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A Cu())-catalysed addition and cyclisation sequence has been
developed for the synthesis of (E)-alkylidene pyrrolinone deriva-
tives. The reactions incorporate simple a-keto amides and alkynes
as substrates, and employ a commercially available Cu() catalyst.
The process tolerates good variation of both starting materials,
and delivers the desired pyrrolinones in good yields, with high
levels of stereocontrol.

Nitrogen-based heterocycles feature in almost 60% of FDA-
approved drugs.! In addition, they are common motifs in agro-
chemicals,” in new materials,®> and can function as versatile
synthetic intermediates.” These attributes drive efforts to
deliver efficient atom-economic methods for the synthesis of
N-heterocycles using readily available starting materials.

Towards this goal, we were interested in exploring routes to
substituted 2-pyrrolinones. These unsaturated amide-contain-
ing heterocycles are present in a diverse range of biologically
active natural products and pharmaceutical compounds
(Scheme 1),° and their multiple functional groups make them
attractive synthetic building blocks.

Classically, the pyrrolinone core is synthesised using Wittig
reactions on maleimides,® or by treating
y-alkylidenebutenolides with amines,” while the cyclisation of
unsaturated substrates such as dienamides® and iodoaceta-
mides is also known.” More recently, methods have been
reported employing rhodium catalysts for the addition and
cyclisation of a,p-unsaturated oximes to isocyanates," or acryl-
amides to gem-difluoroacrylates.'"’ Despite the range of
approaches available, these protocols often require complex
starting materials that require multi-step synthesis, resulting
in increased costs, and significant waste generation.

The use of simple addition processes to facilitate bond for-
mation is attractive due to the rapid increase in complexity

“Department of Chemistry, University of Oxford, Chemistry Research Laboratory,
Mansfield Road, Oxford, OX1 3TA, UK. E-mail: michael. willis@chem.ox.ac.uk
bE‘votec, 114 Innovation Drive, Milton Park, Abingdon, Oxfordshire OX14 4RZ, UK
tElectronic supplementary information (ESI) available. See DOI: 10.1039/
c80b02205d

This journal is © The Royal Society of Chemistry 2018

ROYAL SOCIETY
OF CHEMISTRY

View Article Online

View Journal | View Issue

Copper-catalysed synthesis of alkylidene
2-pyrrolinone derivatives from the combination of
a-keto amides and alkynes+t

Qian Wen Tan,? Praful Chovatia® and Michael C. Willis (2 *@

and the inherent atom economy of these reactions.'® As such,
the use of hydroamination or hydroamidation reactions, which
combine amines or amides, respectively, with either alkenes or
alkynes, presents an attractive and versatile method for the for-
mation of nitrogen-containing organic compounds. Although
these reactions can potentially produce a wide range of nitro-
gen-containing heterocycles, they have yet to be exploited fully
in this context. Many hydroamination and hydroamidation
reactions display a narrow substrate scope and require non-
trivial, or precious metal catalysts."”> The development of
alkene and alkyne hydroamination reactions using earth-abun-
dant copper catalysts has been significant in recent years,'*
with notable examples being reported from the Buchwald lab-
oratory based on the use of Cu(i)-hydride chemistry."?
However, systems for copper-catalysed hydroamidation are less
common.'®"”

We took on the challenge of developing a system that uti-
lises copper-catalysed hydroamidation to synthesise 2-pyrroli-
none motifs using simple and readily accessible starting
materials. In earlier work, we reported a copper-catalysed route
to ylidenebutenolides from the combination of alkynes and
a-oxo acids, which we proposed proceeds via an initial hydro-
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Scheme 1 Selected examples of natural products and pharmaceutical
compounds containing 2-pyrrolinone derivatives.
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Scheme 2 Cu())-Catalysed preparation of ylidenebutenolides and alky-
lidene 2-pyrrolinones.
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carboxylation of the alkyne (Scheme 2a)."® We speculated that
the use of a-keto amides as substrates in a related reaction
would deliver a new route to 2-pyrrolinone derivatives, based
on simple addition chemistry, and by analogy to our earlier
work, would proceed by a hydroamidation pathway
(Scheme 2b). At the outset of this work we noted that a signifi-
cant challenge would be the use of a-keto amides as sub-
strates, as they are significantly less acidic then the corres-
ponding a-oxo acids.'® Conversely, our earlier route to ylidene-
butenolides resulted in mixtures of geometrical isomers, and
we speculated that the use of keto amide substrates could lead
to more selective reactions due to steric interactions from the
N-R? substituent, thus controlling the alkene geometry.

We selected the combination of N-benzyl-2-oxo-2-phenylace-
tamide (1a) and 1-octyne (2a) as a suitable test reaction
(Table 1). Pleasingly, the reaction conditions developed for our
butenolide chemistry were effective with the amide substrate,
with the use of Cu(MeCN),BF, (10 mol%) as the catalyst in
toluene at 130 °C, delivering 60% of pyrrolinone 3a.

Table 1 Evaluation of reaction between N-benzyl-2-oxo-2-phenylace-
tamide and 1-octyne?

E|§n
2y [Cu(MeCN),BF, ©O N
N+ CeHyy  MMEeEN)LIBFs “NG.H
Ph)k[( Bn H/\ s toluene, 0.6 M = o
o 130 °C, 20 h Ph H

1a (1.2 equiv) 2a (1.0 equiv) 3a 60%

Entry Variation from above Yield” (%)
1 2.0 equiv. 1a 61%
2 1.0M 69%
3 1.0 equiv. 1a, 2.0 equiv. 2a 30%
4 Cu,O as catalyst 0%
5 DMTF as solvent 4%
6 PhCl as solvent 23%
7¢ Bipyridine added 0%
8¢ dppm added 10%
9¢ K,CO; added 0%
104 Et;N added 0%

“Reaction conditions: o-Keto amide (0.36 mmol), alkyne (0.30 mmol),
[Cu(MeCN),]BF, (0.03 mmol), toluene (0.50 mL), 130 °C, 20 h, under
N,. ”Yields determined using 'H NMR spectroscopy of the crude reac-
tion mixtures with nitromethane as an internal standard. Single
isomer of product. © 10 mol% ligand added. ?1 equiv. of base added.
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Performing the reaction at a slightly higher concentration
(1.0 M) increased the yield to 69%. The use of alternative
copper catalysts or solvents, the addition of supporting nitro-
gen- or phosphorous-based ligands, or the addition of base,
failed to improve the yield further. Selected optimization data
are shown in Table 1, with full details available in the ESLf}
Importantly, in all cases, only the (E)-isomer of pyrrolinone 3a
was formed.*’

We next explored variation of the N-substituent of the
a-keto amides, keeping 1-octyne constant as the second reac-
tion component (Table 2). N-Sulfonyl a-keto amides were

Table 2 Evaluation of a-keto-amide N-substituent in the synthesis of
alkylidene 2-pyrrolinones?

R1
o N
H [Cu(MeCN)4]BF o
NLg o o227 CgHly o T A ~cH
Ph)%]/ R! //\ toluene — s
0 0 Ph
1 2 130°C, 20 h 5
Me OMe CN

o:§:o o:§:o O:§:O
N N N
O. () (e}
p%\Cﬂ'ln j_J/AC5H11 V\CSHH
Ph Ph Ph
3b 78% (83%)° 3¢ 75% 3d 65%
CF3 NO,

Ph Ph'
3e 67% 3f 43% 3g 43%
CeH13 V
N N N
O. O 0.
727%\0#11 7274\05'*11 §>/:74\05H11
Ph Ph Ph
3h 52% 3i 69% 3j 42%

Ph Ph Ph H
3k 50% 3145% 3a 69%
a |
S
o N O N o N
727%\05”11 \3/:74\05“11 727%\05“11
Ph Ph Ph
3m 50% 3n 51% 30 59%
ErZ: 3

“Reaction conditions: a-Keto amide (0.36 mmol), alkyne (0.30 mmol),
[Cu(MeCN),]BF, (0.03 mmol), toluene (0.50 mL), 130 °C, 20 h, under
N,. Isolated yields. ”Gram scale reaction using amide (1.3 g,
4.32 mmol), 1-octyne (3.60 mmol), [Cu(MeCN),|BF, (0.36 mmol),
toluene (6.0 mL), 130 °C, 20 h.
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effective substrates, although it was apparent that the elec-
tronic nature of the sulfonyl group played a role in reaction
efficiency. For example, aryl sulfonamides featuring electron-
donating substituents (3b,c) delivered higher yielding reac-
tions than those featuring electron-withdrawing groups (3d-f).
The N-tosyl example was scaled without issue, delivering
1.2 grams of pyrrolinone 3b in an improved yield of 83%.
Importantly, the reaction could be used to produce pyrrolinone
cores with various N-alkyl substituents, including linear alkyl
(3h), 3- and 6-membered carbocycles (3i-1) as well as a methyl-
thienyl group (3m). The scope was also not limited to N-alkyl
substrates as allylic and aryl substituents (3n, 30) were also
tolerated, delivering the expected products in good yields.
A mixture of E:Z isomers was obtained for the N-phenyl
example, with substrates featuring all other N-substituents
returning single isomers of product.

Table 3 Evaluation of a-keto-amides and alkynes in the Cu-catalysed
synthesis of alkylidene 2-pyrrolinones?®

Bn/Ts
0 N
H Cu(MeCN),JBF, ©
N. R3 [ 4]1BF4 174\ 3
2 + = _— T R
R ka( Bn/Ts //\ toluene ; —
o ° R
1 2 130°C,20 h 4/5
Bn . .
O N
_ ] CsHy = “CsHyy = CsHa
MeO
4a 41% 4b 59% 4c 71%
Me p-OMe 0%) FsC
Bn B
0N o N o N
_ ] “CsHiy _J” Gy _ ] CsHy
O,N Br NC
4d 76% 4e 65% af 74%
Bn Bn Bn
O N O N 0N
Me = CsHiy _ CsHi1 /-
Ph
M
49 19% 4h 40% 5a 50%
Bn Bn Bn -
e
O N\ Oz N O N
= = = Me
Ph Ph Ph
5b 45% 5¢ 48% 5d 55%
Bn Ts Ts
O N O N\ O N
% mm wq
Ph Ph Ph
5e 46% 5f 27% 59 25%

5h 81%

“Reaction conditions: a-Keto amide (0.36 mmol), alkyne (0.30 mmol),
[Cu(MeCN),]|BF, (0.03 mmol), toluene (0.50 mL), 130 °C, 20 h, under
N,. Isolated yields of single isomers.
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We then focused on evaluating variation in the substituents
on the aromatic ring of aryl N-benzyl a-keto amides (Table 3).
While both electron-donating (4a,b) and electron-withdrawing
(4c-f) substituents, positioned meta and para on the aryl ring
were tolerated, the isolated yields suggested that reducing the
electron density on the aryl ring provided more efficient reac-
tions. Pyrrolinone 4b illustrates this well; moving the OMe sub-
stituent on the arene from the para to the meta position results
in a non-productive reaction being converted into one that pro-
ceeds in 59% yield. Although they were less reactive, alkyl
a-keto amides (4g, 4h) can also be tolerated in the system.

Variation of the alkyne reaction component was explored
next. Both carbocyclic (5a-c) and linear (5d) aliphatic alkynes
were tolerated to give moderate yields of the expected pyrroli-
nones. However, the presence of nitrile, chloro and phthali-
mide functional groups in the alkyne did not give any product
when combined with N-benzyl o-keto amide 1a. However,
when the more reactive N-tosyl a-keto amide 1b was employed
in combination with these alkynes it was possible to obtain
low to moderate yields of the targeted functionalized pyrroli-
nones (5f,g). Reactivity could be further increased by employ-
ing an o-keto amide featuring an electron-withdrawing aryl
substituent, with pyrrolinone 5h, combining a nitro-substi-
tuted keto amide with a phthalamide-substituted alkyne,
being obtained in an excellent 81% yield.

Conclusions

In conclusion, we have reported a Cu(i)-catalysed synthesis of
alkylidene pyrrolinones. The reactions combine simple a-keto
amides with alkynes, and deliver E-configured products with
high levels of stereocontrol. The scope of the reaction is good,
with variation of both reaction components possible. Scale up
of the process to >1 gram proceeded without incident. This
simple addition process is notable for the use of an earth-
abundant metal catalyst and the high-degree of functionality
delivered in the products.
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