

Several techniques for PLGA nanoparticle preparation have
been reported in literature: emulsication followed by either
solvent evaporation, diffusion or reverse salting-out, polymeri-
zation, nanoprecipitation, among others.10–17 Within these
techniques, the most common is the emulsion process, which
could be used to practically encapsulate any hydrophobic or
hydrophilic component. The emulsion process could be carried
out by single and double emulsion. An extensive review using
the double emulsion technique by analysing the process vari-
ables like solvents, stabilizers, different polymers in the
encapsulation of hydrophobic and hydrophilic drugs was
This journal is © The Royal Society of Chemistry 2018
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View Article Online
reported in literature.18 However, this technique occasionally
present low drug loading and encapsulation efficiency for
hydrophilic compounds and could be difficult to scale up.3,16 In
order to overcome the low drug loading issue, authors have
proposed a wide variety of modications to the commonly used
methods, some of these modications include: (1) adjustments
on the pH of the aqueous phase with the purpose of modifying
lipophilicity of the drug to encapsulate in the single or double
emulsication method;5,19 (2) variations on temperature while
encapsulating iron oxide nanoparticles in PLGA in a double
emulsion method;20 (3) the use of different surfactants such as
polyvinyl alcohol (PVA), human serum albumin (HSA),21 or
Pluronic F-108 when a solvent displacement method is used;22

(4) addition of excipients such as poly(DL-lactide) oligomers or
fatty acids into the formulation23 or stabilizer agents and
cyclodextrins;24 (5) the use of cross-linkers such as anionic
surfactant Aerosol (OTTM) and polysaccharide polymer alginate
to improve the encapsulation efficiency and to delay the release
of water soluble drugs such as methylene blue, doxorubicin,
rhodamine, verapamil, and clonidine;25 among others.

Methylene blue (MB) has been of great interest in many areas
of clinical medicine, from neurological disorders to cancer
chemotherapy.24,26 It can be used in photodynamic therapy
(PDT), which consists on the application of the photosensitizer
(PS) agent in the area of interest, and then activated by light of
specic wavelength producing reactive oxygen species, that
leads to the death of the target cell via oxidative damage.27–30 MB
has been encapsulated using phosphonate-terminated silica
particles,31 silica-coated magnetic particles,32 chitosan nano-
particles,33,34 molecular imprinted polymeric nanoparticles,35

a combination of gold nanoparticles in a polystyrene-alt-maleic
acid layer,36 and also in PLGA nanoparticles.24,37

Drug release from polymeric systems can be attributed to
different mechanisms such as initial burst, polymer–drug and
drug–drug interactions, polymer relaxation, hydrolysis, polymer
erosion, drug dissolution, formation of cracks and deformation,
transport through water-lled pores and transport through the
polymer.38–40 In the case of MB release from PLGA nanoparticles,
a zero order, rst order and a Higuchi models have been used to
analyse the kinetics of release.24 However, the release analysis
from biodegradable nanoparticles usually involves more than
one mechanism of release.41 In this regard, Batycky et al. pre-
sented a model that combines initial burst and drug diffusion,
solving rst for the initial burst and aer an induction time they
consider the drug diffusion.42 In similar way, a model that
combines the mechanisms of initial burst, drug diffusion and
also the degradation of PLGA has been reported, but consid-
ering that all mechanisms occur simultaneously.43

In this work, the preparation of MB-loaded PLGA nano-
particles (MB-PNP) by a combination of single and double
emulsion techniques is reported. A comparison of the nano-
particles obtained with the combined and the individual tech-
niques is presented. MB-PNP were prepared using different
theoretical drug loadings (TDL) depending of the encapsulation
technique to have a broad range of comparison. Nanoparticles
were characterized by dynamic light scattering (DLS), laser
Doppler electrophoresis and scanning electron micrographs
This journal is © The Royal Society of Chemistry 2018
(SEM). In vitro MB release from MB-PNP was evaluated under
physiological conditions and analysed with three models of
release. The rst model considers the mechanism of initial
burst, the second one considers the release of MB by diffusion
and the third model considers a simultaneous contribution of
both. Initial burst was evaluated using a rst order equation and
the diffusion of MB from MB-PNP was evaluated with a Fickian
diffusion.
Materials and methods
Materials

PLGA acid terminated (50/50 DL-lactide/glycolide copolymer, IV
midpoint 0.2 dL g�1) was received as gi sample from Corbion
Purac, Gorinchem, The Netherlands. Methylene blue was ob-
tained from Qúımica Suastes SA de CV, Tlahuac, Estado de
Mexico, Mexico. Polyvinyl alcohol (86–89% hydrolysis, low
molecular weight, PVA) was obtained from Alfa Aesar, Ward
Hill, Massachusetts, USA. Dichloromethane (DCM) was ob-
tained from Fisher Scientic Inc., Fair Lawn, New Jersey, USA.
Phosphate buffered saline tablets were obtained from Sigma-
Aldrich, St. Louis, Missouri, USA.
Preparation of MB-PNP

PLGA nanoparticles loaded with methylene blue (MB-PNP) were
prepared by using a combination of the single and double
emulsication techniques.44 Nanoparticles prepared by the
individual techniques were used to evaluate the method. A
representation of the nanoparticle preparations is presented in
Fig. 1. Briey, in the single emulsication technique, 25 mL of
an aqueous solution of 5% w/v PVA are added into a 5 mL DCM
solution containing 50 mg of PLGA and a specic amount of MB
(depending on TDL). The mixture is emulsied during 1 min at
75% amplitude (90 mm) under an ice bath by using the equip-
ment QSonica 500 sonicator (QSonica LLC, Newtown, Con-
necticut, USA). In the double emulsication technique,
a specic amount of MB (depending on TDL) is dissolved in
0.5 mL of deionized water and then added into a 5 mL DCM
solution containing 50 mg of PLGA. Then, the mixture is
emulsied by sonication during 1 min at 22% of amplitude
(26.5 mm) under an ice bath. Next, 25 mL of an aqueous solution
of 5% w/v PVA are added into the mixture and a second emul-
sication is carried by sonication during 1 min at 75% ampli-
tude (90 mm) under an ice bath. In the combined emulsication
technique, 2 mg of MB are dissolved in 0.5 mL of deionized
water and then added into a 5 mL DCM solution containing
4 mg of MB and 50 mg of PLGA. Then, the mixture is emulsied
two times following the same procedure than the one for the
double emulsication technique. Aer the emulsications in all
the preparations, the solvent is evaporated under magnetic
stirring, at room temperature. Then, MB-PNP are washed by
three centrifugation cycles by using a Sigma 3-30KS centrifuge
(Sigma Laborzentrifugen GmbH, Osterode am Harz, Germany)
operated at 37 565� g for 20 minutes, discarding supernatant
and resuspending pellet nanoparticles in deionized water.
Finally, MB-PNP are freeze-dried in lyophilizer freezone 4.5
RSC Adv., 2018, 8, 414–422 | 415
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(Labconco, Kansas City, Missouri, USA). All experiments were
performed by triplicate.

Nanoparticle characterization

Nanoparticle size distribution and zeta potentials were
measured using a zetasizer Nano ZS equipment (Malvern
Instruments Ltd., Worcestershire, United Kingdom). Measure-
ments of MB-PNP sizes were performed by dynamic light scat-
tering (DLS). Each sample was measured three times with 10
runs respectively. Additionally, each sample for zeta potential
was measured by duplicated with at least 10 runs at constant
temperature (25 �C) by laser Doppler electrophoresis.

Z-Averages and zeta potentials were obtained from three
independent experiments.

MB concentrations were quantied by spectroscopy at
665 nm using a calibration curve obtained with a standard
model MB solutions prepared in 10 mM phosphate buffer pH
7.4 (3 ¼ 5.246 � 104 M�1 cm�1). TDL is the ratio of initial
amount of MB used in the process with respect to initial amount
of polymers used in preparation. Drug loading (DL) was dened
as the actual amount of MB encapsulated per mass of nano-
particles, while the encapsulation efficiency (EE) was described
as percent of MB encapsulated in MB-PNP with respect to
initially added amount of MB.

Surface morphology of MB-PNP was analysed by scanning
electron microscopy (SEM) through the eld emission scanning
electron microscope Hitachi S-4800 FE-SEM (Hitachi Corpora-
tion, Tokyo, Japan). Samples were prepared by placing a small
Fig. 1 Schematic of MB loaded PLGA nanoparticle preparation. Single (A

416 | RSC Adv., 2018, 8, 414–422
quantity of lyophilized nanoparticles on a double-sided carbon
tape previously placed on a SEM stub. Compressed air was used
to remove loose nanoparticles. Platinum coating was applied
during 60 seconds using with an Anatech Hummer 6.2 sputter
system (Anatech USA, Hayward, California, USA) at 10 mA under
argon plasma. For visualization of nanoparticles a working
distance in the range from 6–9 mm and a beam strength of 1.0–
1.5 kV were used.
In vitro release study

In vitro MB release from MB-PNP was evaluated by the dialysis
method.24,43 Briey, a specic amount of MB-PNP is dispersed in
PBS buffer and placed into a Spectra/Por membrane dialysis of
12 000–14 000 MWCO (Spectrum Laboratories, Rancho Domi-
nguez, California, USA). MB-PNP-loaded membrane is
immersed in a tube containing phosphate buffer solution
(10 mM, pH 7.4) and incubated at 37 �C. At xed time intervals,
a sample from the dialysis medium is collected and replaced by
fresh phosphate buffer. The collected samples are analysed by
UV-vis spectroscopy at 665 nm and compared to the MB cali-
bration curve to obtain concentrations. Then, a mass balance is
followed to obtain the release prole curves. The experiments
were performed by triplicate.
Mathematical analysis of MB release

Drug release from biodegradable nanoparticles can be
contributed to a variety of mechanisms. One of the most
), double (B) and combined (C) emulsification techniques.

This journal is © The Royal Society of Chemistry 2018
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Fig. 2 Characteristics of MB-PNP prepared by different emulsification
techniques. (A) Particle diameters and polydispersity index. (B) Zeta
potentials. Blank nanoparticles and MB-PNP prepared with an O/W
emulsification technique for 2.0 and 4.0% TDL ( ). MB-PNP prepared
with a W/O/W emulsification technique for 4.0, 8.0 and 16.0% TDL ( ).
MB-PNP prepared by a combined W/O/W emulsion method for 12%
TDL ( ). Data represent mean � SD (n ¼ 3).
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relevant mechanism of release, especially for hydrophilic drugs
is the initial burst, which is attributed to a process of interfacial
diffusion between the solid sphere surface and the liquid
media. According to literature, the rate of drug dissolution is
proportional to the effect of a variety of factors such as
concentration of drug on the surface, surface area, interphase
properties, solubility of the drug, and the electrostatic interac-
tions between the drug and the carrier, these factors are
combined into a proportionality constant.42,43 This mechanism
analysis results into a rst order equation considering that at
the beginning, MB is completely incorporated in the MB-NPs.
The solution of the rst order equation presents an exponen-
tial prole, as presented in the following equation:

Mt

MN

¼ 1� expð�kbtÞ (1)

whereMt is the cumulative amount of MB released at time t,MN

is the cumulative amount of MB released at innite time and kb
is the initial burst constant, incorporating factors such as
concentration of MB on MB-PNP surface, surface area, inter-
phase properties, MB solubility and electrostatic interactions
between MB and the MB-PNP.38

Following the literature, other mechanism that can be
considered in a release kinetics analysis is the drug release by
Fickian diffusion. A general mass balance in the radial direction
and under transient conditions can be evaluated using spherical
coordinates. Considerations to these analysis include: symmetry
conditions; uniform concentration of drug at xed radius; and
effective diffusion coefficient constant with no chemical alteration
of the drug in the system.43 The resulting equation is:

vCðr; tÞ
vt

¼ De

�
v2Cðr; tÞ

vr2
þ 2

r

vCðr; tÞ
vr

�
(2)

where the concentration (C) is a function of time and radial
position in the nanoparticle. The symmetry condition at the
centre of the particle described by eqn (3) is considered as
a boundary condition. Also, MB concentration on the surface of
the sphere for times larger than zero, is considered negligible
due to its hydrophilic nature and high solubility, as presented
in eqn (4), where r1 represents the nanoparticle radius. The
assumption that initially all the encapsulated MB is homoge-
neously distributed over the entire volume of the sphere (vs), as
expressed in eqn (5) is considered.

vCð0; tÞ
vt

¼ 0 t. 0 (3)

C(r1,t) ¼ 0, t > 0 (4)

Cðr; 0Þ ¼ M0

vs
0\r\r1 (5)

An analytical solution for this system could be obtained by
using separation of variables, resulting in the following
equation:

Mt

MN

¼ 1� 6

p2

XN
n¼1

1

n2
exp

�
� p2n2Det

r12

�
(6)
This journal is © The Royal Society of Chemistry 2018
Depending on the drug release system, one or more mecha-
nisms could be considered and each one of them can contribute
in different proportions to the system. In this case, a linear
combination of initial burst (eqn (1)) and Fickian diffusion (eqn
(6)), is considered, resulting in:

Mt

MN

¼ qbf1� expð�kbtÞg þ ð1� qbÞ

�
(
1� 6

p2

XN
n¼1

1

n2
exp

�
� p2n2Det

r12

�)
(7)

where qb is the initial burst mechanism contribution fraction
over the total mass drug release. The additional equation: qb +
qd ¼ 1 is included to add mathematical consistency, where qd is
referred to the diffusion contribution fraction over the total
mass drug release. The release model presented in eqn (7)
considers the simultaneous contributions of initial bust and
MB diffusion.

The release models condensed in eqn (1), (6), and (7) contain
unknown parameters, which can be determined by adjusting
the equation to experimental data of MB release by using
nonlinear least-squares algorithm in MATLAB® (MathWorks,
RSC Adv., 2018, 8, 414–422 | 417
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USA). Due to the difference in the number of parameters
between the burst release, the diffusion model, and the
combination of both, an adjusted coefficient of determination
(Radjusted

2) was incorporated in the analysis. The Radjusted
2 is

given by:

Radjusted
2 ¼ 1�

�
ndp � 1

��
ndp � p

� �1� R2
�

(8)

where ndp is the number of data points (Mt/MN) and p is the
number of parameters in the model. The use of this parameter
is an indication of the effect of new parameters in the model,
resulting in more effective comparison between them.45
Results and discussions
Nanoparticles characterization

Different sets of experiments were performed by changing the
initial amount of MB used in preparations while the amount of
polymer was maintained constant. MB-PNP average diameter
and average PDI for all preparations are presented in Fig. 2 part
a. It is noted that average diameters for blank nanoparticles
were around 180 nm. Results for the O/W and the combined W/
O/W emulsication techniques are in similar size of blank
nanoparticles, around 183 nm. Results of the well-known W/O/
W emulsication technique indicate that MB-PNP size increase
from 201 to 287 nm depending on TDL. The average poly-
dispersity index obtained for MB-PNP prepared by the O/W
emulsication technique was around 0.78 and 0.109 for the
Fig. 3 Drug loading (D) and encapsulation efficiency (-) for the MB-
PNP with different theoretical drug loading experiments prepared by
the different emulsification techniques. Data represent mean (n ¼ 3).

Table 1 Characteristics of MB-PNP as a function of TDL. Data represen

Nanoparticle Preparation TDL (%) Size (d. nm)

MB-PNP PNP O/W 0 179.6 � 1.0
O/W 2 184.5 � 5.0
O/W 4 183.0 � 5.8
W/O/W 4 201.4 � 16.2
W/O/W 8 209.2 � 22.7
W/O/W 16 287.2 � 39.3
Combined W/O/W 12 186.0 � 4.6

418 | RSC Adv., 2018, 8, 414–422
TDL of 2% and 4%. When MB-PNP were prepared with the well-
known W/O/W emulsication technique, the average PDI ob-
tained increased from 0.080 to 0.249 as the TDL increased,
indicating saturation in the system. The combined W/O/W
emulsication method present low values of PDI similar to
the blank nanoparticles indicating a uniform nanoparticle size,
compared with the other methods of preparation. Zeta potential
for all the different preparations varied between �21 mV and
�31 mV, indicating fair to good stability of the nanoparticles,
respectively (Fig. 2 part b). In general, the zeta potential values
were inuenced by TDL, indicating some interactions between
MB and the surface of the nanoparticles. In literature MB have
been encapsulated in sol–gel silica nanoparticles obtaining
sizes ranging the 160 nm to 190 nm and silica-based nano-
particles in the range of 20–30 nm diameter.46 Other silica
nanoparticles entrapping MB have been obtained in sizes of
105 nm with zeta potential charges ranging between �44 mV
and�29 mV.31 WhenMB is encapsulated in PLGA, authors have
found sizes ranging the 190 nm to 220 nm with surface charges
of �38 mV for MB charged PLGA nanoparticles and �17.5 mV
for blank PLGA nanoparticles.37 Recently, Cannavà et al. re-
ported a study where MB was also encapsulated in PLGA at
a 2.5% TDL by single and double emulsication techniques.
Sizes obtained by them ranged between 220 nm and 266 nm
diameter, with PDI values of 0.19 and 0.4 for single and double
emulsication technique respectively.24

In Fig. 3 are presented the DL and EE for all the preparations.
DL ranged between 0.4% and 1.06% for all the formulations.
The respective EE values obtained were between 8.0% and
13.3%. The DL of particles prepared by the combined method
are similar to the ones obtained by the double emulsion but the
diameters of particle and PDI are reduced signicantly. Can-
navà et al. prepared MB loaded PLGA nanoparticles by the
single emulsication technique with values of 0.52% and 3.13%
for the DL and EE, respectively. Also, they prepared the same
kind of nanoparticles by the double emulsication technique
reporting values of 1.13% and 6.75% for the DL and EE,
respectively.24 These reported values for DL are comparable to
the ones obtained in this work. The results obtained in the
present work when the combined emulsication technique was
used have values of 1.04% and 8.06% for the DL and EE,
respectively, which are also comparable to literature. A
summary with the average values of particle size, polydispersity
index (PDI), zeta-potential, DL and EE for the different prepa-
rations of MB-PNP is presented in Table 1.
t mean � SD (n ¼ 3)

PDI z (mV) DL (%) EE (%)

0.030 � 0.007 �31.2 � 1.4
0.078 � 0.025 �25.7 � 4.3 0.28 � 0.01 13.95 � 0.66
0.109 � 0.032 �24.1 � 1.7 0.40 � 0.01 10.06 � 0.37
0.080 � 0.061 �27.6 � 4.2 0.52 � 0.01 12.95 � 0.28
0.123 � 0.072 �24.0 � 3.4 1.06 � 0.26 13.23 � 3.19
0.249 � 0.100 �21.0 � 3.6 1.36 � 0.39 8.47 � 2.41
0.048 � 0.005 �23.6 � 1.6 1.03 � 0.13 8.12 � 1.05

This journal is © The Royal Society of Chemistry 2018
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Fig. 4 Scanning electron micrograph of blank-PNP. The insert
represents the particle size distribution histogram of blank-PNP.
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Blank PLGA nanoparticles prepared by the O/W emulsica-
tion process are presented in Fig. 4. As depicted in this gure,
PLGA nanoparticles are spherical with smooth surface. PLGA
nanoparticles presented diameters of 113.86 � 39 nm when
evaluated by the particle size distribution histogram shown in
the insert of Fig. 4. This diameter obtained with the histogram
is in accordance to the measurements of DLS by considering the
hydrodynamic radius in the DLS analysis. SEM of MB-PNP for
the different preparations did not affect particle size as deter-
mined by SEM (results not shown).

MB release analysis

In vitro release studies of MB from MB-PNP were performed
with different TDL and formulation techniques. Similar MB
release proles were obtained for all preparations. The
Fig. 5 In vitro MB release profiles from 4.0% (-) TDL MB-PNP
prepared with an O/W emulsification technique, 8.0% (A) TDL
prepared by W/O/W emulsion method; and 12% (:) prepared by
a combinedW/O/W emulsionmethod. Data representmean� SD (n¼
3).

This journal is © The Royal Society of Chemistry 2018
preparations of O/W emulsication with a TDL of 4% and W/O/
W emulsication with a TDL of 8% are presented in Fig. 5 in
order to compare with the release proles of the combined
method prepared with a TDL of 12%. The percent of MB
released in the initial times could be attributed to the initial
burst mechanism. Within the rst 4 hours of release above of
80% of MB was release for all the formulations. This fast release
is related to the high solubility nature of MB. Also, based in this
solubility is considered that most of the MB is encapsulated
Fig. 6 MB release initial bust model ( ), diffusion model ( ) and
a combined initial burst and diffusion model ($$$$) profiles from (A)
4.0% (-) TDL MB-PNP prepared with an O/W emulsification tech-
nique, (B) 8.0% (A) TDL prepared byW/O/W emulsionmethod; and (C)
12% (:) prepared by a combined W/O/W emulsion method. Data
represent mean � SD (n ¼ 3).
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Table 2 Parameters of MB release from MB-PNP. The parameters were determined and used in the mathematical development of the release
model

Parameters Description Unit
O/W single emulsion
TDL ¼ 4%

W/O/W double
emulsion TDL ¼ 8%

W/O/W combined emulsion
TDL ¼ 12%

Model of initial burst
kb Burst constant hours�1 0.377 0.453 0.464
R2 Coefficient of determination 0.934 0.948 0.979

Model of diffusion
D Diffusion constant cm2 s�1 4.454 � 10�16 5.450 � 10�16 5.100 � 10�16

R2 Coefficient of determination 0.907 0.921 0.936

Model of initial burst and diffusion
wb Fraction of burst release — 0.851 0.862 0.876
kb Burst constant hours�1 0.516 0.600 0.556
wd Fraction of diffusion — 0.149 0.138 0.124
D Diffusion constant cm2 s�1 9.179 � 10�18 1.086 � 10�17 5.941 � 10�17

R2 Coefficient of determination 0.978 0.988 0.988
Radjusted

2 Adjusted coefficient of
determination

0.976 0.986 0.987
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close to the surface of nanoparticles. In terms of mass, during
the rst 4 hours of release, 3.0 mg, 8.5 mg and 7.22 mg of MB
per mg of nanoparticle were released by the particles prepared
at TDL of 4% (O/W), TDL of 8% (W/O/W) and TDL of 12%
(combined W/O/W), respectively. Aer the initial burst stage,
a slower release was observed until a plateau was reached
indicating that all MB was released from the nanoparticles. This
slower release stage can be explained by the diffusion of MB
through the polymer matrix. Analogous behaviour was reported
in literature for similar systems, where 80% of encapsulated MB
was release aer 5–12 hours, reaching a 100% at approximately
in 24 hours.24,37

Experimental MB release data was analysed by three
different models represented in Ec. (1), Ec. (6), and Ec. (7) for
initial burst, MB diffusion and a combination of both mecha-
nisms, respectively. In general, a good t of the three models
with the experimental data was obtained, as presented in Fig. 6.
The parameters obtained for each model are presented in Table
2. The t of the initial burst model (eqn (1)) to the experimental
data are fair, as could be observed in Fig. 6. As expected, this
model is good to describe the experimental data at smaller
times, but it's not able to describe the middle part of the release
prole. The initial burst constant values obtained with this
model are 0.377 h�1, 0.453 h�1, and 0.464 h�1, for particles
prepared at TDL of 4% (O/W), TDL of 8% (W/O/W) and TDL of
12% (combinedW/O/W), respectively. The initial burst constant
increases proportionally to the DL. In other words, since more
mass of drug was released in the same amount of time, the
initial burst changes in proportion. These effect was previously
described in literature indicating that more drug could be
trapped on the surface of the polymer matrix during the
manufacturing process especially in the case of high drug
loading.47 The Fickian diffusion model (eqn (6)) was able to
fairly describe experimental data, especially at shorter times, as
could be observed in Fig. 6. Although, the t of this model to the
middle part of the release prole curve was not ideal. The
420 | RSC Adv., 2018, 8, 414–422
effective diffusion coefficient values obtained by the model were
in the range of 10�16 cm2 s�1 for all formulations. However, the
effective diffusion coefficient could be also associated to the DL
in the same terms than initial burst constant analysis presented
for eqn (1). When using Fickian model, the coefficients of
determination obtained are considerably lower, compared with
the initial burst model, as could be observed in Table 2.

By combining both models, the initial burst and the Fickian
diffusion into a linear equation that considers the simultaneous
contribution of both models (eqn (7)) a better t to the experi-
mental data is obtained, compared to the individual models. In
the combined model, initial burst constant values increased
compared to the ones obtained by the initial burst model by
itself. In contrast, the effective diffusion coefficient decreases in
comparison with the values obtained by the model of eqn (6).
The combined model is able to describe more accurately the
release phenomena since simultaneously consider the inu-
ence of two mechanisms of release, as could be observed in the
coefficients of determination presented in Table 2. Cannavà
et al. used three individual models of release to describe MB
release from PLGA nanoparticles when encapsulated with
cyclodextrin: a zero order, a rst order and a Higuchi model that
resulted in release rate constants of 0.5358 h�1, 0.0346 h�1 and
6.7967 h�1/2, respectively. These models resulted with coeffi-
cients of determination of 0.8794, 0.9361 and 0.9799 respec-
tively. According to this author, the release of MB can be
described as the squared root of a time-dependent process
based on Fickian diffusion.24 Also, authors have found that
diffusion is the controlling mechanism of release when encap-
sulating other photosensitizers with low solubility.
Conclusion

MB-PNP were successfully prepared by the proposed combined
emulsication technique consisting in a combination of the
single and double emulsication. Size, polydispersity index,
This journal is © The Royal Society of Chemistry 2018
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zeta potential, MB loading and the encapsulation efficiency of
nanoparticles were determined. These results suggest that the
particles prepared by the combined technique resulted with
uniform particle size and repeatability compared with the
individual techniques. The combine technique could be applied
to several compounds that have partial solubility to improve the
drug loading and also the physicochemical characteristics of
nanoparticles. The release prole curve of MB from PLGA
nanoparticles indicate that most of the MB was encapsulated
close to the surface of nanoparticles. This release prole was
analysed by considering an initial burst model, a MB diffusion
model and also by simultaneously combining both mecha-
nisms of release into a linear model. It was found that initial
burst constant and the effective diffusion coefficient are asso-
ciated to the DL. The combined model describes more accu-
rately the release phenomena than the individual mechanisms
indicating that both mechanisms are signicant. This mathe-
matical analysis could be used to describe and predict the
release of compounds with intermediate to high solubility from
biodegradable nanoparticles.
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