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Herein, the wet-chemical process (co-precipitation) was used to prepare nanosheets (NSs) of Coz04/Al;O3
in an alkaline medium (pH ~ 10.5). The synthesized NSs were totally characterized by Fourier-transform
infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV/vis), field emission scanning electron
microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy
(XPS), and powder X-ray diffraction (XRD). The synthesized NSs were deposited onto a glassy carbon
electrode (GCE) to prepare a very thin layer with a conducting binder for detecting 2-nitrophenol (2-NP)
selectively by a reliable electrochemical method. The proposed chemical sensor exhibits good sensitivity
(54.9842 pA pM~! cm™), long-term stability, and enhanced chemical response by electrochemical
approaches. The resultant current is found to be linear over the concentration range (LDR) from 0.01 nM
to 0.01 mM. The estimated detection limit (DL) is equal to 1.73 + 0.02 pM. This study introduces
a potential route for future sensitive sensor development with CozO4/Al,03 NSs by an electrochemical
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1. Introduction

Nitro-organic compounds (nitro-phenols) are well known as
anthropogenic, toxic, inhibitory, and bio-refractory compounds
and have vast industrial applications in the manufacture of
a variety of useful products such as pharmaceuticals, industrial
chemicals, pesticides, organic dyes, fungicides, insecticides,
explosives, and aniline." Therefore, the EPA (Environmental
Protection Agency) and EU (European Union) have enlisted NPs
as hazardous because of their highly toxic behavior towards the
environment including human, animal, plants, aquatic life, and
living organisms.>* NPs may cause various harmful effects in
human body, particularly cancer, generate poisoning, and
tumors in the urinary tract.>® The NPs are soluble in water, and
due to the numerous manmade activities, they have not only
been detected in industrial effluents, but also in fresh water and
marine environment.” To protect the public health and the
environment from harmful effects of NPs, it is obligatory to
develop an efficient and sensitive portable device (chemical
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sensor) that will be used to detect NPs in the working place,
environment, and public health sector.® The existing typical
methods, such as spectrophotometry,” fluorescence,' gas
chromatography, capillary electrophoresis,'” and high perfor-
mance liquid chromatography,” are applied to detect NPs.
However, these traditional methods have several disadvantages
such as being costly and time consuming, requiring heavy
instrumentation, and are complicated to use outdoors. On the
other hand, the electrochemical method has useful features
including low cost, easy operation, short response time,
portable simple instrumentation, and selectivity with high
sensitivity.**

The transition metal oxides with multiple oxidation states
such as Fe,03, Co304, MnO,, and CrO, are extensively applied
as a successive electron mediators to detect NPs.”> An efficient
NP chemical sensor fabricated with «-MnO, nanotubes had
exhibited the sensitivity of 19.18 pA mM " cm ™2 and detection
limit of 0.1 mM.*® Another NP chemical sensor based on Mn,O;/
ZnO nanoparticles showed the sensitivity 4.6667 pA uM ™' cm ™2
with the detection limit 0.83 nM." In this decade, carbon
nanotubes impregnated with transition metal oxides are
extensively considered for the detection of environmental
toxins, and this is becoming increasingly popular ever since the
first invention.”®® It has been reported that the NP sensor
fabricated with hydride components of carbon nanotube and
phthalocyanine cobalt(u) shows an outstanding detection limit
0.2 uM with a linear dynamic range from 1 pM to 1.9 mM.*
Besides this, another talented NP chemical sensor assembled

This journal is © The Royal Society of Chemistry 2018
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with a poly(diallyldimethylammonium chloride)-functionalized
graphene composite has exhibited a dynamic result of detection
limit 0.02 pM with a wider linear dynamic range from 0.06 to
110 pM.22

Due to the high toxicity of 2-NP, sustainable development
of methods for its selective detection is urgently needed.
Therefore, an initiative has been taken for efficient detection
of 2-NP by an electrochemical sensor constructed with Co;0,4/
Al,O; NSs. A thin layer of Co;0,/Al,0; NSs with a conducting
binding agent (5% Nafion suspension in ethanol) was
deposited on GCE to obtain a working electrode of 2-NP
chemical sensor. The assembled Co;0,/Al,0; NS/binder/GCE
was applied successfully to detect 2-NP by a reliable electro-
chemical approach. To the best of our knowledge, the
exploration of environmental toxin (2-NP) using a chemical
sensor fabricated with active Co;0,/Al,0; NSs has been
reported for the first time herein. Therefore, it may
be concluded that the 2-NP chemical sensor based on
Co0;0,/Al,0; NSs onto GCE is a novel introduction in the field
of sensor technology with promising applications in envi-
ronmental toxin analysis.

2. Experimental
2.1 Materials and methods

The analytical grade chemicals cobalt(i) chloride (CoCl,),
aluminum chloride (AlCl;), and ammonium hydroxide
(NH,OH) were obtained from the Sigma-Aldrich company and
used as received to prepare Co;0,/Al,0; NSs. To execute this
study, M-tolylhydrazine (M-THyd), 2,4-dinitrophenol (2,4-
DNP), 2-nitrophenol (2-NP), methanol (M), 3-methylaniline
(3-MA), 3-chlorophenol (3-CP), ammonium hydroxide (AH),
3,4-diaminotoluene (3,4-DAT), 3-methoxyphenylhydrazine (3-
MPHyd), bisphenol A (BPA), Nafion (5% Nafion suspension in
ethanol), monosodium phosphate, and disodium phosphate
were purchased from Sigma-Aldrich company. To explore the
FTIR and UV-vis spectra, the produced Co;0,/Al,0; NSs were
analyzed using a Thermoscientific NICOLET iS50 FTIR
(Madison, WI, USA) and 300 UV/visible spectrophotometer
(Thermoscientific), respectively. The binding energies of Co,
Al, and O and the corresponding oxidation states were
measured by XPS analysis using a K-a1 spectrometer (thermo
scientific, K-a1 1066) with a radiation source (A1Kal, Beam
spot size = 300.0 um, pass energy = 200.0 eV, and pressure ~
1078 torr). The optical properties, such as the arrangement of
molecules, analysis of elements, morphological structure,
and particle size, of synthesized NSs were investigated by
implementation of FESEM (JEOL, JSM-7600F, Japan) and
XEDS. Besides this, the phase (crystallinity of nanoparticles)
identification was carried out by the execution of XRD analysis
on the prepared Co;0,4/Al,0; NSs under ambient conditions.
A slurry of NSs was used to coat the GCE with a conducting
binder, and the resulting working electrode was implemented
successfully to detect 2-NP in an aqueous medium. The elec-
trochemical measurement was executed by a Keithley elec-
trometer (6517A, USA) under room condition.
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2.2 Preparation of Co;0,/Al,0; NSs by a wet-chemical
process

The wet-chemical process (co-precipitation) is an extensively
used technique to prepare doped nanomaterials at low
temperatures. This method involves three successive steps: (i)
precipitation of two or more metal hydroxides in aqueous
media, (ii) drying of separated precipitate, and (iii) calcination
of dried precipitate in a high temperature muffle furnace. For
the execution of this study, the predetermined weights of cobalt
chloride (CoCl,) and aluminum chloride (AICl;) were dissolved
in 100.0 mL de-ionized (DI) water in a 250.0 mL conical flask.
Then, a 0.1 M solution of NH,OH was added to the resultant
solution dropwise under continuous magnetic stirring, and the
pH of the solution was adjusted to around 10.5. Under this
condition, the metal ions were precipitated out quantitatively in
the form of Co(OH),/Al(OH);. The precipitate was separated out
from water and then dried in an oven at 105 °C. Subsequently
the dried sample was calcined at 500 °C for 6 hours in a high
temperature furnace for the metal hydroxides to transform into
the metal oxide form Co3;0,/Al,0; in presence of atmospheric
oxygen. The calcined sample in the oxide form was ground in
a mortar into nanosized particles. The reaction scheme is
supposed to be as follows:
In aqueous medium:

NH4OH;) = NHy (g + OH o) (i)
COC]Z(S) - C02+(aq) + 2C17(aq) (ll)
AlClys) = AP (o) + 3C1 (g

C02+(aq) + Al3+(aq) + SOHi(aq) + I’leO -
Co(OH),/Al(OH);()-nH,0 ]  (iv)
In the muffle furnace:

CO(OH)Z/AI(OH)3(S) + 02 - CO';O4/A1203 + HzO(V) (V)

In the wet-chemical process, the precipitation of metal ion in
the form of metal hydroxide is dependent on the value of K
(solubility product constant) in an aqueous medium. At the pH
10.5, the K; values for Al(OH); and Co(OH), are 3 x 10 >* and
5.92 x 10", respectively.®® As 0.1 M ammonium hydroxide
solution is added dropwise to the resultant solution, the OH™
concentration increases gradually. Consequently, with the lower
K; value of Al(OH);, aluminum hydroxide starts to precipitate
first and forms nuclei of crystals.”® Then, with an increase in the
OH™ ion concentration, the crystallites of aluminum hydroxide
start to aggregate. Due to the addition of ammonium hydroxide
in the resulting solution, the pH continues to increase for the
adjustment of the reactor during preparation of nanomaterials.
Then, cobalt hydroxide also starts to precipitate, which is
adsorbed on crystallites of aluminum hydroxide. This similar
tendency of growth pattern of nanomaterials has been reported
elsewhere.>?® Subsequently, the obtained crystals of metal
hydroxides are sequentially washed with water, ethanol, and
acetone and dried overnight at 105 °C in an oven. After this, the
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dried sample is subjected to calcination at higher temperatures
in a furnace (Barnstead Thermolyne, 6000 Furnace, USA) at
500 °C for 6 hours. The schematic of the formation mechanism
of Co30,/Al,0; NSs is presented in Scheme 1. To obtain the
nano-sized particles, the calcined Co30,/Al,0; NSs were ground
in a mortar. The prepared NSs were applied for the detection
of 2-NP by an electrochemical approach under ambient
conditions.

2.3 Fabrication of GCE with Co;0,/Al,0; NSs

A slurry of Co;0,4/Al,03 NSs was prepared in ethanol and coated
on a GCE as a very thin layer. To enhance the physical binding
strength between NSs and GCE, a drop of Nafion (5% Nafion
suspension in ethanol) was added. The assembled C03;0,4/A1,05
NS/binder/GCE was kept inside an oven at 34.0 °C for enough
time to dry the conducting film entirely. The desired electro-
chemical cell was organized with the Co3;0,/Al,0;NS/binder/
GCE and a Pt-wire (diameter 1.5 mm) as the working elec-
trode and the counter electrode, respectively. To execute the
sensor analytical performances, a series of 2-NP solutions based
on the concentration ranging from 0.01 nM to 0.1 mM was
prepared and used as a target analyte. The sensitivity of the
anticipated chemical sensor was estimated from the slope of the
calibration curve accomplished as resultant-current versus
applied-concentration of 2-NP. The linear dynamic range (LDR)
was measured from the maximum linearity (regression coeffi-
cient, %) of calibration curve, and detection limit was obtained
from the signal to noise ratio of 3. The used electrometer is
a simple two-electrodes system. The volume of the buffer solu-
tion (PBS) in the measuring electrochemical cell was main-
tained constant at 10.0 mL during the execution of this study.

3. Results and discussions
3.1 Structural analyses

The XRD (powder X-ray diffraction) patterns are able to provide
detailed information about unit cell dimensions (phase crys-
tallinity), and this technique was implemented on C0;0,/Al,05
NSs with the radiation source Cu-Kal (1 = 1.54178 A) in the
range of 10-80°, and the corresponding scanning speed was
2° min~". According to the XRD spectrum presented in Fig. 1,
the synthesized Co;0,4/Al,03; NSs contain well-assorted phases
of Co30, and Al,O;. As observed from the Fig. 1, the reflected
peaks of Coz;0, indices as 8 are (111), (220), (222), (400), (533),
(622), (440), and (511), having great similarities with the

previous reports.>”*° Beside this, the observed diffracted peaks
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Scheme 1 The growth mechanism of Coz04/Al,O3 NSs produced by
the low-temperature wet-chemical method.
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Fig.1 Powder XRD pattern of the Coz04/Al,Oz nanostructures for the
structural analysis.

for Al,O; indices as 6 are (012), (104), (024), (220), (110), and
(116), which have been identified by previous authors*-** and
JCPDS no. 29-0063 to be belonging to Al,O;. Based on the
Scherrer equation, the crystal size of the nanoparticles can be
calculated from the XRD diffraction pattern.

D = 0.91/(8 cos ) (vi)
Herein, A represents the wavelength (X-ray radiation = 1.5418 A)
and @ is full width at half maxima (FWHM), corresponding to
most intense peak, and @ is the diffracting angle.** From the eqn
(vi), the calculated crystal size (following the Scherrer equation)
is equal to 30.86 nm. The optical analysis of Co30,/Al,0; NSs is
also performed and presented in the ESI section (Fig. S47).

3.2 Morphological and elemental analyses

The morphological and elemental analysis of synthesized
Co030,/Al,0; NSs were investigated by FESEM and EDS analysis,
as illustrated in Fig. 2. The typical FESEM images with high to
low magnification are presented in the Fig. 2(a and b), and it is
clearly visible that the synthesized Co0;0,/Al,0; materials are
nanosheets in terms of shape.*”* The FESEM investigation is
similar with the results of EDS analysis, as shown in Fig. 2(c and
d). According to the EDS analysis, the composition of Co30,/
Al,O; NSs is O 46.95%, Al 19.74%, and Co 33.3%. Besides these,
any other peak is not visible; therefore, it can be concluded that
the prepared Co;0,4/Al,03 NSs consist of cobalt, aluminum, and

40-42

oxygen only.

3.3 Binding energy analysis

The synthesized NSs were subjected to XPS investigation with
an X-ray beam. The XPS spectrum is obtained when the atoms of
the sample absorb the kinetic energy of X-ray beam and the
electrons of outer spin orbital jump from lower to higher energy
level. The atomic composition with the corresponding chemical
formula and the oxidation state of the species present in the
nanomaterial can be scrutinized efficiently by this practice.*****
The core level XPS spectra of Co 2p, Al 2p, and O 1s are pre-
sented in Fig. 3. The high resolution of Co 2p spectrum shows

This journal is © The Royal Society of Chemistry 2018
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Fig. 2 Morphological and elemental analyses (a and b) FESEM analysis from high to low magnified images and (c and d) elemental analysis of

Co304/Al,03 nanostructures.

two obvious dominated peaks centered at 781.0 and 796.0 eV.
These two sharp peaks can be ascribed to Co 2p3/, and Co 2py,
orbits and obviously verify the presence of Co®". The projected
two satellite peaks of Co 2p3, and Co 2p,,, are at 787.0 and
803.0 eV, respectively. These two peaks can be attributed to the
presence of Co®" in the synthesized NSs, as illustrated in
Fig. 3(c).*° Therefore, the presence of dominant and satellite
peaks of Co 2p spin orbitals indicate the co-existence of Co(u)
and Co(u) on the surface of synthesized Co;0,/Al,0; NSs. The O
1s exhibit a peak at 531.3 eV, which is presented in Fig. 3(b) and
attributed to O in Al,0;.°"% The XPS spectra of Al 2p is
concentrated at 73.3 and 75.1 eV, and the peaks of Al 2p at
75.1 €V are ascribed to AI>*-O*~ bonds in Al,O;, as illustrated in
Fig. 3(d).**° The different states of O 1s, Al 2p, and Co 2p are
also quantified and presented in the ESI section (Fig. S57).

3.4 Applications: sensing of 2-NP by Co;0,/Al,0; NSs

The selective detection of 2-NP was executed in the optimized
buffer system, and this performance was carried out by the
implementation of Co;0,4/Al,0; NS/binder/GCE as the working
electrode. To enhance the binding strength between NSs and
GCE, a drop of Nafion was added. Nafion not only enhances the
binding strength, but also increases stability, conductivity, and
electron transfer rate of the electrode.®®®* Thus, the prepared

This journal is © The Royal Society of Chemistry 2018

electrode exhibited the advantages of high stability in air as well
as in chemical environment, enhanced electrochemical
performance during the detection of target analyte (2-NP), and
can be easily subjected to performances, assembling, and
fabrication, and above all, safe chemo-characteristics. There-
fore, the proposed chemical sensor Co;0,/Al,03; NS/binder/GCE
was successfully used to detect 2-NP in an aqueous medium.
During the performance of 2-NP chemical sensor, applied I-V
was measured on thin-film of Co;0,/Al,0; NS/binder/GCE, and
the holding time in the electrometer was set as 1.0 s. A possible
reduction mechanism of 2-NP is illustrated in Scheme 2. As
observed from Scheme 2, the electrons are accepted from the
applied current to reduce 2-NP into 2-AP (2-aminophenol).
Therefore, the species of reactive 2-NP are adsorbed on the
C030,4/A1,03 NS surface and reduced to 2-aminophenol, as
shown in reaction (vii) to (ix). Since the electrons are required to
reduce 2-NP, the electrochemical response (I-V) is inversely
proportional to the corresponding concentration of 2-NP.%>"% A
schematic of the detection process of 2-NP based on Co030,/
Al,O3; NS/binder/GCE sensor is demonstrated in Scheme 2.

The possible suggested reduction mechanism of 2-NP is
presented in the reaction (vii) and (ix).

HO — C6H4 — N02 +2¢~ — HO — C6H4 — NO + Hzo (Vll)

RSC Adv., 2018, 8, 960-970 | 963
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Scheme 2 The expected sensing mechanism for the determination of
2-NP by Coz04/Al,03 NSs on sensor probe.

HO — C6H4 — NO +2¢~ — HO — C6H4 — NHOH (Vlll)
HO — C¢Hys — NHOH + 2¢~ — HO — C¢H4 — NH, + H,O
(ix)

The synthesized NSs are not responsive equally in all buffers to
applied I-V. Therefore, for obtaining the maximum output of the
I-V responses, the pH of the measuring buffer system was neces-
sary to be optimized for the Co;0,/Al,0; NS/binder/GCE. Fig. 4(a)
represents the I-V response of pH ranging from 5.7 to 8.0. Obvi-
ously, among the tested buffer system, the best -V response was
attained at pH 6.5. Then, a number of environmental toxins have
been investigated at the concentration level of 1.0 uM and pH =

964 | RSC Adv., 2018, 8, 960-970

7.5 with the proposed chemical sensor. The electrochemical
responses of M-THyd, 2,4-DNP, 2-NP, methanol, 3-MA, 3-CP, AH,
3,4-DAT, 3-MPHyd, and BPA are illustrated in Fig. 4(b). Obviously,
the electrochemical response of 2-NP has the highest intensity
under experimental conditions. The reproducibility test of
a chemical sensor provides the evidence of reliability. Therefore,
this test was performed at 0.1 pM concentration of 2-NP, and the
resulting data is represented in Fig. 4(c). As seen in the Fig. 4(c),
the replicated six runs are practically indistinguishable under an
identical condition. The electrochemical responses are unchanged
even after washing of electrode in each trial. Therefore, this test
provides the evidence of reliability, and the projected 2-NP
chemical sensor can be applied in the real field successively. The
relative standard deviation of the reproducibility performances
(RSD) is estimated, and it is found to be 1.54 at an applied
potential of +1.5 V. The response time is another tool to measure
the efficiency of a chemical sensor, and this test has been per-
formed using a 0.1 uM solution of 2-NP. As illustrated in Fig. 4(d),
steady response is achieved in about around 10.5 s, and the ob-
tained result may be considered highly satisfactory.

Fig. 5(a) presents the I-V response of 2-NP for various
concentrations ranging from 0.01 nM to 0.1 mM. Evidently, this
is a very wide range, and the applied potential is higher than
+1.0 V. As shown in Fig. 5(a), I-V responses are distinguishable
from lower to higher concentration of 2-NP. To evaluate the
analytical performance of the projected chemical sensor, the
current data at an applied potential of +1.5 V has been obtained

This journal is © The Royal Society of Chemistry 2018
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from Fig. 5(a) and plotted as current vs. concentration of 2-NP in
the Fig. 5(b), which is known as a calibration plot. This cali-
bration plot is found to be linear with the regression co-efficient
value 7 = 0.99 along the x-axis in logarithmic scale. The
sensitivity of 2-NP chemical sensor is estimated from the slope
of calibration curve, and it is equal to 54.9842 pA uM ' cm ™2,
The linear dynamic range (LDR) is found to be from 0.01 nM to
0.01 mM. At a signal to noise ratio equal to 3, the limit of
detection (LOD) and limit of quantity (LOQ) were calculated to
be 1.73 4+ 0.02 pM and 5.77 &+ 0.02 pM, respectively. Obviously,
the Co3;0,4/Al,0; NS/binder/GCE electrode could be used to
determine 2-NP in an aqueous medium in a wide concentration
range. The stability performance of electrode based on Co30,/

This journal is © The Royal Society of Chemistry 2018

Al,O3; NSs has been evaluated in the detection of 2-NP under
identical conditions for intra-days and inter-day, as presented
in Fig. S1 and S2,T respectively, in the ESI section.f Therefore, it
can be concluded from Fig. S1 and S2f that the fabricated
electrode is able to perform efficiently in long-term. The reliable
measurement of 2-NP with other toxins such as 3-CP and 4-NP
in an aqueous medium is illustrated in Fig. S3 in the ESLf
According to this figure, the toxin 3-CP and 4-NP have not
shown any remarkable interference effect on the projected
chemical sensor during the sensing of 2-NP.

As observed from Fig. 5(a), the electrochemical response of 2-
NP chemical sensor based on active Co;0,/Al,0; NS/GCE
increases with a decrease in the concentration of 2-NP.
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Therefore, the highest IV response is found at lowest concen-
trations of 2-NP. During the sensing of 2-NP by Co;0,/Al,03 NS/
GCE electrode, a small surface coverage due to the adsorption of
few 2-NP molecules on surface of electrode occurs in the initial
stage, and corresponding reduction reaction of 2-NP starts
progressively. With enrichment of analyte (2-NP), the rate of
reaction is increased, and the higher surface coverage is ob-
tained. With further enrichment of 2-NP concentration in the
sensing medium, the reduction reaction comes to equilibrium,
and the surface coverage approaches its saturation state. With
an additional increase in the analyte concentration, a steady
state equilibrium I-V response is observed, and a saturated

Table1 Measurement of interference effect by CozO4/Al,O3 NS/GCE

Observed current” (pnA) at +1.5 V

Toxins Ry R, R; R, Average” (uA) RSD® (%)
2-NP 26.756 26.298 25.839 26.347 26.310 1.42
2,4-DNP  3.699  3.613 3.527  3.643 3.621 1.98
BPA 22.839 23.137 22.410 21.981 22.592 2.23
3-CP 23.688 22.875 23.525 24.175 23.566 2.28

“ Mean of four repeated (R) determination (signal to noise ratio 3) with
Co030,/Al,0; NSs/GCE at 0.1 uM concentration. > The average observed
current of the corresponding toxin. ¢ Relative standard deviation value
indicates precision among four repeated determinations.
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surface coverage is accomplished. Therefore, it can be
summarized that the proposed 2-NP chemical sensor based on
the Co;0,/Al,0; NS/GCE assembly can be applied for efficient
detection of the targeted toxin (2-NP). As indicated, the
proposed 2-NP chemical sensor exhibits reasonable short
response time of around 10.5 s, and it should be mentioned
that 10.5 s is needed by the 2-NP chemical sensor to attain
steady state saturation. Since the proposed 2-NP chemical
sensor demonstrates a high sensitivity of 54.9842 pA uM '
cm 2, it can be accredited that it has very good adsorption
capacity and active catalytic decomposition ability.®*”® The
interference effect is studied in the presence of different
phenolic compounds and their derivatives, such as 2-NP, 2,4-
DNP, BPA, and 3-CP, under identical conditions, as presented
in Table 1.

According to analytical performance, such as selectivity,
detection limit, and dynamic linear range, of the chemical
sensor, the proposed 2-NP chemical sensor fabricated based on
C03;0,4/Al,0; NS/GCE showed a reasonably qualified perfor-
mance as compared to the chemical sensors based on the
various transition nanostructured metal oxides, and
a comparison is illustrated in Table 2. In brief, the fabricated 2-
NP chemical sensor is simple and efficient to detect 2-NP by
applying current versus potential electro-chemical approaches.
The sensing performance, such as detection limit (LD), linear
dynamic range (LDR), and sensitivity, of earlier tested 2-NP

Table 2 Comparative performances of various nanomaterials or nanocomposites fabricated electrode for the detection of 2-NP by electro-

chemical approaches®

Materials LOD LDR Sensitivity Ref.

Ag,0 NPs/AuE 0.19 uM 1.0 uM to 0.5 mM 0.0474 pA pM ' ecm 2 70

CuO nanohybrides 0.67 nM 1.0 nM to 1.0 mM 0.045 pA uM ™' em 2 71

Spinel ZnMn,0, 20.0 pM 50.0 pM to 0.05 M 1.5 pA pM~* em ™2 72
B-doped diamond 8.4 mM — 0.3943 pA uM ' ecm 2 73
electrodes

Mn,0;-ZnO NPs/AgE 0.83 nM 100 pM to 50.0 uM 0.6667 pA pM ' cm ™2 74

Ce,0; CNT NCs 60 pM 100 pM to 100 pM 0.0016 pA pM~* ecm ™2 75
C030,/Al,0; NSs/GCE 1.73 & 0.02 pM 0.01 nM to 0.01 mM 54.9842 pA pM ' cm 2 This work

“ DL (detection limit), LDR (linear dynamic range), nM (nanomole), pM (picomole).

Table 3 Measured concentration of 2-NP analytes in real environmental samples

Determined 2-NP concentration®

by C0;0,/Al,0; NSs/GCE

Recovery” (%) RSD® (%) (n = 3)

Sample Added 2-NP concentration

Industrial effluent 0.100 uM 0.0991 uM
0.100 pM 0.1032 uM
0.100 uM 0.1022 pM

Plastic baby bottle 0.100 uM 0.1019 pM
0.100 pM 0.1032 pM
0.100 pM 0.1035 uM
0.100 M 0.1053 pM

Sea water 0.100 pM 0.1059 pM
0.100 uM 0.1074 pM

99.1
103.2
102.2
101.9
103.2
103.5
105.3
105.9
107.4

2.11

0.83

1.02

“ Mean of three repeated determinations (signal to noise ratio 3) with C030,/Al,05 NSs/GCE. ? Concentration of 2-NP determined/concentration
taken. © Relative standard deviation value indicates precision among three repeated determinations.
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chemical sensors are associated and summarized in

Table 2.7°7°

3.5 The analysis of a real sample

The proposed 2-NP chemical sensor based on C0;0,/Al,03; NSs
was employed for validation to detect and quantify 2-NP in real
samples to test its applicability in practical field. The samples
were obtained from various sources such as industrial effluent,
extracts from PC baby-bottle, and seawater. The results of the
analyses are presented in Table 3 and seem quite satisfactory.

4. Conclusions

The reliable wet-chemical process was used to prepare NSs of
Co3;0,/Al,0; at low temperature. Later, a thin layer of NSs was
deposited onto GCE with a conducting binder to fabricate the
working electrode for the 2-NP chemical sensor development.
The calcined NSs were characterized by FESEM, EDS, XPS, FTIR,
UV/vis, and XRD and applied to successively detect 2-NP in an
aqueous medium. The proposed 2-NP chemical sensor based on
Co3;0,/Al,0; NSs displayed higher sensitivity, lower detection
limit, broad linear dynamic ranges, and selectivity towards 2-NP
by reliable I-V method. The applied current to concentration of
2-NP is linear over the concentration range from 0.01 nM to
0.01 mM with a detection limit of 1.73 4+ 0.02 pM, LOQ of 5.77 +
0.02 pM, and sensitivity of 54.9842 pA uM~ ' cm ™. This
approach introduced a well-organized route of efficient chem-
ical sensor development for environmental pollutants in
a broad scales.
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