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Sickle cell disease (SCD), an autosomal recessive genetic disorder, has been recognized by theWorld Health

Organization (WHO) as a major public health problem as it affects 300 000 individuals worldwide.

Complications arising from SCD include anemia, microvascular occlusion, severe pain, stokes, renal

dysfunction and infections. A lucrative therapeutic strategy is to employ anti-sickling agents that can

disrupt the formation of the HbS polymer. This study therefore employed cheminformatic approaches,

encompassing classification structure–activity relationship (CSAR) modeling, to deduce the privileged

substructures giving rise to the anti-sickling activity of an investigated set of 115 compounds, followed by

substructure analysis. Briefly, the compiled compounds were described by fingerprint descriptors and

used in the construction of CSAR models via several machine learning algorithms. The modelability of

the data set, as exemplified by the MODI index, was determined to be in the range of 0.70–0.84. The

predictive performance was deduced by the accuracy, sensitivity, specificity and Matthews correlation

coefficient, which was found to be statistically robust, whereby the former three parameters afforded

values in excess of 0.7 while the latter statistical parameter provided a value greater than 0.5. An analysis

of the top 20 important substructure descriptors for anti-sickling activity revealed that 10 important

features were significant in the differentiation of actives from inactives, as illustrated by aromaticity/

conjugation (e.g. SubFPC287, SubFPC171 and SubFPC5), carbonyl groups (e.g. SubFPC137, SubFPC139,

SubFPC49 and SubFPC135) and miscellaneous groups (e.g. SubFPC303, SubFPC302 and SubFPC275).

Furthermore, an analysis of the structure–activity relationship revealed that the length of alkyl chains,

choice of functional moiety and position of substitution on the benzene ring may affect the anti-sickling

activity of these compounds. Thus, this knowledge is anticipated to be useful for guiding the design of

robust compounds against the gelling activity of HbS, as preliminarily demonstrated in the data-driven

compound design presented herein.
1 Introduction

Human hemoglobin (Hb) is an iron-containing protein that is
found abundantly within red blood cells (RBCs). Hb is formed
by a symmetric polypeptide chain dimer pairing in which the a-
like and b-like chains form a tetrameric structural and func-
tional unit. Their main function is to transport O2 from the
lungs to all body tissues, as well as to transport CO2 out of the
tissues and back to the lungs. Furthermore, Hb is also capable
of interacting with other gases, such as carbon monoxide (CO)
and nitric oxide (NO), and these interactions govern important
biological roles.1 Adult hemoglobin (HbA) is the most common
form of hemoglobin in adults and is composed of two a-chains
rmatics, Faculty of Medical Technology,
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ESI) available: Curated data set used in
and two b-chains, constituting 141 and 146 amino acids,
respectively.2 Mutations of the genes result in the structural
alteration and perturbation of the globin chain that eventually
culminates in Hb-associated diseases as seen in HbA, hemo-
globin S (HbS), hemoglobin C (HbC) and hemoglobin E (HbE),
as well as thalassemia (i.e. decreased globin chain production).3

Sickle cell disease (SCD) is a global health problem in several
parts of the world (e.g. sub-Saharan Africa, the Mediterranean
basin, the Middle East, India and the United States) that has
been estimated to annually affect approximately 300 000 infants
(WHO), and this number has been forecasted to rise to 400 000
by 2050.4 The hallmark of SCD involves the polymerization of
deoxygenated HbS that consequently leads to the sickling
process that alters the shape of RBCs.5 Mechanistically, HbS
arises from the A / T point mutation that leads to the
substitution of hydrophilic glutamic acid with hydrophobic
valine at the sixth position (Glu6Val) of the b-globin chain.6 The
resulting Val6 on the b2-globin chain then interacts
This journal is © The Royal Society of Chemistry 2018
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hydrophobically with Phe85 and Leu88 from a neighboring Hb
molecule. At low oxygen tension, HbS is polymerized inside
RBCs, leading to gel or ber formation and thereby causing
a drastic decrease in red cell deformability. Consequently, this
leads to several complications such as anemia, microvascular
occlusion, severe pain, strokes, renal dysfunction and infections.

Currently, the clinical management of SCD is blood trans-
fusion, although long-term transfusion therapy may cause an
iron overload in patients, leading to potential side effects such
as organ damage and infections. Even though iron chelation
therapy has greatly improved blood transfusion, it only offers
a temporary solution to the problem.7 Allogeneic hematopoietic
stem cell transplantation (HSCT) is a gene transfer therapy
aimed at the underlying molecular causes of SCD. However,
most successful transplantations require the use of stem cells
from matched sibling donors, thereby making this a chal-
lenging therapeutic approach for some patients. HSCT may
therefore not be applicable for many current patients.8 Gene
therapy is one of the most promising approaches as it does not
try to x the symptoms, but rather the problem of the disease.9

However, this approach is available to only a very small
percentage of patients due to its extremely high costs and
requirements for highly specialized centers. Moreover, several
anti-sickling agents have been investigated and conrmed to
possess ameliorative properties. Hydroxyurea has been shown
to decrease the number and severity of sickled cells by signi-
cantly increasing fetal hemoglobin (HbF) production in patients
with SCD. It was therefore approved for use by the FDA in 1998.
Nevertheless, the side effects of this drug include neutropenia,
bone marrow suppression, elevation of hepatic enzymes,
anorexia, nausea, vomiting and infertility.10,11 Recently, on July
7, 2017, the U.S. FDA approved L-glutamine oral powder (Endari)
as the rst new drug in 20 years for SCD, which acts by reducing
acute complications in adults and children of 5 years and older.
Although its mechanism of action is not fully understood, the
drug is found to be involved in the oxidative stress phenomena
of SCD. It has been shown to improve the nicotinamide adenine
dinucleotide (NAD) redox potential of RBCs by increasing the
availability of reduced glutathione. However, several common
adverse reactions were found in >10% of incidences, such as
nausea, headaches, abdominal pain, coughs, pain in the
extremities, back pain and chest pain.12 In fact, it should be
noted that several side effects with no specic therapy occur for
SCD patients. Therefore, the pathophysiological hallmark of
SCD presents an interesting subject. The idea for the treatment
of SCD was to bind small molecules near the mutation site in
such a fashion that it would prevent the insertion of the b-
globin chain of Hb containing the Val mutation (the donor site)
into the hydrophobic pocket of a second Hb molecule (the
acceptor site), thereby inhibiting deoxy-HbS polymerization
(Fig. 1). The rationale for our study was to follow the treatment
of SCD based on pathophysiology, to inhibit deoxy-HbS poly-
merization using computational methods.

Classication structure–activity relationship (CSAR)
modeling represents an important approach for elucidating the
origin of biological activity for a set of compounds of interest as
a function of their molecular descriptors. The obtained CSAR
This journal is © The Royal Society of Chemistry 2018
model can help to reveal the privileged substructures that are
essential for the biological activity of potent compounds which
can subsequently be used as therapeutic agents. Privileged
substructures are a concept introduced by Evans et al.13 in their
analysis of cholecystokinin antagonists based on benzodiaze-
pines, in which they discovered that there exist conserved
substructures that were not found in compounds of different
activity. Therefore, we applied CSAR, together with scaffold and
substructure analysis, to rationalize the underlying physico-
chemical features dening anti-sickling activity in several series
of compounds reported by Abraham and colleagues.14–20 In this
study, we examined the utility of several sets of substructure
ngerprint descriptors in modeling anti-sickling activity.
Important physicochemical features were then decoded from
such predictive CSAR models to discern the privileged
substructures inuencing the anti-sickling activity.
2 Materials and methods

A schematic summary of the CSARmodeling process performed
in this study is provided in Fig. 2.
2.1 Data collection

The compounds with anti-sickling activity used in this study
were compiled from the literature,14–20 which afforded an initial
set of 132 compounds. The removal of redundant compounds
resulted in a nal set of 115 compounds. The compounds were
treated with the CSAR curation workow as described by
Fourches et al.21 ChemAxon Standardizer was utilized using the
same protocol from our previous study.22 The anti-sickling
activity is represented as a solubility ratio which is summa-
rized below:

Anti-sickling activity ¼ HbS ðdrugsÞ
HbS ðcontrolÞ (1)

where HbS (drugs) and HbS (control) denotes the presence and
absence of drugs in a solution of HbS. Solubility ratios greater
than 1.06 were estimated as necessary for decreasing the clin-
ical severity of sickle cell disease. Therefore, the compounds
were classied into two types, consisting of 32 active
compounds (solubility ratios of $1.06) and 83 inactive
compounds (solubility ratios of <1.06). Moreover, a set of 1600
decoy molecules was generated from active compounds using
DUD-E and treated as inactive compounds.23
2.2 Molecular descriptors

Molecular descriptors can be dened as the quantitative and/or
qualitative description of molecules of interest in terms of their
constitution, connectivity and physicochemical properties.24,25

They are of prime importance for quantitative structure–activity
relationship (QSAR) studies.26 Molecular descriptors can be easily
calculated from GUI-based soware such as Dragon,27,28 PaDEL-
Descriptor soware,29 QuBiLS-MIDAS,30 QuBiLS-MAS31 and
CODESSA;32 they can be derived programmatically via R or Python
environments using packages/modules such as ChemoPy,33
RSC Adv., 2018, 8, 5920–5935 | 5921
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Fig. 1 Cartoon illustration of the mechanism of action of an anti-sickling agent in the disruption of the HbS polymer.
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PyDPI,34 RDKit35 and rcdk;36 and they can be obtained via the
internet using webservers such as BioTriangle37 and ChemDes.38

Fingerprint descriptors provide descriptions of the consti-
tuting substructures inherently present in a molecule. This
study makes use of the PaDEL-Descriptor soware29 for
computing several ngerprint classes. Until now, the current
version of PaDEL has provided 1875 descriptors, consisting of
1444 1D and 2D descriptors and 431 3D descriptors, and 12
types of ngerprint (a total of 16 092 bits). In this study, we
Fig. 2 Workflow of CSAR modeling for investigating anti-sickling activit

5922 | RSC Adv., 2018, 8, 5920–5935
employed 12 types of ngerprint for describing the structural
features of the investigated compounds as summarized in
Table 1. Three of the twelve ngerprint classes pertain to the
frequency count of the substructures presented in the investi-
gated compounds (i.e. they contain the suffix count in the name
of the ngerprint class, such as the substructure ngerprint
count), while the remaining nine classes consider only the
presence/absence of substructures or ngerprint bits in the
investigated compounds.
y.

This journal is © The Royal Society of Chemistry 2018
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Table 1 Summary of 12 sets of fingerprint descriptors

Fingerprint Number Descriptors Ref.

CDK 1024 Fingerprint with a length of 1024 and a search depth of 8 39
CDK extended 1024 Extends CDK with additional bits describing ring features 39
CDK graph only 1024 Special version of CDK that does not account for bond orders 39
E-state 79 Electrotopological state for the electronic and topological characterization of atoms 40
MACCS 116 Binary representation of the chemical substructure by MACCS keys 41
PubChem 881 Binary representation of the PubChem ngerprint 42
Substructure 307 Presence of SMARTS patterns for functional group classication 43
Substructure count 307 Count of SMARTS Patterns for functional group classication 43
Klekota–Roth 4860 Presence of chemical substructures that enrich biological activity 44
Klekota–Roth count 4860 Count of chemical substructures that enrich biological activity 44
2D atom pairs 780 Presence of atom pairs at various topological distances 45
2D atom pair count 780 Count of atom pairs at various topological distances 45
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2.3 Data ltering

Constant and near constant variables were employed to initially
select ngerprint descriptors from a large data set of twelve
ngerprint descriptor sets, which not only adds complexity but
could potentially give rise to bias in the model. The constant of
each ngerprint descriptor and bioactivity (anti-sickling) were
calculated using a standard deviation (SD) of 0.1 as a cut-off
value. The ngerprint descriptors with SD values greater than
0.1 were selected for further analysis. The numbers of descrip-
tors aer lteration are shown in Table 2, i.e. CDK (885-
dimensional), CDK extended (892-dimensional), CDK graph
only (441-dimensional), E-state (18-dimensional), MACCS (103-
dimensional), PubChem (299-dimensional), substructure (38-
dimensional), substructure count (45-dimensional), Klekota–
Roth (340-dimensional), Klekota–Roth count (366-dimen-
sional), 2D atom pairs (133-dimensional) and 2D atom pair
count (167-dimensional).
2.4 Data balancing

As noted in the previous section, the data set was highly
imbalanced as the ratio of active to inactive compounds was
1 : 2.6. From a machine learning point of view, such an imbal-
anced data set has a tendency to cause classiers to overt, as
well as to perform poorly on the minority class. To alleviate this
data imbalance issue, an undersampling technique was applied
by randomly selecting a subset of 32 inactive compounds from
the initial set of 83 inactive compounds. Aer obtaining the
balanced data set consisting of 32 active and 32 inactive
compounds, the total set of 64 compounds was divided into two
subsets using an 8 : 2 ratio, consisting of 48 compounds in the
internal set (24 active and 24 inactive) and 16 compounds in the
external set (8 active and 8 inactive).
2.5 Data set modelability

The modelability of the data set is essentially dependent on the
underlying relation of the chemical structures and their
observed bioactivity. In particular, two highly similar
compounds with striking differences in their bioactivity (i.e. one
compound in a pair affords favorable bioactivity while the other
affords poor bioactivity), otherwise known as an activity cliff,
This journal is © The Royal Society of Chemistry 2018
would be detrimental for machine learning algorithms in their
attempts to correlate structures with related levels of bioactivity.
On the other hand, similar compounds with similar bioactiv-
ities (i.e. where both compounds in a compound pair provide
the same bioactivity class) would contribute favorably to the
modelability of the data set. This so-called modelability index
(MODI) was introduced by Golbraikh et al.46 for the a priori
estimation providing the feasibility of building robust predic-
tive models for any given data set. This statistical metric can be
computed as follows:

Step 1. For any given pair of compounds, Ci and Cj dened by
an m-dimensional vector, the normalized Euclidean distance
(dij0) is computed as follows:

dij ¼ kC i � C jk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
k¼1

�
Cik � Cjk

�2s
(2)

di ¼

Xn

j¼1

dij

n� 1
(3)

dij
0 ¼ dij �min di

max di �min di
(4)

where dij, �di and n represent the distance scores between the two
compounds, the mean Euclidean distance and the number of
compounds, respectively.

Step 2. For each compound in a data set, the MODI can be
computed by identifying its rst nearest neighbor (i.e. the
compound with the smallest Euclidean distance) belonging to
the same or a different class as follows:

MODI ¼ 1

NC

XNC

l¼1

Nsame
i

N total
i

(5)

where NC is the number of classes (i.e. C ¼ 2 denotes active and
inactive compounds), Nsame

i is the number of compounds of the
ith class that have their rst nearest neighbors belonging to the
same ith class, andNtotal

i is the number of compounds belonging
to the ith class. A data set is considered to be modelable if
the MODI index is greater than the threshold value of 0.65.
The MODI index was computed using an in-house developed
R code.
RSC Adv., 2018, 8, 5920–5935 | 5923
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2.6 Statistical analysis

Statistical analysis was performed to investigate the difference
patterns, features and trends that are present in individual
descriptors between bioactivity classes (i.e. active and inactive)
using 6 descriptive statistical parameters, comprising the
minimum (Min), rst quartile (Q1), median, mean, third
quartile (Q3) and maximum (Max) parameters. A box plot of
descriptors was created using the R package ggplot2.47 The
normal distribution of each descriptor was assessed using
Kolmogorov–Smirno tests from the ks.test function in the R
stats package. Practically, the parametric t-test is applicable if
the data follows a normal distribution, whereas for a non-
normal distribution the non-parametric approach, namely the
Mann–Whitney U test, is recommended. Particularly, the wil-
cox.test function from the R stats package48 was used.
2.7 Multivariate analysis

For a CSAR model, its prediction performance will depend not
only on compound descriptors but also on the predictor used.
This study employs random forest (RF) as the classier owing to
its demonstrated success in previous models as well as its
interpretability. RF is an ensemble classier that produces
a number of decision trees, using a randomly selected subset of
training samples and variables. The classication starts at the
root node in which the data set at the node is split according to
the value of the descriptors that are selected, such that
descriptors of different activities are predominantly moved to
different branches. The classication is obtained by averaging
the results of all trees by a majority vote from each tree.49,50 The
RF classier was generated using the randomForest R package.

To accurately predict the anti-sickling activities of the
compounds, it is necessary to tune two parameters of the RF
model, i.e. the number of trees used for constructing the RF
classier (ntree) and the number of random candidate features
(mtry). In this study, a 10-fold CV procedure was applied to tune
the ntree parameter from the range of ntree ˛ {100, 200,., 1000},
while the mtry parameter was estimated using the tuneRF
function in the randomForest R package.51 In order to provide
a better understanding of the anti-sickling activities of the
compounds, informative descriptors were extracted from the RF
model by means of its built-in feature importance estimator. In
particular, the mean decrease of the Gini index (MDGI) was
utilized to estimate the important descriptors, in which the
descriptors with the largest MDGI values represent the most
important features, as these descriptors contribute most to the
prediction performance of the model.
2.8 Model validation

The balanced data set was then subjected to a 5-fold repeated
cross-validation (5-fold repeated CV) scheme and external vali-
dation so as to assess the model intrapolation and extrapola-
tion, respectively. Briey, data splitting was continuously
resampled for 100 iterations (i.e. the data was reshuffled and re-
stratied before each round) where each data split iteration
divides the data set into internal and external sets using the 80/
This journal is © The Royal Society of Chemistry 2018
20 split ratio. Subsequently, the internal set (consisting of 48
compounds) was subjected to 5-fold repeated CV in which the
data was partitioned into 5 folds, where one fold was retained as
the testing set while the remaining folds were used to train the
model. This process was repeated iteratively until all folds had
the chance to be retained as the testing set. The partitioned 5
folds were reshuffled three times in a repeated CV fashion.
Moreover, external validation was also performed on the
external set and the decoy data set in order to assess the
extrapolation capability of the model on unknown data that has
not been previously seen by the training model.

The prediction of anti-sickling activity is essentially a binary
(two-class) classication problem, i.e. whether the bioactivity of
the compound is active or inactive. For this kind of binary
classication problem, the following set of metrics, i.e. accuracy
(Ac), sensitivity (Sn), specicity (Sp) and the Matthew’s corre-
lation coefficient (MCC), were used to evaluate the prediction
performance:

Ac ¼ TPþ TN

TPþ TNþ FPþ FN
(6)

Sn ¼ TP

TPþ FN
(7)

Sp ¼ TN

TNþ FP
(8)

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp (9)

where TP, TN, FP and FN represent the instances of true posi-
tives, true negatives, false positives and false negatives,
respectively. The value of MCC ranges from�1 to 1, in which an
MCC of 1 indicates the best possible prediction scenario while
an MCC of �1 indicates the worst possible prediction. On the
other hand, an MCC of 0 is indicative of random prediction.

Furthermore, receiver operating characteristic (ROC) curves
were plotted to show the predictive capability of our CSAR
models using the pROC package in the R soware.52 The ROC
curve presents the model behaviour of the true positive rate
(sensitivity) against the false positive rate (1-specicity) in
a visual way. The area under the ROC curve (AUC) was calculated
to quantitatively and objectively measure the performance of
the proposed CSAR models. A random classier has an area
under the curve of 0.5, while the AUC for a perfect classier is
equal to 1.
2.9 Applicability domain analysis

Applicability domain (AD) analysis allows the denition of
chemical space boundaries in which the classication model
can be reliably used to predict the putative bioactivity of the
investigated compounds.24,53 In particular, AD allows the rela-
tive estimation of the feasibility of predictions made on query
compounds on the basis of how similar they are to the
compounds used to train the model. There are several
approaches that have been proposed to assess the AD of
compounds.54 Of these approaches, the principal component
RSC Adv., 2018, 8, 5920–5935 | 5925
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analysis (PCA) bounding box is an intuitive approach which is
based on the conversion of the original data into a new
orthogonal coordinate system that also corrects for correlations
amongst the descriptors. Newly formed axes are dened as PCs
presenting the maximum variance of the investigated
compounds in the data set. The AD of the classication model
presented herein is represented by the PCA scores plot in which
the boundary spanned by compounds from the training set is
considered to be the AD of the model. Thus, if compounds from
the testing set are found to fall within this dened boundary,
they are also considered to be within the model’s AD, and vice
versa (i.e. compounds from the testing set located outside the
boundary of the training set space would be expected to be
outside the model’s coverage).
Fig. 3 Chemical space of the anti-sickling agents. Actives and inac-
tives are shown in red and green, respectively.
2.10 Reproducible research

To support the reproducibility of the constructed CSAR models
as described in this study, all R codes and associated input les
(e.g. ngerprint descriptors, SMILES notations, biological
activity, etc.) used to create the results, gures and tables are
publicly available on GitHub at https://github.com/chaninlab/
anti-sickling/.
Fig. 4 Box plot of the anti-sickling agents using Lipinski’s rule-of-five
descriptors. Asterisks (*) denote significance at p # 0.05.
3 Results and discussion
3.1 Chemical space of the anti-sickling agents

Chemical space analysis was performed in order to explore the
general characteristics of the active versus inactive classes of
anti-sickling agents via the use of Lipinski’s rule-of-ve
descriptors. In particular, Lipinski’s rule-of-ve descriptors
are a renement of drug-likeness used to predict whether
a chemical compound will exhibit pharmacological or biolog-
ical activity as an orally active drug in humans, based on the
observation that most medications are relatively large-sized
lipophilic molecules, comprising the molecular weight (MW),
Ghose–Crippen–Viswanadhan octanol–water partition coeffi-
cient (AlogP), number of hydrogen bond donors (nHBDon) and
number of hydrogen bond acceptors (nHBAcc).55 The MW
represents the mass of a compound, typically used for obtaining
interpretations and calculations. Furthermore, the appropriate
size of a compound is important for its passage via the lipid
membrane. AlogP is a well-known measure of molecular
hydrophobicity (also known as lipophilicity), which is used for
calculating the membrane penetration and permeability of
compounds. nHBDon and nHBAcc are used to measure
hydrogen bonding capacity. A visualization of the chemical
space of AlogP as a function of MW is shown in (Fig. 3). A dense
distribution of anti-sickling compounds was observed within
the MW range of approximately 200–400 Da and within the
AlogP range of approximately �2.5 to 4. In addition, a visuali-
zation of the overall distribution of the data values of Lipinski’s
descriptors is shown as a box plot in (Fig. 4). It can be seen that
most compounds follow the criteria of Lipinski’s rule where the
MW is less than 500, except for 2 compounds (57 and 58).
Furthermore, the AlogP and nHBDon values are less than 5, and
nHBAcc is less than 10.
5926 | RSC Adv., 2018, 8, 5920–5935
Analysis of the box plots revealed that there were slight
differences between the bioactivity classes (i.e. active and
inactive) using Lipinski’s rule. In addition, the results of
statistical analysis show signicant differences in MW and
AlogP between the active and inactive compounds using the
Mann–Whitney U test. The MWs of the active compounds were
larger than those of the inactive compounds, which was
observed from the mean value of the box plots. Similarly, the
AlogP values of the active compounds were greater than those of
This journal is © The Royal Society of Chemistry 2018
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the inactive compounds, whereas the nHBDon and nHBAcc
values of the active compounds were less than those of the
inactive compounds.
Fig. 5 The applicability domain as analyzed using the PCA bounding
box approach.
3.2 CSAR modeling of the anti-sickling agents

Prior to initially establishing a prediction model, all activity
cliffs must be detected, veried and treated using a score of the
modelability of the data set or the MODI index. Herein, this
index is used to identify the feasibility of obtaining a CSAR
model for discriminating active compounds from inactive
compounds. For binary data sets, if the MODI index is greater
than 0.65, the data set should be reliable for classication
modeling. Interestingly, 12 types of ngerprint met this criteria
with their MODI index ranging from 0.70–0.84.

The interpretative predictive model is more useful for
providing the basis of the biological and chemical properties of
the anti-sickling agents. Herein, a CSAR model based on RF is
presented for discriminating between the active and inactive
compounds of anti-sickling agents. Table 2 lists the results from
100 independent runs for the RF model with twelve different
types of ngerprint over an internal validation test, 5-fold CV
and an external validation test. Furthermore, the decoy set was
used to assess the abilities of the CSAR models to accurately
predict inactive compounds. From Table 2, it was found that the
best averaged values of Ac ¼ 80.48 � 5.46% and MCC ¼ 0.61 �
0.11, as evaluated by a 5-fold CV procedure, were achieved using
the substructure count ngerprint descriptor. Meanwhile, the
E-state and substructure ngerprints performed well, with the
second and third highest averaged values of Ac/MCC of 79.88 �
7.19%/0.60 � 0.14 and 79.10 � 6.87%/0.58 � 0.14, respectively.
Interestingly, as for the external validation test, the substructure
count ngerprint was also found to outperform other descrip-
tors in terms of their average values of Ac¼ 82.38� 8.99%, Sp¼
84.82 � 11.32%, Sn ¼ 83.27 � 11.29% and MCC ¼ 0.66 � 0.17.
However, this descriptor provided a moderate Ac value of 85.93
� 3.29% on the decoy data set, and it was comparable to the
substructure that had the best Ac value of 88.13 � 3.12%.
Considering the results from 5-fold CV and the external vali-
dation tests, it can thus be seen that the substructure count was
superior to other ngerprint classes.
3.3 Applicability domain

Fig. 5 shows the AD of the classication model built using the
substructure count as estimated using the PCA bounding box.
The undersampling technique was applied using the Kennard–
Stone algorithm to select a subset of 32 inactive compounds
from the initial set of inactive compounds for balancing.
Aerwards, the total set of 64 compounds was split into two
sets, consisting of training (80%) and testing (20%) sets, using
the Kennard–Stone algorithm. The training and testing sets
were subjected to PCA analysis and PCA bounding box plots
were constructed for AD analysis. It can be observed that the
compounds in the testing set were nearly located at the
boundaries of the compounds in the training set, thereby sug-
gesting a well-dened AD for the CSAR model.
This journal is © The Royal Society of Chemistry 2018
3.4 Mechanistic interpretation of feature importance

The analysis of feature importance can provide a better under-
standing of the mechanistic details governing anti-sickling
activity. In order to select informative descriptors on substruc-
ture counts, this study utilized the RFmodel because of its built-
in ability of feature importance estimation and its great
prediction performance, as discussed above. Generally, two
measures were used to rank the important features, namely the
mean decrease of the Gini index and the mean decrease of the
accuracy. Since Calle and Urrea56 reported that the Gini index
had more robust results compared to those from the accuracy,
we utilized the mean decrease of the Gini index to rank the
importance of the substructure count descriptors.

As suggested previously,49,50 the mtry parameter could be
obtained from the square root of the total number of features or
by using the default value of mtry ¼ 11. In this study, 10 RF
models were constructed by varying the mtry parameter setting
from 2 to 20 (mtry ˛ {2,3,5,7,9,11,13,15,17,19,20}) and xing the
mtree parameter at 100. The use of multiple RF models might
increase the reliability of the estimation of informative features.
The descriptor importance for the substructure count, ranked
by the mean decrease in the Gini index, is shown in Fig. 6, and
detailed information for the 20 top-ranked informative
descriptors is described in Table 3. The descriptor with the
largest value of MDGI is the most important.

A further analysis was performed on each of these features by
visualizing the prevalence of their functional moieties in the
active versus inactive classes by means of a box plot, as shown in
Fig. 7. The results showed that 10 out of the 20 top-ranked
informative descriptors showed signicant differences
between the active and inactive compounds using the Mann–
Whitney U test. It could be stated that these informative
descriptors are benecial for providing information on the
RSC Adv., 2018, 8, 5920–5935 | 5927
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Fig. 6 Descriptor importance of the substructure count fingerprints
ranked by the mean decrease of Gini index.

Table 3 List of the top substructure fingerprints and their descriptions

Ranking Fingerprints Description

1 SubFP287 Conjugated double
bond

2 SubFP171 Aryl chloride
3 SubFP303 Michael acceptor
4 SubFP5 Alkene
5 SubFP1 Primary carbon
6 SubFP300 1,3-Tautomerizable
7 SubFP307 Chiral center specied
8 SubFP301 1,5-Tautomerizable
9 SubFP16 Dialkylether
10 SubFP173 Arylbromide
11 SubFP302 Rotatable bond
12 SubFP137 Vinylogous ester
13 SubFP139 Vinylogous halide
14 SubFP49 Ketone
15 SubFP295 C ONS bond
16 SubFP18 Alkylarylether
17 SubFP2 Secondary carbon
18 SubFP275 Heterocyclic
19 SubFP135 Vinylogous carbonyl
20 SubFP274 Aromatic

5928 | RSC Adv., 2018, 8, 5920–5935
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different characteristics of the active and inactive compounds.
Notably, these signicant SubFPCs can be divided into three
groups, encompassing compounds with aromaticity/
conjugation, compounds with the carbonyl group moiety and
miscellaneous compounds.
Fig. 7 Box plots of anti-sickling agents using importance substructure
fingerprints. A single asterisk (*) denotes significance at p # 0.05,
double asterisks (**) denote significance at p # 0.001 and triple
asterisks (***) denote significance at p # 0.0001.

This journal is © The Royal Society of Chemistry 2018
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Interestingly, three out of the ten signicant SubFPCs
(SubFPC287, SubFPC171 and SubFPC5) belong to the general
class of compounds with aromaticity/conjugation. The most
important feature was SubFPC287, with an average Gini index
value of 5.96, denoting the alternation of single and double
bonds. This descriptor is commonly known as conjugation, in
which the molecule contributes to a more stable structure due
to the delocalization of charge through resonance and hybrid-
ization energy.57 It was found that molecular conjugation is
more prevalent in the active class compared to the inactive
class. We observed that 23 out of 32 active compounds and 28
out of 83 inactive compounds possessed this property. More-
over, we also found that SubFPC5 is more prevalent in the active
compounds, ranking fourth with an average Gini index value of
2.18, corresponding to the alkene in SubFPC287. The second
important feature was SubFPC171, with an average Gini index
value of 5.56. SubFPC171 is essentially an aromatic ring with an
attached chloride atom, known as an aryl chloride. This moiety
has been demonstrated to be thermally stable as well as being
capable of exhibiting nucleophilicity, owing to its inherent
electron-rich properties.58 Interestingly, SubFPC171 can be
found predominantly in almost all active compounds, except for
a few (2d, 3d, 20a, 21a, 17b and 3c).

It was found that 27 out of 32 active compounds and 23 out of
83 inactive compounds possessed this moiety. Furthermore, the
results of the analysis of the different types of aryl chloride in the
active class revealed that compounds 22a, 6c and 18c contain
monochlorobenzene, while the remaining compounds contain
the dichlorobenzene ring. This feature is related to the increase
in activity of the compounds for binding these moieties.15

Four out of the ten signicant SubFPCs (SubFPC137,
SubFPC139, SubFPC49 and SubFPC135) belonged to the general
class of compounds containing the carbonyl group moiety. A
carbonyl group is a carbon atom double-bonded to an oxygen
atom. In particular, this moiety is polar due to the electroneg-
ativity of the oxygen atom, and it is more soluble in water as it
forms H-bonds. The twelh important feature was SubFPC137,
with an average Gini index value of 1.21 denoting a vinylogous
ester (R–O–CH]CHCOR0), which is an ester that is relatively
similar to a double bond, containing the carbonyl and ethoxy
groups. The ethoxy group is known as an ethyl phenyl ether, and
it is much more similar to an ester than an ether due to the
conjugation between the carbonyl group and the double bond.
The resonance of this moiety is also similar to an ester, and
therefore it presents a very unique electronic environment for
the alkene group.59 This moiety can be seen conspicuously in
the active class. Specically, 19 out of 32 active compounds and
27 out of 83 inactive compounds contained this moiety. The
thirteenth important feature was SubFPC139, with an average
Gini index value of 1.14 denoting a vinylogous halide, which
contains the carbonyl and halide groups. Interestingly, this
SubFPC is correlated with SubFPC49, which has an average Gini
index value of 0.83 denoting a ketone. We observed that these
moieties were apparently found in the active class: 16 out of 32
active compounds possessed these moieties. Furthermore, the
nineteenth important feature was SubFPC135, with an average
Gini index value of 0.47 denoting the vinylogous carbonyl
This journal is © The Royal Society of Chemistry 2018
group, which consists of a carbonyl group and another atom
(e.g. nitrogen, oxygen, sulfur or a halide). This moiety was
obviously found in 24 out of 32 active compounds and 19 out of
83 inactive compounds.

Moreover, other signicant SubFPCs are miscellaneous
descriptors (e.g. SubFPC303, SubFPC302 and SubFPC275). The
third important feature was SubFPC303, with an average Gini
index value of 4.50 denoting a Michael acceptor, which is
a conjugated system with an electron-withdrawing group as an
electrophile and a resonance-stabilizing activating group, which
stabilizes the anionic intermediate such as an acrylate ester,
acrylonitrile, acrylamide, maleimide, alkyl methacrylate,
cyanoacrylate or vinyl sulfone.60 It can be seen that 18 out of 32
active compounds contained a Michael acceptor whereas 3 out
of 83 inactive compounds contained a Michael acceptor. The
eleventh important feature was SubFPC302 with an average Gini
index value of 1.21, denoting a rotatable bond. These are bonds
which allow free rotation around themselves, dened as a single
bond.61 This moiety was important for the determination of
molecular exibility. Notably, it was found that rotatable bonds
were found in all of the compounds in the data set. In partic-
ular, they were highly prevalent in the active compounds. The
eighteenth important feature was SubFPC275, with an average
Gini index value of 0.50 denoting a heterocycle, which is a cyclic
compound containing atoms of at least two different elements
as members of its ring. It was observed that this moiety is more
prevalent in the inactive class. Notably, 1 out of 32 active
compounds (28a) and 20 out of 83 inactive compounds
possessed this moiety. Therefore, the heterocyclic moiety may
reduce anti-sickling activity.
3.5 Scaffold and substructure analysis

The investigated compounds were divided into 6 classes on the
basis of their chemotypes, consisting of ethacrynic acid (ECA)
analogs, benzyloxyacetic acid-based compounds, phenoxyacetic
acid-based compounds, aromatic amide-based compounds,
proline-based compounds and 2,2-dimethylchroman-based
compounds (Table 4 and Fig. 8). Analysis of the structure–
activity relationship (SAR) revealed that the length of the alkyl
chain, as well as the functional moiety and substitutions on the
benzene ring, may inuence the anti-sickling activity of
compounds.

Compounds in the ECA class (1a–31a) exhibited the most
potent anti-sickling activity when compared to the other che-
motypes described herein. This is reected by the highest
solubility ratio in the range of 0.961 to 1.224. In particular, ECA
was noted for its ability to cross the RBC membrane.20 The
crucial chemical feature required for HbS binding was sug-
gested to be the vinyl moiety and the substitution of halogen
atoms on the benzene ring.15,20 Notably, compound 11a (solu-
bility ratio ¼ 1.224) was shown to be the most potent
compound in the data set as it contains many signicant
SubFPCs present in the active class. Furthermore, the results
showed that the length of the alkyl chain and the functional
moiety may inuence the anti-sickling activity of the ECA
analogs. The cyclopentane moiety may enhance the anti-
RSC Adv., 2018, 8, 5920–5935 | 5929
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Table 4 Summary of the structure–activity relationship analysis as a function of the chemotypes and substructures

Inuential
substructures

Chemotypes

Ethacrynic acid Benzyloxyacetic acid Phenoxyacetic acid Aromatic amide Proline 2,2-Dimethylchroman

Alkyl chain
length

� Short alkyl chain >
long alkyl chain
3a > 4a and
24a > 25a

� Long alkyl
chain > short
alkyl chain
7d > 5d

� Long alkyl
chain > short
alkyl chain
5e > 8e

� Long alkyl
chain > short
alkyl chain
1f > 2f > 3f

� Long alkyl chain >
short alkyl chain
2a z 3a > 1a
and 11a > 10a

Functional
moiety

� Cyclopentane >
benzene
24a > 26a

� 2,3–Dihydrobenzo-
furan > indane
21b > 20b

� Addition of
benzene

Central benzene:
Yactivity
6c > 7c

Peripheral benzene:
[activity
16c > 15c

� Benzene >
alkyl chain
1d > 5d

� Alkyl chain >
benzene 1e > 2e

� Presence of
vinyl moiety:
[activity
1a > 8a and
1a > 16a

� CH3NO2

moiety:
Yactivity 8e > 4e

� CH3S moiety:
Yactivity
16a > 17a

� C6H5COO
moiety: [activity
5e > 7e

� C6H5COO
moiety: Yactivity
6e > 9e

Substitutions
on benzene

� Halogen atoms:
Br > Cl > I
14b > 6b > 18b

� Halogen atoms:
Cl > Br > I
6c > 12c > 11c

� Cl substitution:
di-Cl > mono-Cl >
without Cl
3d > 2d > 1d

� CH3 substitution:
Mono-CH3 >
di-CH3

8b > 9b

Without CH3 >
di-CH3

14b > 16b

� Cl substitution:
di-Cl > mono-Cl
8c z 9c z 10c > 6c

� Halogen atoms:
Cl > Br
2d > 4d

� CH3 substitution:
Di-CH3 > mono-CH3

3c z 4c > 1c
� Nitrogen containing
substitution:
(CH3)2NH >
NH2 > NO2

29b > 28b > 27b

2-(Benzylthio)acetic acid 2-(Phenylthio)acetic acid

Substitutions
on benzene

� Cl substitution:
mono-Cl >
tri-Cl
31b > 32b

� Br > NH2 19c > 20c

� Halogen atoms:
Cl > Br
31b > 33b

5930 | RSC Adv., 2018, 8, 5920–5935 This journal is © The Royal Society of Chemistry 2018
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Fig. 8 Chemical structures of the representative compounds as described in Table 4 from the analysis of the structure–activity relationship. It
should be noted that the chemical structures of all compounds are provided in the ESI, Fig. 1–6.†
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sickling activity of these compounds whereas the benzene ring
leads to a decrease in the activity (e.g. 24a > 26a). Moreover, the
addition of the vinyl group may increase the anti-sickling
This journal is © The Royal Society of Chemistry 2018
activity (e.g. 1a > 8a and 1a > 16a). On the other hand, the
addition of the CH3S moiety may reduce the anti-sickling
activity (e.g. 16a > 17a).
RSC Adv., 2018, 8, 5920–5935 | 5931
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The type and number of chemical moieties that are
substituted on the benzene ring have been shown to inuence
the anti-sickling activity of the benzyloxyacetic acid analogs (1b–
34b) and phenoxyacetic acid analogs. Mono-substitution with
Br and Cl provided more potent activity compared to substitu-
tion with I in both classes of compounds (i.e. for benzyloxyacetic
acid, Br > Cl > I¼ 14b > 6b > 18b and for phenoxyacetic acid, Cl >
Br > I¼ 6c > 12c > 11c). This could be due to the large size of the
I atom that may affect the access or interaction of compounds at
the target site of action. A similar effect was also observed for
aromatic amides, in which the chlorine analog (2d) was found
to provide better activity than the bromide analog (4d). Like-
wise, the addition of a methyl CH3 group onto the benzene ring
of the Cl and Br benzyloxyacetic acid derivatives may reduce the
anti-sickling activity owing to an increase in bulkiness (e.g. 8b >
9b and 14b > 16b). This nding is in accordance with a previous
Fig. 9 Chemical structures of the designed compounds. Six template c
(ethacrynic acid, benzyloxyacetic acid, phenoxyacetic acid and aromatic
(the bottom row of each box). Green circles represent the original m
replacement moieties of the designed compounds.

5932 | RSC Adv., 2018, 8, 5920–5935
study19 demonstrating that the anti-sickling activity of
compounds may not be enhanced by the insertion of methyl
and polar groups. In contrast, multiple substitution on the
benzene ring of the phenoxyacetic acid core structure led to
enhanced activity of the compounds when compared to mono-
substitution (i.e. 8c z 9c z 10c > 6c and 3c z 4c > 1c).

The same phenomenon was also observed for aromatic
amide compounds (i.e. di-Cl > mono-Cl > without Cl¼ 3d > 2d >
1d). Moreover, the inuence on the anti-sickling activity caused
by the length of the substituted alkyl chain was exemplied for
proline, aromatic amide and 2,2-dimethylchroman compounds,
in which longer chain derivatives were shown to provide more
potent activity than those with a shorter chain length (i.e. 4d >
6d, 5e > 8e and 1f > 2f > 3f). Interestingly, the oxygen atom on
the phenoxyacetic acid and benzyloxyacetic acid core structures
may be required for the potent anti-sickling activity of these
ompounds (the top row of each box) representing four chemotypes
amide) served as chemical starting points for designing novel analogs
oieties of the template compounds and pink circles represent the

This journal is © The Royal Society of Chemistry 2018
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compounds. The replacement of the oxygen atom with a sulfur
atom led to a decrease in activity, as found in the halogen
derivatives of 2-(phenylthio)acetic acid (6b > 31b and 14b > 33b)
and 2-(benzylthio)acetic acid (12c > 19c) derivatives.
3.6 Data-driven design of novel compounds

To apply the newfound knowledge from the feature importance
and scaffold analyses, a set of compounds was designed by
modifying existing compounds from the anti-sickling data set.
The following criteria were considered for the selection of
template compounds: (i) the selected compounds were labeled
to show inactivity with a value less than 1.06, and (ii) selected
compounds did not contain heterocyclic substructures that may
cause a reduction in anti-sickling activity. These criteria led to
the selection of four scaffolds (ECA, benzyloxyacetic acid, phe-
noxyacetic acid and aromatic amide). The designed compounds
for each scaffold are shown in Fig. 9.

In the ECA scaffold class, compound 18a was modied by
replacing the bromine atom with the vinyl group (18a0). Notably,
the vinyl moiety was suggested to be an important feature for
the ECA class, as mentioned in the scaffold and substructure
analysis. Compounds 3b, 4b and 5b from the benzyloxyacetic
acid class, as well as 5c from the phenoxyacetic acid class, were
modied via the attachment of a methyl group to the Cl atom
(3b0, 4b0 and 5b0 and 5c0) as mentioned in the feature impor-
tance (SubFPC171) and scaffold/substructure analysis.
Compound 5d from the aromatic amide scaffold was modied
by replacing the carboxyl group with a Cl atom (5d0). In spite of
this, it was found that Cl modication alone was not sufficient
to change the bioactivity. Thus, the vinyl moiety was selected to
replace the terminal methyl group in the aromatic amide scaf-
fold. The classication model was then applied to the set of
designed compounds in order to predict their possible anti-
sickling activity. It was found that the activity class of the eval-
uated compounds changed from the inactive class to the active
class. Thus, the results indicated that the CSARmodel as well as
the scaffold and substructure analysis are useful for the
compound design.
4 Conclusion

The hallmark of SCD is HbS polymerization, and the conse-
quent conformation change of the RBCs to that of a sickle shape
is associated with increased hemolysis. A lucrative therapeutic
strategy for SCD is to employ small-molecule inhibitors for
disrupting HbS polymerization. A total of 115 compounds were
compiled from the literature and the resulting data set was
balanced and used for model construction. Several classes of
ngerprint descriptors and machine learning algorithms were
evaluated for their ability to robustly predict anti-sickling
activity. The results indicated that substructure ngerprints,
together with the RF method, afforded the best performance
while also affording an interpretable set of descriptors. As such,
the origin of anti-sickling activity was deduced by rationalizing
the contributions of important substructures as selected by the
RF-derived Gini index. Feature analysis of the active compounds
This journal is © The Royal Society of Chemistry 2018
revealed the importance of aromaticity/conjugation (i.e.
SubFPC287, SubFPC171 and SubFPC5, corresponding to
a conjugated double bond, an aryl chloride and an alkene,
respectively), carbonyl groups (i.e. SubFPC137, SubFPC139,
SubFPC49 and SubFPC135, corresponding to a vinylogous ester,
a vinylogous halide, a ketone and a vinylogous carbonyl,
respectively) and miscellaneous groups (e.g. SubFPC303 and
SubFPC302, corresponding to a Michael acceptor and a rotat-
able bond, respectively). Moreover, analysis of the structure–
activity relationship revealed that the length of the alkyl chain
and the substitution on the benzene ring may affect the anti-
sickling activity of these compounds. Thus, the knowledge
gained from this study serves as general guidelines for the data-
driven design of potentially active anti-sickling agents.
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22 S. Simeon, R. Möller, D. Almgren, H. Li, C. Phanus-umporn,
V. Prachayasittikul, L. Bülow and C. Nantasenamat,
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