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Modelling water diffusion in plasticizers:
development and optimization of a force field for
2,4-dinitroethylbenzene and 2,4,6-
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A classical all-atom force field has been developed for 2,4,6-trinitroethylbenzene and 2,4-
dinitroethylbenzene and applied in molecular dynamics simulations of the two pure and two mixed
plasticizer systems. Bonding parameters and partial charges were derived through electronic and
geometry optimization of the single molecules. The other required parameters were derived from values
already available in the literature for generic nitro aromatic compounds, which were adjusted to
reproduce to a high level of accuracy the densities of 2,4-dinitroethylbenzene, 2,4,6-trinitroethylbenzene
and the energetic plasticizers K10 and R8002. This force field has been applied to both K10 and R8002,

which when used as plasticizers form an energetic binder with nitrocellulose. Nitrocellulose decomposes
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Accepted 19th January 2018 in storage, under varying conditions, but in particular where it may become increasingly dry. Following the

derivation of the force field, we have therefore applied it to calculate water diffusion coefficients for each
of the different materials at 298 K and 338 K, thereby providing a starting point for understanding water
behaviour in a nitrocellulose binder.
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1. Introduction

Nitrocellulose (NC) can be used as the explosive component in
energetic material formulations such as propellants and
polymer-based explosives (PBXs). Many fatal disasters are re-
ported globally in relation to NC storage,"” because NC
decomposes over time which can lead to self-ignition. The
likelihood of fire or even explosion is greatly increased when NC
is dry, and during the entire period of storage and transport NC
is therefore kept in a wetted condition with a wetting agent, the
most common being isopropanol, ethanol or water.>* Consid-
ering the high risk and danger of dry or partially dry NC, the
interaction with water of NC and any other constituents in the
energy material formulation, such as a plasticizer, whilst wetted
and in storage is of significant importance. Industrial NCs are
required by law to contain at least 25% wetting agent or 18%
plasticizer.® Both wetting agents and plasticizers act as
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phlegmatizers which stabilize or desensitize an explosive such
as NC.* As early as 1932, ethylbenzene nitro derivatives were
known to be excellent colloiding agents for nitrocellulose.® To
further our understanding of the plasticizers used for NC, we
have employed classical dynamics to investigate two common
plasticizer mixtures and their interaction with water. A classical
all-atom force field is parameterized for two materials, namely
2,4-dinitroethylbenzene (2,4-DNEB) and 2,4,6-trini-
troethylbenzene (2,4,6-TNEB), which we have then applied to
investigate water diffusion in the two pure systems 2,4-DNEB
and 2,4,6-TNEB, as well as in the common plasticizer mixtures
R8002 (50% 2,4-DNEB, 50% 2,4,6-TNEB) and K10 (65%, 2,4-
DNEB, 35% 2,4,6-TNEB).”®

A number of studies using molecular dynamics (MD) simu-
lations have investigated the properties of many of the different
energetic material formulations available.®** Essential for such
simulations are suitable force fields for the explosive component
and any additional constituents in the formulation, such as
a plasticizer. Many of the force fields commonly used to model
biomolecules and small organic molecules contain nitro group
parameters,'*"” but only very few force fields have been devel-
oped for specific nitro aromatic compounds.*”®* However, the
combination of aromatic rings and nitro groups lead to complex
structures, which require careful derivation of focussed force-
fields as the more generic forcefields do not reproduce accu-
rately the experimentally observed properties of these systems.

This journal is © The Royal Society of Chemistry 2018
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The force field for 2,4-DNEB and 2,4,6-TNEB was parame-
terized using an empirical method based on quantum
mechanical calculations, literature values and experimental
data. Bonding terms and partial charges were derived from the
Hessian of quantum mechanical vibrational analysis calcula-
tions, whilst non-bonding terms were obtained from the
refinement of literature values of similar molecules. Optimiza-
tion was achieved by adjustment of parameters to reproduce the
experimental densities of 2,4,6-TNEB and 2,4-DNEB and the
plasticizer mixtures K10 (65% 2,4-DNEB and 35% 2,4,6-TNEB)
and R8002 (50% 2,4,6-TNEB and 50% 2,4-DNEB).”® The diffu-
sion coefficients of 2,4,6-TNEB and 2,4-DNEB in K10 and R8002
were calculated along with the self-diffusion coefficients in the
pure systems to evaluate if the interactions of 2,4,6-TNEB and
2,4-DNEB with themselves and in the mixtures were as expected
considering the simulated densities. MD simulations of 2,4,6-
TNEB, 2,4-DNEB, K10 and R8002 with water were performed at
298 K and 338 K for the calculation of the diffusion coefficients
for water in these different systems. In a recent NC-related
explosion, the temperature inside containers of wetted NC
reached 338 K and we have therefore investigated the behaviour
of water at this critical temperature compared to room
temperature by calculating diffusion coefficients at 298 K and
338 K.” The diffusion coefficients were calculated using both
the Green-Kubo formula and the Einstein equation for
comparison and an indication of their reliability.

2. Theoretical methods
2.1 Force field parameterization
The functional form of most classical force fields is shown in

eqn (1).>°
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The first two terms describe bond stretching and angle
bending, where in our force field the equilibrium bond lengths,
Teq, and bond angles, 6., were taken directly from 2,4-DNEB and
2,4,6-TNEB structures, geometry-optimized by density func-
tional theory (DFT) calculations, as shown in Fig. 1A to D. Our
in-house software, based on a method devised by Seminario,****
obtained internal force constants for bond stretching, K, and
angle bending, K, from Cartesian second derivatives (Hessian
matrices) generated from the DFT frequency calculations. The
majority of torsional angle parameters were taken from the
General Amber Force Field (GAFF),* whereas the dihedral angle
for C-C-C-N for nitrobenzene was taken from the literature.'
Out-of-plane deformation of the nitro group and rotation of the
C-NO, bond in the aromatic ring of nitrotyrosine is apparent in
X-ray structures.***® In our forcefield, we have employed
a proper dihedral for C-C-N-O and an improper dihedral for C-
O-N-O, which is transferable to other nitro aromatic
compounds and was developed specifically to model the out-of-
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plane deformation and rotation of the NO, group in nitro-
tyrosine.”® V,, describes the barrier height and vy the phase angle,
as shown in the third term of eqn (1).*” The final term describes
the non-bonded interactions, where the first part is the Lennard
Jones (LJ) 12-6 potential. In this functional form, the A; and By
parameters control the depth and position of the potential
energy well for a pair of non-bonding interacting atoms where
R;; is the interatomic distance between the atoms.*® Despite the
lack of force fields for specific nitro-aromatic compounds,
parameters for nitrobenzene are available. The L] parameters
for nitrobenzene were obtained from the OPLS force field and
for aliphatic carbon and hydrogen atoms obtained from the
GAFF and used as starting points before refining them for our
systems.'”*® The latter part of the final term represents the
electrostatic potential, where g; and g; are the atomic partial
charges and ¢ is the dielectric constant. The literature does not
contain dielectric constants specifically for 2,4-DNEB and 2,4,6-
TNEB. However, a value of 2.8 F m™ ' is available for 2,4,6-
Trinitrotoluene (TNT),*® and in view of the structural similari-
ties of 2,4-DNEB and 2,4,6-TNEB to TNT, a dielectric constant of
2.8 F m ! was used for both molecules. The RED server devel-
opment package was used to generate the partial charges using
restricted electrostatic potential (RESP) charges from the DFT
optimized 2,4-DNEB and 2,4,6-TNEB structures, displayed in
Fig. 1E and F, respectively.”*-**

2.2 Details of quantum mechanical calculations

Gaussian '09 was used for all DFT calculations,® with geometry
optimizations followed by frequency calculations performed at
the B3LYP/6-311""G** level. Geometry optimization was ach-
ieved once the average root mean square (RMS) force on all
atoms reached 0.01 kcal mol™! A™!, this criterion ensured
adequate convergence and reliability of frequencies computed
in a subsequent step for molecular systems that may have very
small force constants. The absence of imaginary modes in the
frequency calculations assured that the energy of each geometry
optimized structure had reached an energy minimum.

2.3 Validation of parameters

The quantum mechanical (QM) bond angles and lengths ob-
tained from the DFT optimized 2,4-DNEB and 2,4,6-TNEB
structures were compared to experimental values for trini-
trobenzene and ethylbenzene.***” QM bonding terms in good
agreement with experimental data were used in subsequent
single molecule 2,4-DNEB and 2,4,6-TNEB MD simulations.
Then, if dynamic bond lengths and angles of 2,4-DNEB and
2,4,6-TNEB from the single molecule MD simulations were
comparable to experimental data,**” simulations to test the
entire parameter space were performed using the QM bonding
terms. Chemical and physical properties of the liquid and solid
phase were used for comparison between the force field
parameterization and experimental data. Once full sets of force
field parameters had been created for the 2,4-DNEB and 2,4,6-
TNEB systems, their densities were calculated from MD simu-
lations at 298 K. The L] parameters were adjusted systematically
until parameters were obtained that produced calculated

RSC Adv., 2018, 8, 5728-5739 | 5729
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Fig.1 Equilibrium bond angles (A) and (B) and equilibrium bond lengths (C) and (D) for 2,4,6-TNEB and 2,4-DNEB, respectively. Partial charges

for (E) 2,4,6-TNEB and (F) 2,4-DNEB.

densities from the MD simulations that were comparable to the
experimental values.*®*** Next, the densities of the plasticizer
mixtures K10 and R8002 were simulated at 298 K, and the LJ
parameters were adjusted until their simulated densities also

5730 | RSC Adv., 2018, 8, 5728-5739

agreed with experimental values.”*® Simulated densities were
considered to be in good agreement with experiment if they
were within ~2% of the experimental values. In order to assess
the performance of our force field, we have compared the

This journal is © The Royal Society of Chemistry 2018
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densities of 2,4,6-TNEB and 2,4-DNEB obtained using our
optimised force field with those obtained using the original L]
parameters before their adjustment, as well as with the densi-
ties obtained from a simulation where all parameters were
taken from a published force field in the literature.'***® The
published force field used torsional angles and original non-
bonding parameters from the literature, as in our force field
before optimisation (Section 2.1),*>**?¢ but all bonding terms
were taken from the GAFF.*?® The 2,4,6-TNEB and 2,4-DNEB
RESP partial charges obtained via our parameterisation method
were used, as these are not readily available in GAFF and must
be derived for a specific molecule via geometry optimisation.

2.4 Details of molecular dynamics simulations

All simulations were performed using the Sander module of
the Amber 14 package.?® For the solid and liquid simulations,
periodic boundary conditions were defined for all three
dimensions. A non-bonded cut-off of 8 A was used for the
pairwise Lennard-Jones interactions and the particle mesh
ewald (PME) summation for the treatment of long-range
electrostatics. Prior to the MD simulations, a minimization
was performed to ensure molecules had adopted a conforma-
tion in a local minimum, where the steepest descent method
was used initially, followed by a larger number of conjugate
gradient cycles. Minimisation was halted when the RMS of the
Cartesian element of the gradient was less than 1.0 x 10~*
kcal ! mol~* A™*. Bonds to hydrogen atoms were constrained
using the SHAKE algorithm.** The Velocity Verlet algorithm
integrated the equations of motion and a 0.001 ps time step
was used.*” The systems were heated to the temperatures
required for the simulations. Constant temperature MD
equilibration at constant volume (NVT) and constant pressure
(NPT), followed by NPT production were performed using
Anderson temperature-coupling and the Berendsen barostat
was used to maintain constant pressure in the NPT
simulations****

View Article Online
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2.5 Molecular systems

Details of the unit cell for 2,4-DNEB and 2,4,6-TNEB to use in
the construction of the computational supercells for simula-
tions at 298 K were unavailable, so information was used from
the structurally similar compounds 2,4,6-trinitrotoluene (TNT)
and 2,4-dinitrotoluene (2,4-DNT). To create the simulation box
for 2,4,6-TNEB, experimental data were used of the monoclinic
unit cell of TNT determined by Vrcelj et al.,** assuming a cubic
geometry for the simulation box. The number of 2,4,6-TNEB
molecules that could be added to a 40 A® cubic box was esti-
mated from the unit cell volume of TNT and as such 238 2,4,6-
TNEB molecules were added to a 40 A® simulation box. The
monoclinic unit cell for 2,4-DNT reported by Hanson et al.*® was
used to create the simulation box for 2,4-DNEB, again assuming
a cubic geometry. The same method outlined previously for
2,4,6-TNEB was used to add 283 2,4-DNEB molecules to a cubic
40 A® simulation box. For the plasticizer K10, a mixture of 144
2,4-DNEB molecules and 78 2,4,6-TNEB molecules was added to
a 40 A® cubic box to make up a 65%/35% composition. A 1: 1
mixture of 2,4-DNEB and 2,4,6-TNEB, i.e. 111 molecules of each,
were added to a 40 A® cubic simulation box to make up the
composition of plasticizer R8002. The program Packmol was
used to build all simulation boxes, whereas all molecules were
added with a tolerance of 2 A (Fig. 2 and 3).*

2.6 Molecular dynamics simulations

MD simulations of single molecules of 2,4-DNEB and 2,4,6-
TNEB were performed in vacuum at 298 K for 3.5 ns. In order to
measure the bond angles and lengths from the single molecule
simulations, no constraints were applied, allowing bonds and
angles to equilibrate. Snapshots were taken every 400 steps and
average bond lengths and bond angles were calculated over the
last 2 ns.

Simulations were performed at 298 K under vacuum of the
pure 2,4-DNEB and 2,4,6-TNEB systems as well as the energetic
plasticizer mixtures K10 and R8002. Each system underwent
a 30 ps NVT equilibration, followed by a 400 ps NPT

Fig.2 The geometry optimized 2,4-DNEB (A) and 2,4,6-TNEB (B) structures. The simulation cell for 2,4,6-TNEB (C), constructed from the TNT
unit cell. Carbon atoms are displayed in grey, nitrogen atoms in blue, oxygen atoms in red and hydrogen atoms in white.

This journal is © The Royal Society of Chemistry 2018
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Fig.3 Representations of the simulation cells for (A) 2,4-DNEB, (B) 2,4,6-TNEB, (C) R8002 and (D) K10 at the end of MD production runs at 298 K.
In all representations carbon atoms are displayed in grey, nitrogen atoms in blue, oxygen atoms in red and hydrogen atoms in white. The bonds in

2,4,6-TNEB are grey and those in 2,4-DNEB are green.

equilibration in order to stabilize the pressure and therefore the
density. Finally, for each system a 12 ns NPT production run was
performed before analysis. Diffusion coefficients calculated
using the Green-Kubo (GK) formula are derived from the
velocity autocorrelation function (VACF) which requires shorter
simulations. To obtain the VACFs, simulations were performed
on all systems using the above method, but production runs
were 10 ps in length.

Unit cell dimensions and the number of 2,4-DNEB and
2,4,6-TNEB molecules used for the simulations with water
were the same as those used in simulating the pure systems
and plasticizer mixtures. Wetted nitrocellulose in plasticized
energetic material formulations typically contains at least 5%
intraneous water by mass.*® Packmol was used to add 155
water molecules (5-6% by percentage mass) to the 2,4-DNEB,
2,4,6-TNEB, K10 and R8002 simulation boxes. The extended
single point charge (SPC/E) model was used to describe the
water molecules.*® Simulations were performed as outlined for
the pure compounds and plasticizer mixtures, but production
runs were extended to 18 ns. Next, the simulations of 2,4-
DNEB, 2,4,6-TNEB, K10 and R8002 with 5-6% SPC/E water
were repeated at 338 K. To obtain the VACFs for the 2,4-DNEB,
2,4,6-TNEB, K10 and R8002 systems with water, simulations
were performed using the simulation boxes and method
described here, but shorter production runs of 10 ps were
performed.

5732 | RSC Adv., 2018, 8, 5728-5739

2.7 Calculation of diffusion coefficients using the Einstein
equation

The production simulations of 2,4-DNEB, 2,4,6-TNEB, K10 and
R8002 at 298 K and those of the four systems with 5-6% water
were split into two halves. As implementation of the Anderson
thermostat or Langevin dynamics may lead to inaccurate
diffusion coefficients,” the thermostat was switched to the
Berendsen scheme for the latter half of the production runs.*
To calculate the diffusion coefficients for the water molecules
and the 2,4-DNEB and 2,4,6-TNEB molecules in the systems, the
mean square displacements (MSD) were obtained from the
latter half of the production simulations, in order to ensure that
system parameters, such as pressure, temperature and box
volume, had equilibrated before collecting the output for
analysis. The centre-of-mass diffusion coefficient, D, can be
calculated according to eqn (2) on the condition that the
simulation has evolved for a sufficient time-period.

2nDt = (|rd1) — r(O)F) )

where r{(t) — r0) is a measure of particle displacement between
time 0 and time ¢.*° The right-hand side of eqn (2) is the MSD,
i.e. the square of the distance that the particle has travelled
between time 0 and time ¢. In the long-time limit the MSD is
proportional to the time elapsed. The gradient of the MSD as
a function of time ¢ can be calculated accordingly,

This journal is © The Royal Society of Chemistry 2018
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nD — %<|ri(1) ~r(O)F) (3)

where n = 3 in the case of three spatial dimensions.*® The slope
of the plot of MSD versus time for the molecules was calculated
in A% ps~* to find the diffusion coefficients, using

6D = lim M0 (@)

t— t

As the MSDs for the molecules were calculated from initial
positions, diffusion calculated for a small number of molecules
would be inherently stochastic. The MSDs were therefore aver-
aged over all molecules in each of the 2,4-DNEB, 2,4,6-TNEB,
K10 and R8002 systems to obtain reliable diffusion
coefficients.”

2.8 Calculation of diffusion coefficients using the Green-
Kubo formula

The GK formula was used to derive the centre-of-mass diffusion
coefficients for the water molecules and the 2,4-DNEB and 2,4,6-
TNEB molecules in the systems from their VACF integral:

D= ]\l[ J+w(v (0)v (1))dz (5)

The valid part of a VACF is very short and MD simulations
lasting tens of ns are likely to generate VACFs which are not

Table 1 The percentage of bonds and angles obtained from QM and
MD simulations of 2,4-DNEB and 2,4,6-TNEB respectively within 3%,
4-5% and 6-10% of the experimental data

Percentage of QM and MD bonds and angles within
3%, 4-5% and 6-10% of the experimental data

2,4-DNEB 2,4,6-TNEB
QM MD QM MD
[0-3%)] 82 61 86 67
[4-5%)] 9 23 8 13
[6-10%)] 9 16 6 20

View Article Online
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well-defined.* To produce clear VACFs, 10 ps production runs
were performed on all systems and velocities and coordinates
recorded every femtosecond. The Berendsen thermostat was
used to maintain the temperature as outlined in Section 2.7.
The cpptraj module of Amber 14 was used to calculate the
VACFs and diffusion coefficients.>

3. Results and discussion

The validation of the 2,4-DNEB and 2,4,6-TNEB bonding and
non-bonding terms is outlined in this section, with compari-
sons of the simulated values to experimental data shown in
Tables 1-3. The root mean squared deviation (RMSD) was
averaged over simulation time to give the root mean square
fluctuation (RMSF). The RMSF for the simulated densities are
given in Tables 2 and 3. The self-diffusion coefficients of 2,4-
DNEB and 2,4,6-TNEB in the pure systems, and the diffusion
coefficients of 2,4-DNEB and 2,4,6-TNEB in K10 and R8002,
calculated at 298 K using the Einstein equation (EE) and the GK
formula are displayed in Tables 4 and 5, respectively. The
diffusion coefficients, calculated at 298 K and 338 K using the
EE and the GK formula, of SPC/E water in 2,4-DNEB, 2,4,6-
TNEB, K10 and R8002 are displayed in Tables 6 and 7, respec-
tively. The standard errors for the diffusion coefficients calcu-
lated via the EE equation given in Tables 4 and 6 were obtained
from the standard deviation of the gradient of the MSD versus
time graphs.

The QM-derived bonding terms for 2,4-DNEB and 2,4,6-
TNEB were compared to experimental data; if the majority were
in agreement with the experimental values, they were subse-
quently used in single molecule MD simulations of 2,4-DNEB
and 2,4,6-TNEB. The single molecule 2,4-DNEB and 2,4,6-TNEB
bonding terms from the MD simulations were then compared
back to the experimental data.’**’

Of the QM bond lengths and angles for 2,4-DNEB and 2,4,6-
TNEB, 82% and 86% were within 3% of the experimental values,
respectively (Table 1.). The dynamic MD-derived bond lengths
and angles for 2,4-DNEB and 2,4,6-TNEB were also in close
agreement with the experimental values, with 84% of the 2,4-
DNEB values and 80% of the 2,4,6-TNEB values falling within
5% of the experimental bond lengths and angles. Simulations of
2,4-DNEB and 2,4,6-TNEB molecules at 298 K were therefore

Table 2 Experimental and simulated densities in g cm™> for 2,4-DNEB and 2,4,6-TNEB measured at 298 K and 100 kPa. Simulation errors are the

RMSF>
T (K) P (kPa) Simulated density (g cm ™) Experimental density (g cm™>)

2,4,6-TNEB (optimised) 298 100 1.515 £ 0.02 1.528

2,4,6-TNEB (original LJ) 298 100 1.338 £ 0.01

2,4,6-TNEB (published) 298 100 1.377 £ 0.01

2,4-DNEB (optimised) 298 100 1.304 £ 0.01 1.317

2,4-DNEB (original LJ) 298 100 1.263 £ 0.01

2,4-DNEB (published) 298 100 1.270 £ 0.01

“ Experimental densities referenced in Section 2.3. ? The equilibrium cells are 39.38 x 39.93 x 40.14, 41.02 x 41.58 x 41.79 and 40.63 x 41.18 x
41.40 for 2,4,6-TNEB optimised, 2,4,6-TNEB original and 2,4,6-TNEB published respectively. © The equilibrium cells are 41.39 x 41.44 x 41.42,41.78
x 41.87 x 41.86 and 41.64 x 41.73 x 41.71 for 2,4-DNEB optimised, 2,4-DNEB original and 2,4-DNEB published respectively.

This journal is © The Royal Society of Chemistry 2018
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Table 3 Experimental and simulated densities in g cm™> for the
plasticizers K10 and R8002 measured at 298 K and 100 kPa. Simulation
errors are the RMSF*?
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Table 6 The diffusion coefficients calculated using the Einstein
equation of SPC/E water at 298 K and 338 Kin 2,4-DNEB, 2,4,6-TNEB,
K10 and R8002 (102 m? s~

P Simulated density ~ Experimental density
TK) (kPa) (gem?) (g em ™)
K10 298 100 1.338 £ 0.01 1.363 £ 0.003
R8002 298 100 1.357 £ 0.01 1.380 £ 0.002

“ Experimental densities referenced in Section 2.3. ? The equilibrium
cells are 38.82 x 38.75 x 38.76 and 39.06 x 39.08 x 39.12 for K10 and
R8002 respectively.

Table 4 The self-diffusion coefficients calculated using the Einstein
equation of 2,4-DNEB and 2,4,6-TNEB in the pure systems and the
diffusion coefficients of 2,4-DNEB and 2,4,6-TNEB in K10 and R8002
at 298 K¢

Diffusion coefficients (D) calculated at 298 K using the Einstein
equation

Standard error

Diffusion coefficients of water (10~° m” s™")
calculated using the Einstein equation with their

associated errors (10 m? s ")

298 K 338 K
2,4-DNEB 0.441 $0.003 0.826 +0.002
2,4,6-TNEB 0.086 +0.0004 0.103 +0.001
K10 0.218 $0.001 0.370 £0.001
R8002 0.205 +0.001 0.552 +0.006

¢ The equilibrium cells are 42.08 x 42.09 x 42.12,41.51 X 41.53 x 41.53,
39.57 x 39.66 x 39.62 and 39.75 x 39.67 x 39.70 at 298 K and 43.37 X
43.37 X 43.40,41.90 X 41.94 X 41.96,39.96 x 40.05 x 40.01 and 40.22 X
40.14 x 40.17 at 338 K for 2,4-DNEB, 2,4,6-TNEB, K10 and R8002 and
water respectively.

Table 7 The diffusion coefficients calculated using the Green—Kubo
formula of SPC/E water at 298 K and 338 K in 2,4-DNEB, 2,4,6-TNEB,
K10 and R8002 (102 m? s~

D10 °m?s™ ! 10 ' m?*s?!
2,4-DNEB 0.083 +0.005
2,4,6-TNEB 0.006 +0.001
2,4-DNEB in K10 0.014 +0.001
2,4,6-TNEB in K10 0.010 +0.001
2,4-DNEB in R8002 0.008 +0.001
2,4,6-TNEB in R8002 0.005 +0.001

“ The equilibrium cells are 41.39 x 41.44 x 41.42,39.38 x 39.93 x 40.14,
38.82 x 38.75 x 38.76 and 39.06 x 39.08 x 39.12 for 2,4-DNEB, 2,4,6-
TNEB, K10 and R8002 respectively.

Table 5 The self-diffusion coefficients calculated using the Green—
Kubo formula of 2,4-DNEB and 2,4,6-TNEB in the pure systems and
the diffusion coefficients of 2,4-DNEB and 2,4,6-TNEB in K10 and
R8002 at 298 K

Diffusion coefficients (D) calculated T 298 K using the Green-Kubo
formula

D10 °m?s™*

2,4-DNEB 0.039
2,4,6-TNEB 0.004
2,4-DNEB in K10 0.018
2,4,6-TNEB in K10 0.014
2,4-DNEB in R8002 0.007
2,4,6-TNEB in R8002 0.005

% The equilibrium cells are 41.37 x 41.38 x 41.37,39.81 x 40.37 x 40.58,
39.10 x 39.03 x 39.04 and 39.30 x 39.32 x 39.36 for 2,4-DNEB, 2,4,6-
TNEB, K10 and R8002 respectively.

performed using the QM-derived parameters for the bond
lengths and angles, without adjustment, to observe the initial
bulk properties.

As shown in Table 2, the optimised force field reproduces the
densities of 2,4,6-TNEB and 2,4-DNEB very well, differing by
only 0.9% and 1%, respectively, from the experimental values.
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Diffusion coefficients of water
(107° m* s7) calculated using the
Green-Kubo formula

298 K 338 K
2,4-DNEB 0.318 0.406
2,4,6-TNEB 0.019 0.082
K10 0.181 0.346
R8002 0.189 0.381

“ The equilibrium cells are 42.07 x 42.07 x 42.10, 42.17 x 42.21 X 42.23,
39.62 x 39.71 x 39.67 and 39.88 x 39.80 x 39.83 at 298 K and 43.00 X
43.01 x 43.04,42.05 X 42.08 x 42.10,39.95 x 40.04 x 40.00 and 40.24 X
40.16 x 40.19 at 338 K for 2,4-DNEB, 2,4,6-TNEB, K10 and R8002 and
water respectively.

The optimised force field for 2,4-DNEB compares favourably
with the 2,4-DNEB force field with the original L] parameters
and the force field parameterised with published force field
values, where the simulated densities were underestimated by
4.1% and 3.6% respectively.”® The simulated density of 2,4,6-
TNEB using the original L] parameters differs from the experi-
mental value by 12.4% and whilst the simulated density for
2,4,6-TNEB using published force field parameters is marginally
better with a 9.9% difference from the experimental value, the
density is significantly underestimated in both cases.*

The simulated densities of the plasticizer mixtures K10 and
R8002 are displayed in Table 3. Again, the simulated densities
are in good agreement with experimental values, with differ-
ences between the simulated and experimental densities of only
1.8% for K10 and 1.7% for R8002.

Although in excellent agreement overall, the simulated
densities of each of the four systems, 2,4,6-TNEB, 2,4-DNEB,
K10 and R8002, were all slightly underestimated compared to
the experimental values. The different L] parameter sets for the
intermolecular interactions were derived to obtain the simu-
lated densities; one possible explanation for the

This journal is © The Royal Society of Chemistry 2018
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underestimation of the densities may therefore be due to the
intramolecular terms, rather than the intermolecular parame-
ters. Closer analysis of the dynamic bond lengths and bond
angles from the single molecule simulations of 2,4,6-TNEB and
2,4-DNEB revealed a fairly equal distribution of bond angles
that were slightly above and below the experimental values.
However, in both molecules all bond lengths were slightly
greater than the experimental values. Even a small elongation of
the desired intramolecular bond lengths would lead to an
overestimation of volume in the bulk simulations of 2,4,6-TNEB
and 2,4-DNEB at 298 K and would result in a decrease in the
system density. However, as the variations in densities from the
experimental values are very small and well within acceptable
errors, we have continued our simulations with the above
parameters, especially as most system properties of interest,
such as wetting phenomena, will affect intermolecular rather
than intramolecular properties.

3.1 Diffusion of 2,4-DNEB and 2,4,6-TNEB

The (self-)diffusion coefficients calculated at 298 K, using the EE
and GK formula, of the 2,4-DNEB and 2,4,6-TNEB molecules in
the pure systems and in K10 and R8002 are displayed in Tables
4 and 5 respectively. The diffusion coefficient of 2,4-DNEB in its
pure system as calculated using the Einstein equation is higher
than that derived via the GK formula. The tendency of diffusion
coefficients calculated from MD simulations using the Einstein
method to be overestimated has been reported in the litera-
ture.>” However, the discrepancies between the self-diffusion
coefficients obtained from the two types of calculations are
otherwise very small. Certainly, the diffusion coefficients for the
molecules obtained from both methods show the same trends
of diffusive behaviour within the systems. The self-diffusion
coefficient of 2,4-DNEB is much greater than that of 2,4,6-
TNEB and the rate of diffusion of 2,4-DNEB is also larger in the
K10 and R8002 mixtures compared to 2,4,6-TNEB, although in
the plasticizers the difference between the two molecules is
much smaller. The diffusivity of a substance is inversely
proportional to molar mass, which is clearly shown from our
simulations. At the same temperature and therefore equivalent
average kinetic energy, 2,4-DNEB with a lower molecular mass
of 196 moves at a faster rate through its pure system and both
the K10 and R8002 mixtures compared to 2,4,6-TNEB, which
has a higher molecular mass of 221.>* The higher density of
2,4,6-TNEB compared to 2,4-DNEB is also likely to contribute to
the much lower self-diffusion of 2,4,6-TNEB as the molecules
are closer together, imposing some restriction on their move-
ment. The variation in diffusion coefficients of 2,4-DNEB and
2,4,6-TNEB in the K10 and R8002 mixtures is as expected
considering the simulated densities; both molecules diffuse
more slowly through the slightly higher density R8002 mixture
compared to K10, probably due to the more tightly packed
molecules restricting movement.

3.2 Diffusion of water

The calculated diffusion coefficients of SPC/E water in 2,4-
DNEB, 2,4,6-TNEB, K10 and R8002 calculated using the Einstein
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equation and Green-Kubo formula are displayed in Tables 6
and 7 respectively. To the best of our knowledge, the experi-
mental diffusion coefficients of water in these compounds are
not available in the literature. However, the diffusion coeffi-
cients of water in 2,4-DNEB, 2,4,6-TNEB, K10 and R8002, ob-
tained from our MD simulations with the new force field, are of
a similar order of magnitude as those predicted in a GAFF study
by Wang and Hou for 17 solvents, i.e. five organic compounds in
aqueous solutions, four proteins in aqueous solutions, and nine
organic compounds in non-aqueous solutions.> The literature
reports diffusion coefficients for water calculated from MD
simulations using the Einstein method which are slightly
higher than those obtained with the GK formula.*” In this work,
the diffusion coefficients obtained for water in the systems via
the Einstein equation are indeed greater than those from the GK
formula, but they are within reasonable agreement and both
sets of values display the same pattern of water diffusion within
the 2,4-DNEB, 2,4,6-TNEB, K10 and R8002 systems. Thus, we
can deduce the following system behaviour from the calculated
diffusion coefficients within these compounds at 298 K and 338
K: 2,4-DNEB is a viscous liquid with a lower density than 2,4,6-
TNEB, which is a solid at 298 K. The rate of diffusion of water is
greater in the lower density 2,4-DNEB system, at D = 0.441 10 °
m?s 'and 0.318 107° m? s for the Einstein and GK methods,
respectively, compared to the much slower rate of D = 0.086
10° m*s ' or 0.019 10~° m? s~ ! in the solid 2,4,6-TNEB at 298
K. This trend is continued at 338 K, with the diffusion coeffi-
cients obtained via both methods for water in 2,4-DNEB still
greater than in 2,4,6-TNEB, as shown in Tables 6 and 7;
a possible explanation could be that there is more space
between the molecules of 2,4-DNEB, allowing the water to
diffuse with less obstruction. At 298 K, the rate of diffusion for
SPC/E water in the plasticizer K10 calculated via the Einstein
method is 0.218 10° m*s™' and 0.181 10™° m”® s from the GK
formula, whereas in the plasticizer R8002 the diffusion coeffi-
cients are calculated at 0.205 10 ° m®s " and 0.189 10 °m”*s™*
using the Einstein and GK methods, respectively. The rates of
water diffusion in K10 and R8002 obtained via both methods
are therefore quite similar at 298 K, but at 338 K, water diffusion
in K10, at D = 0.370 10° m? s * via the EE method and D =
0.34610 ° m* s ' using the GK formula, are slower than in
R8002, where D = 0.552 10 °m?*s ' and D = 0.381 10 ° m*s ™"
for the EE and GK methods, respectively, thus showing no clear
trend in water diffusion in the plasticizer mixtures. The diffu-
sion coefficients are greater for both molecules and plasticizer
mixtures at 338 K compared to 298 K, as could be expected
owing to the water molecules' increased kinetic energy, result-
ing in diffusion at a faster rate through the different media.
Observation of the water patterns in the K10 and R8002
mixtures at 298 K and 338 K, displayed in Fig. 4, shows clus-
tering of the water molecules. Clustering of water has also been
observed in the literature, e.g. where hydrated amides and
aldehydes with tetrameric, pentameric and octameric water
clusters are found to be energetically favourable compared to
those with more evenly distributed water molecules.> In the
K10 mixture at 298 K, there is a large cluster of approximately 60
water molecules, another of ~30 molecules, some clusters of

RSC Adv., 2018, 8, 5728-5739 | 5735


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra12254c

Open Access Article. Published on 02 February 2018. Downloaded on 7/19/2025 6:17:16 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

View Article Online

Paper

Fig. 4 Representations of (A) K10 and water at 298 K, (B) K10 and water at 338 K, (C) R8002 and water at 298 K and (D) R8002 and water at 338 K
at the end of MD production runs. In all representations 2,4-DNEB molecules are displayed in blue, 2,4,6-TNEB molecules in grey and water

molecules in red.

around 10-15 water molecules, a tetramer and a scattering of
dimers and lone molecules. At 298 K, the R8002 mixture
contains a number of clusters of approximately 20-25 water
molecules, but there are more smaller dimer, trimer, tetramer
and pentamer moieties at this temperature than in K10. One
possible explanation is the slightly higher density of R8002
compared to K10, resulting in less available space for the
formation of larger water clusters. However, this difference in
water cluster patterns between R8002 and K10 at 298 K appears
to have no effect on or relation to the diffusion coefficients,
which at this temperature are very similar for the two mixtures.
Similar to 298 K, a large cluster of ~60 water molecules is
observed in K10 at 338 K, but there is a greater number of
clusters of 10-20 water molecules, and more pentamers, tetra-
mers, dimers, trimers and lone molecules. Similarly, in R8002
at 338 K there are more water molecules in smaller clusters and
isolated molecules than at 298 K. At 338 K, compared to 298 K,
the increased kinetic energy of the water molecules in the K10
and R8002 mixtures is likely to disrupt the hydrogen bonding,
thus preventing the formation of larger clusters. The water
molecules in the R8002 mixture at 338 K are rather more evenly
distributed than in K10 at this temperature; the water molecules
may be able to move with less obstruction in the R8002 mixture,
resulting in the larger diffusion coefficient compared to K10.

3.3 Factors affecting the calculation of diffusion coeffcients

The effects of system size, density and method of calculation on
the estimation of the diffusion coefficients have been discussed
in the literature.>»***® In the work by Wang and Hou, discussed

5736 | RSC Adv., 2018, 8, 5728-5739

in Section 3.2, MD simulations of water using different box sizes
showed that system size influenced the calculation of the self-
diffusion coefficients. For that reason, the authors had chosen
simulation boxes of at least 30 A® for the calculation of D for
aqueous and organic solvents and small organic solutes. In our
work, a box size of 40 A® was used in all simulations to predict D,
which in view of this earlier work by Wang and Hou was deemed
large enough to avoid size effects in the calculations of the
diffusion coefficients. However, the results may still have been
susceptible to the box size and the number of molecules to
some degree.

The sensitivity of the calculated diffusion coefficients to
small changes in density has also been reported in the literature
and is evident in this study as well.>® The self-diffusion coeffi-
cient of 2,4,6-TNEB, calculated using both the EE and GK
methods, is at least one order of magnitude lower than 2,4-
DNEB, despite the structural similarity of the molecules, i.e. the
calculated self-diffusion coefficients are particularly sensitive to
the difference in density of the two compounds. The same
behaviour is repeated for the diffusion of SPC/E water at 298 K,
where a much lower diffusion coefficient was obtained for the
2,4,6-TNEB system compared to 2,4-DNEB. The MSD vs. time
graphs used to calculate D by the EE formula illustrate these
differences and are included in the ESI.t The diffusion coeffi-
cients were calculated using the centre-of-mass in the EE and
GK methods, which may have affected D due to some flexibility
in the 2,4,6-TNEB and 2,4-DNEB molecules. This factor is likely
to have been less influential in the calculation of D for SPC/E
water in the systems, as this is a rigid water model. Although

This journal is © The Royal Society of Chemistry 2018


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c7ra12254c

Open Access Article. Published on 02 February 2018. Downloaded on 7/19/2025 6:17:16 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

these factors may have contributed some error to the calcula-
tion of D, comparison of the diffusion coefficients obtained via
both the GK formula and Einstein equation reinforces the
reliability of the results.

4. Conclusion

A classical all-atom force field has been parameterized for 2,4,6-
trinitroethylbenzene (2,4,6-TNEB) and 2,4-dinitroethylbenzene
(2,4-DNEB). An iterative adjustment of the Lennard-Jones
parameters reproduced experimental densities and the force
field accurately describes the density of each construct, with
2,4,6-TNEB, 2,4-DNEB, R8002 and K10 within 0.9%, 1%, 1.7%
and 1.8% of experimental densities, respectively. The simulated
densities of 2,4-DNEB and 2,4,6-TNEB are significantly closer to
the experimental values compared to those obtained using
a generic force field. Although some of the bond lengths in the
MD simulations of 2,4,6-TNEB and 2,4-DNEB are slightly longer
than the experimental values, the resulting overestimations of
the system volumes in the density calculation are minimal and
within reasonable errors. The self-diffusion coefficients of 2,4-
DNEB and 2,4,6-TNEB in the pure systems and the diffusion
coefficients of the same molecules in the K10 (65% 2,4-DNEB
and 35% 2,4,6-TNEB) and R8002 (50% 2,4,6-TNEB and 50% 2,4-
DNEB) mixtures were calculated from MD simulations at 298 K
using both the Einstein equation and Green-Kubo formula. The
self-diffusion coefficient of 2,4-DNEB was greater than 2,4,6-
TNEB, which is likely to be due to the lower molecular weight of
2,4-DNEB and the lower simulated density compared to 2,4,6-
TNEB, thereby enabling the 2,4-DNEB molecules to move more
quickly and with less restriction. Both 2,4-DNEB and 2,4,6-TNEB
diffused more quickly through the K10 mixture compared to
R8002, as would be expected from the lower simulated density
of K10.

The force field was further used in MD simulations to obtain
diffusion coefficients, using both the Einstein equation and
Green-Kubo formula, for water in 2,4,6-TNEB and 2,4-DNEB
and in the energetic plasticiser mixtures K10 and R8002. The
diffusion coefficients for water in 2,4-DNEB were faster
compared to those for water in 2,4,6-TNEB at both 298 K and
338 K. This suggests that water molecules diffuse more easily if
the density of the system is lower, as is the case for 2,4-DNEB
compared to 2,4,6-TNEB, probably due to increased space
between the molecules. There is no trend in water diffusion
rates in the plasticizer mixtures K10 and R8002; water diffusion
is marginally faster in K10 compared to R8002 at 298 K, but the
opposite was found at 338 K. There is a difference in the
distribution of the water molecules in R8002 compared to K10,
with the water molecules in R8002 being rather more evenly
distributed, with the formation of smaller clusters of and
a greater number of isolated water molecules, compared to K10
at both temperatures.

The force field reproduced the densities of 2,4-DNEB, 2,4,6-
TNEB and the energetic plasticizers K10 and R8002 to a high
level of accuracy. In future, it could be used effectively to
investigate the properties of nitrocellulose-based propellants,
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provided interactions that are not present in either 2,4-DNEB or
2,4,6-TNEB are added and specifically optimized.
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