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Predicting the conductance of strongly
correlated molecules: the Kondo effect in
perchlorotriphenylmethyl/Au junctions†

W. H. Appelt,‡a,b A. Droghetti,‡c L. Chioncel, b,d M. M. Radonjić,e E. Muñoz, f

S. Kirchner,g D. Vollhardtd and I. Rungger h

Stable organic radicals integrated into molecular junctions represent a practical realization of the single-

orbital Anderson impurity model. Motivated by recent experiments for perchlorotriphenylmethyl (PTM)

molecules contacted to gold electrodes, we develop a method that combines density functional theory

(DFT), quantum transport theory, numerical renormalization group (NRG) calculations and renormalized

super-perturbation theory (rSPT) to compute both equilibrium and non-equilibrium properties of strongly

correlated nanoscale systems at low temperatures effectively from first principles. We determine the poss-

ible atomic structures of the interfaces between the molecule and the electrodes, which allow us to esti-

mate the Kondo temperature and the characteristic transport properties, which compare well with experi-

ments. By using the non-equilibrium rSPT results we assess the range of validity of equilibrium DFT +

NRG-based transmission calculations for the evaluation of the finite voltage conductance. The results

demonstrate that our method can provide qualitative insights into the properties of molecular junctions

when the molecule–metal contacts are amorphous or generally ill-defined, and that it can further give a

fully quantitative description when the experimental contact structures are well characterized.

1. Introduction

Molecular electronics holds great promise for future appli-
cations in computing, sensing, clean-energy, and even data-
storage technologies.1–3 However, a general difficulty so far has

been the poor characterization of the device structures and
their relationship with the measured conductances and func-
tionalities. For this problem, ab initio simulations based on
density functional theory (DFT)4 have proven very successful in
supporting experiments, and they have played a key role in
advancing the field during the last decade.5–9 Yet, standard
DFT-based transport schemes for simulations of experimental
molecular junctions have several limitations. The most
prominent of these is the failure to account for the strong
electron correlations leading to the Kondo effect in devices
comprising magnetic molecules, and rigorous treatments and
extensions overcoming this problem are currently under active
development.10–15

In this article, we establish a suitable combination of DFT
and many-body techniques to achieve an unprecedented quan-
titative description of the equilibrium and non-equilibrium
conductance of molecular devices showing Kondo effect. By
using gold/perchlorotriphenylmethyl (PTM)/gold junctions as
a specific example we relate the Kondo temperature to the
electrode–molecule contact geometries, thus matching the
range of variability of the experimental results.16 Furthermore
we address the dependence of the conductance at finite tem-
perature and extend the method to finite bias.

Our multi-scale approach combines DFT, non-equilibrium
Green’s functions (NEGF),17 numerical renormalization group
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(NRG) methods,18–21 and renormalized superperturbation
theory (rSPT).22,23 First the contact geometry and electronic
structure of molecular junctions are obtained by DFT + NEGF.
Then the DFT Kohn–Sham (KS) states are projected onto an
effective Anderson impurity model,24–33 which is solved exactly
to obtain the Kondo temperature and the equilibrium zero-
temperature conductance via NRG. Based on these results we
finally compute the non-equilibrium rSPT transport co-
efficients, which encode the behavior of the junctions at low
temperature, finite magnetic field, and finite bias voltage.22

Stable organic radicals contacted to metal electrodes, such
as the PTM molecule on Au, form a practical realization of the
prototypical single-orbital Anderson impurity model,16,31,34,35

and are therefore ideally suited to study the fundamental
aspects of the interaction of magnetic impurities with metallic
surfaces. These aspects include the interplay between the
binding geometry and the energy level alignment with respect
to the surface Fermi energy, as well as the electron correlations
leading to the Kondo effect.

In recent experiments16,36 PTM-radicals were functionalized
with thiophene linkers producing the PTM-bis-thiophene
radical (called PTM-BT in the following to distinguish it from
the bare PTM; see also Fig. 1 for their atomic structures).
These molecules were then integrated into gold mechanically-
controlled break-junctions (MCBJs) and gold electromigrated
break-junctions (EMBJs) to measure their transport properties.
While at room temperature very low conductance values were
reported,36 at low temperature a zero-bias conductance re-
sonance was observed in many of the junctions, and its Kondo
character verified by temperature- and magnetic field-depen-
dent measurements.16 The low-temperature results indicate
that the PTM radical can preserve the unpaired spin in a solid
state three-terminal configuration, and that it is stable under
mechanical stretching of the electrodes. One of the remarkable
features is the rather high Kondo temperature of about 3 K,
which is largely constant upon stretching of the junction. This
implies that for the junctions that exhibiting Kondo behavior
the contact of the molecule to one of the electrodes is very
strong, and is not affected by the elongation of the junction in
the MCBJ process. In contrast, the background conductance
shows large variations. This can happen upon stretching when
the contact to the second electrode varies significantly, or else
when one of the two electrodes changes its Au–Au bond

conformation significantly.37,38 Overall the low-temperature
experimental results point to a structure with highly asym-
metric coupling to the electrodes. In the following we will
show that this hypothesis is indeed confirmed by our
calculations, thus providing a detailed understanding of the
electronic and transport properties of the PTM/gold junctions
at the atomic scale.

The paper is organized as follows. We first discuss the
equilibrium DFT results for a number of possible junction
structures (section 2), and then provide estimates for the
Kondo temperature for these geometries (section 3). For a set
of geometries we then present the linear response transport
properties including the strong electron–electron correlations
obtained by DFT + NEGF + NRG (section 4) and finally extend
the results to finite temperature and finite bias via rSPT
(section 5).

2. DFT calculations

PTM has a propeller-like structure with a central carbon atom
coordinated by the three phenyl rings. In the gas phase, it has
the typical electronic structure of a radical.39–41 The energy
spectrum has doubly occupied electronic states filled up to the
highest occupied molecular orbital (HOMO). Above the HOMO
there is a further well-separated, singly occupied molecular
orbital (SOMO) with an unpaired electron, giving a total mole-
cular spin quantum number of 1/2. In the PTM, the charge iso-
surface indicates that the SOMO is mainly confined to the
central carbon, while the HOMO and the lowest unoccupied
molecular orbital (LUMO) are largely located on the rest of the
molecule. This is presented more extensively in the ESI section
S2,† while the computational details of our DFT calculations are
given in the ESI section S1.† The difference between the ioniza-
tion potential and electron affinity of the molecule defines the
fundamental gap and corresponds to the charging energy U. In
the absence of any experimental results, we calculate U via total
energy differences42 to be about 4 eV. PTM-BT has a very similar
electronic structure to that of the bare PTM, although the SOMO
is slightly delocalized over the thiophene ligands,16 and this
results in a charging energy smaller by about 0.4 eV. Note that
when the molecule is placed between Au electrodes there is a
significant renormalization of the energy levels and conse-
quently a reduction of the charging energy, which we discuss in
section S2 of the ESI as well as in section 3.2.†

In order to understand the electronic structure of the mole-
cule/Au contact and how this determines the key parameters
affecting the Kondo temperature, we consider a number of
qualitatively different model structures, which are shown in
Fig. 2.

To start, we look at the ideal case of a bare PTM molecule
on a flat Au(111) surface, which we denote as configuration
(CFG) B1 in Fig. 2. The 3-atom Au tip is placed at a rather large
distance, so that the electronic coupling between the molecule
and the tip is negligible with respect to that to the substrate.
Since in MCBJ and EMBJ experiments the Au stretched surface

Fig. 1 Relaxed atomic structures of the bare PTM molecule (a) and of
PTM-bis-thiophene (b) (green spheres represent Cl atoms, blue spheres
H, large yellow spheres S, and smaller dark yellow spheres represent C).
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is expected to be highly corrugated rather than perfectly
flat,37,38 we then model a rough Au surface by removing a
number of Au atoms from the perfect Au(111) surface (CFGs
B2 to B4). Finally, we consider a number of break-junction
setups comprising PTM-BT (CFGs T1 to T8). The detailed
contact structure is expected to be different for each individual
experimental conductance trace measurement. The model
junctions considered here include cases with both symmetric
and asymmetric molecule–electrodes coupling. For some struc-
tures the PTM central core is located inside the junction’s
empty gap, whereas for other structures it is physisorbed on
one of the electrodes. Furthermore, the thiophene linkers can
be connected to the electrodes either non-covalently or co-
valently via a sulfur–Au adatom direct bond.

A representative DFT projected density of states (PDOS) is
shown in Fig. 3 (see ESI section S1† for the computational
details). When the molecule is in contact with the Au electro-
des, the SOMO DOS can be modeled approximately by a half-
filled Lorentzian-like peak close to the Fermi energy, EF. Note
that while we refer to the state as SOMO also when the mole-
cule is on the Au substrate for consistency, its occupation can
generally deviate from one in this case. The full width at half
maximum (FWHM) of the SOMO peak corresponds to its elec-
tronic coupling to the Au substrate, Γ,24 which can be calcu-
lated by using the projection scheme recently developed in

ref. 24. The results for each model geometry considered are
indicated in Fig. 2 along with the DFT SOMO on-site energy, ε,
relative to EF. These values are the parameters required for the
evaluation of the Kondo temperature.

As a matter of notation we label the structures with the
propeller-like PTM parallel (perpendicular) to the surface, as
“parallel” (“perpendicular”) configurations. For the idealized
case of a bare PTM on a flat Au(111) surface, we find that the

Fig. 2 Junction geometries for bare-PTM on an Au surface (B1–B4), and for PTM-BT between two Au electrodes (T1–T8), investigated in this paper.
For each junction we specify the broadening of the singly occupied molecular orbital induced by the coupling to the electrodes (Γ), its position with
respect to EF (ε), and the coupling to the left and right electrodes (ΓL and ΓR, respectively; Γ = ΓL + ΓR). All units of the specified quantities are meV.

Fig. 3 LDA projected density of states (PDOS) for the configuration T1.
The peak at the Fermi energy corresponds to the singly occupied mole-
cular orbital, which defines our Anderson impurity, and is located mainly
on the central carbon atom of the PTM.
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molecule is physisorbed with an energy difference between the
“parallel” configuration (B1) and the “perpendicular” configur-
ation (not shown) of about 335 meV, favoring the “parallel”
configuration. The equilibrium position of the central C atom
is located at about 5.18 Å from the top Au layer. For this con-
figuration there is a negligible charge-transfer from the surface
to the molecule, and the PTM preserves its unpaired electron,
with Γ ≈ 7 meV and therefore very small.

On the corrugated surface (CFG B2) the molecule can bind
better to the Au, since part of its phenyl rings can move into
regions where the Au surface has a dip. In CFG B2 an Au atom
is located below the central C atom of the bare-PTM. This
atom is then removed in the CFG B3, while it is kept as the
only atom from the top-most Au surface in the CFG B4.
Comparing the Γ-values for these structures allows us to esti-
mate the effect of Au atoms directly in contact with the central
C atom of the PTM. For CFG B2 we find the occupation of the
SOMO to be 1.40 electrons, indicating that a partial electron
transfer between the gold and the molecule has occurred. In
fact, the SOMO DOS peak lies below EF (ε = −54 meV). The
increased charge transfer indicates an increased screening of
the transferred electrons by the Au surface atoms, which is
due to the molecule moving closer to the Au surface, in par-
ticular to the Au atom closest to the core of the PTM molecule.
In general an increase in the screening also leads to a
reduction of U (see the discussion in the ESI section S2†). We
note that the results for the charge transfer obtained for non-
spin-polarized calculations are approximately the same as
those obtained in spin-polarized calculations in the ESI
section S2.† The electronic coupling of 114 meV for CFG B2 is
much larger than the one for the PTM on flat Au(111). An ana-
lysis of the origin of such a large coupling shows that it is
mainly due to the Au atom underneath the central C atom of
the PTM. In fact, for CFG B3, where this central Au adatom is
removed, the coupling drops to 23 meV, while it remains large
for CFG B4, where only this Au adatom is kept of the top Au
surface layer.

Finally, we consider the model break-junctions (CFGs T1 to
T8). In these cases, we use only the “perpendicular” configur-
ation, since the “parallel” PTM-BT configuration would require
very large simulation cells, which are beyond our current com-
puting resources. The results allow us to infer the general
trends for the electronic coupling of the radical center to the
Au electrodes through the thiophene linkers (see Fig. 2). As
can be seen the computed values of Γ vary over almost one
order of magnitude, from 26 to 126 meV. We note that in
break-junctions Γ is the sum of two contributions, ΓL and ΓR,
representing the electronic coupling to the left and right lead,
which we calculate individually with the method outlined in
ref. 24. In general we find that ΓL or ΓR are large when there
are Au atoms close to the thiophene linkers, such as for ΓL in
CFG T7. A bond between the sulfur atoms and a protruding Au
atom also increases the coupling. On the other hand, the coup-
ling is low when such a bond is absent, and when the angle
between the thiophene and the Au is larger, such as for ΓL in
CFG T1.

3. Kondo effect
3.1. Formulation of the single impurity Anderson problem

The PTM in contact with the leads is modeled by a single
impurity Anderson Model (SIAM), which has the
Hamiltonian43

HSIAM ¼ Hd þ Hc þ Hhyb; ð1Þ
Hd ¼

X
σ

εdndσ þ Und"nd#;

Hc ¼
X
k;σ

εknk;σ;

Hhyb ¼
X
k;σ

Vk d†σ ck;σ þ c†k;σdσ
� �

;

where Hd describes the electrons of spin σ localized at the
impurity site, which are created (annihilated) by the operator
d†σ (dσ), with ndσ = d†σdσ being the corresponding number
operator; εd is the orbital energy, U the charging energy,

and ndh i ¼P
σ

d†σ dσ
D E

the occupation, where the bracket 〈⋯〉

denotes the thermal expectation value. For the PTM molecule
the impurity site is the SOMO. Note that εd does not coincide
with ε in Fig. 3, since the on-site Coulomb interaction is
already partially accounted for in KS-DFT, and this contri-
bution has to be subtracted, so that εd = ε − εdc.

24,44 Here εdc is
the so-called double counting correction, whose exact
expression is not known except for certain limiting cases, and
several approximations have been introduced in the literature.45

In general εdc depends on U, and in the commonly used
“fully localized limit” it is given by εdc = U(nDFTd −1/2),12 where
nDFTd is the DFT occupation of the impurity. A comprehensive
discussion of the difficulties arising when combining DFT with
such an Anderson impurity model and more generally the dyna-
mical mean field theory is given in ref. 45 and 46. Note that
instead of the Anderson impurity model one can also use other
methods to treat the highly correlated subsystem, such as for
example embedded correlated wavefunction schemes.47,48

A review of the advantages and limitations of various embedd-
ing schemes that link many-body calculations for a subsystem
to an environment treated at the DFT level is given in ref. 49.

Since in an experimental setting the occupation can be set
by applying a gate voltage, here we treat εd as an adjustable
parameter, independent of the DFT results, and choose its
value to ensure a specified occupation of the impurity orbital.
We will also investigate how the results depend on the char-
ging energy U, and will provide estimates of possible values of
U for PTM/Au geometries.

In eqn (1) Hc describes the effective bath of electrons with
momentum k and spin σ, which are created (annihilated) by
the operator c†k;σ (ck,σ) and with number operator nk,σ = c†k;σck,σ.
The effective bath includes the electrons in the Au leads, as
well as those in the molecular orbitals, except for the SOMO.
We note that the chemical potential in the Hamiltonian
eqn (1) is set to zero by shifting both the bath and impurity
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energies εd and εk by an additive constant. This does not affect
the properties of the system. Furthermore, in zero-temperature
calculations we will refer to the chemical potential μ = 0 as the
Fermi energy EF = 0, which is most commonly used in first
principles calculations.

Finally, Hhyb accounts for the hybridization between the
bath and the impurity, with Vk corresponding to the hybridiz-
ation matrix element. Accordingly, we can define the hybridiz-
ation function Δ(E) = ReΔ(E) + iImΔ(E), with

ImΔðEÞ ¼ �π
X
k

Vkj j2δðE � εkÞ; ð2Þ

ReΔðEÞ ¼ 1
π
P
ð
dE′

ImΔðE′Þ
E′� E

; ð3Þ

and the coupling strength Γ(E) = −2ImΔ(E). The DFT results
for Γ(EF = 0) for several PTM/Au contacts are presented in the
previous section, and the results are shown in Fig. 2.

3.2. Estimation of the Kondo temperature

In order to obtain a first estimate of the Kondo temperature for
different junctions presented in Fig. 2, we assume a constant
(energy independent) coupling Γ = Γ(EF = 0). The Anderson
model then maps onto the Kondo model while approaching the
so-called local moment limit, where |εd| ≫ Γ and |εd + U| ≫ Γ,
(nd ≈ 1)50 (see ESI section S3† for details), and the Kondo tem-
perature is given by the Haldane equation51,52

kBθL ¼ 1
2

ffiffiffiffiffiffiffi
ΓU

p
e�

π εdj j εdþUj j
UΓ ; ð4Þ

with −U ≤ εd ≤ 0. The results obtained with this expression are
shown in Fig. 4, and are compared with the NRG calculations
in the next subsection. The experiments in ref. 16 show that
the SOMO of the PTM is close to half-filling and that it can be
brought to exact half-filling by applying a gate voltage to the
system. Here we therefore consider only this half-filled case,
and the effects of small deviations from half filling are pre-
sented in section 5. We note that if the molecule is partially
charged, then in general θL increases compared to the charge

neutral state,24 so that the values for half filling represent a
lower limit for the theoretical results. The values of Γ for each
structure are taken from Fig. 2, and at half-filling for a par-
ticle-hole symmetric SIAM we have εd = −U/2. For large enough
U all curves in Fig. 4 decay exponentially with U, and the slope
of the exponential decay is inversely proportional to Γ, so that
the configurations with the largest Γ have the slowest decay,
and therefore the highest θL, for a given value of U.

Experimentally it is found that θL is approximately constant
upon stretching of the junction, which indicates a highly asym-
metric coupling, where the molecule preserves the contact geo-
metry to one electrode, while the contact with the other elec-
trode is elongated. In other words, the molecule is strongly
bound to one of the electrodes, which may correspond to the
core of the PTM-BT lying flat on a rough Au surface with the
thiophene linkers bridging both sides of the junction.

This conclusion is supported by calculations for the CFGs
B2, B4 and T4 structures, which have the largest values of Γ,
and which all show asymmetric couplings. The calculated θL
values lie in the experimental range if U is equal to about 1 eV.
This charging energy is considerably smaller than the gas
phase value of about 4 eV, and we ascribe this reduction of
U to the charge screening by the electrons in the Au surface
(see ESI section S2†). A value for the change of U due to screen-
ing can be calculated using a number of methods,53 for mole-
cules on general corrugated and irregular metal surfaces con-
strained DFT (cDFT) has been shown to give good results.54,55

Alternatively, here we estimate it by approximating the metal
surface as a plane, and by using a classical image charge
model with a molecule between two metal electrodes54 to
capture this effect. In this way we calculate that a gap
reduction of about 3 eV corresponds to ideal planar Au electro-
des at a distance of about 2.7 Å from the center of the mole-
cule. This number is similar to the distance of 3.4 Å for the
CFG B2 structure. The remaining difference can be due to
either an overestimated theoretical gas phase gap, or due to
the experimental atomic structures having an even stronger
binding between molecule and electrodes than CFG B2.

For the structures with small Γ the value of U that brings θL
in the experimental range is very small, and goes below the
expected possible range. Such junctions are therefore expected
to exhibit a θL well below the experimentally accessible tem-
peratures. This is consistent with the experimental evidence
that only a fraction of the molecular junctions, which we attri-
bute to those with the largest Γ, exhibit a Kondo state at an
experimentally accessible temperature. Overall our results
confirm that the molecule lies flat on a rough Au surface when
it exhibits Kondo behavior, since only such structures allow for
small binding distances and strong electronic coupling.

3.3. NRG calculations

In order to confirm the trends for θL obtained with the simpli-
fied model eqn (4), and to evaluate the conductance in the
presence of electronic correlations, we integrate NRG calcu-
lations in the method. We consider the SIAM representing the
PTM/Au structures with the largest Γ (CFGs B2, B4 and T4), for

Fig. 4 Kondo temperature, θL, as function of the charging energy, U,
obtained using eqn (4) with εd = −U/2, and NRG solutions for the exact
system- and energy-dependent hybridization function. The corres-
ponding electrodes–molecule configurations are illustrated in Fig. 2.
The horizontal orange region illustrates the experimental range of
Kondo temperatures of about 1–3 K.16
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which in the previous subsection have estimated the Kondo
temperatures to lie in the experimental range. For each junc-
tion we calculate ImΔ(E) in eqn (2) by using DFT + NEGF with
the method presented in ref. 24, and the results are shown in
Fig. 5. While the value around EF is similar for all cases, there
are pronounced differences in the energy dependence. The
NRG calculations then allow us to verify whether the approxi-
mation of a constant Γ used so far is applicable for these rea-
listic atomic structures. The real part is obtained with the
Kramers–Kronig relation, eqn (3). Further details about the
NRG calculations are presented in the ESI section S4.† The
many-body self-energy calculated with NRG is then used to
evaluate the zero-bias and zero-temperature transmission in
the presence of strong correlations in the next section.

The Kondo temperature is extracted from the impurity con-
tribution to the magnetic susceptibility χs(θ)

19 (see ESI section
S5†). In Fig. 6 we present χs(θ) for the B4 geometry, where the

inset shows the small deviation of the impurity occupation nd
from the half-filled case (nd = 1). We find that χs(θ) always
follows the same universal behavior as long as the interaction
strength is large enough (U > 0.5 eV). A crossover is observed
from the high θ local moment regime, where kBθχs/(gμB)

2 = 1/4,
to the low θ strong correlation limit, where kBθχs/(gμB)

2 = 0;
here g is the Landè-factor and μB the Bohr magneton.19 We
find that for U values above U = 0.5 eV the curves can
be collapsed onto a single universal function. Note that for
U = 0.5 eV one can already recognize the deviation from the
universal behavior as a dip in the high θ susceptibility.

The collapse of the susceptibilities is interpreted as a uni-
versality due to the formation of a Kondo-singlet. In the local
moment regime the static spin-susceptibility scaled by the
Kondo-temperature follows the same universal curve,20 where
the scaling function F(x) is defined by51

kBθχs
ðgμBÞ2

¼ F
θ

cWθL

� �
; ð5Þ

and where cW is the so called Wilson number, which is a
model-dependent constant (see ESI section S3†). Here, the
Kondo temperature θL plays the role of a scale invariant in the
renormalization group (RG) language. This means that systems
with different initial parameters end up in the same low temp-
erature fixed point after mode elimination(RG-flow towards the
same fixed point).51 This gives rise to the universal behavior in
Fig. 6 at low θ. The value for θL is obtained in the standard way
from the condition that the universal function at θ = cWθL is
F(1) = 0.07.43 In Fig. 4 the values of θL calculated in this way
are displayed as dashed lines. Importantly, they agree rather
well with those obtained using the approximate eqn (4),
showing that the approximation of a constant Γ is valid for
this system. The NRG results therefore also confirm the con-
clusion that for the three structures with large Γ the value of θL
is in the experimental range for U ≈ 1 eV.

4. Electron transmission

To evaluate the transport properties of this system we add the
zero-temperature NRG self-energy, Σ(E, θ = 0), to the DFT +
NEGF Green’s function via the Dyson equation and compute
the resulting energy-dependent transmission function, Tt(E,
θ = 0), in the presence of many-body correlations not captured
at the standard DFT-KS level.24,29,30 As outlined in the ESI sec-
tions S7 and S8,† the linear response zero-temperature conduc-
tance, G0 = G(V = 0, θ = 0) = dI(V, θ = 0)/dV|V = 0, is given by:

G0 ¼ 2e2

h
TtðEF; θ ¼ 0Þ; ð6Þ

where e is the electron charge, h the Planck constant and 2e2/h
the quantum of conductance. Note that we have also implicitly
assumed that there is no external magnetic field, whose
effect will be considered in the next section. When ΓL ≫ ΓR

(ΓL ≪ ΓR) this can be extended to finite V as G(V, 0) ≈ (2e2/h)
Tt(−eV, 0) (G(V, 0) ≈ (2e2/h)Tt(+eV, 0)). As discussed in the

Fig. 5 Negative imaginary part of the hybridization function calculated
using the DFT + NEGF method, and used as input for the NRG calcu-
lation, for the three configurations with the largest hybridizations (B2,
B4, T4) (see Fig. 2). High energy contributions are truncated as outlined
in the ESI section S4.†

Fig. 6 Main graph: The universal function displaying the temperature
dependent scaling function (gμB)

2F(θ/cWθL) = kBθχs against log(θ/cWθL).
Inset: The impurity occupation as a function of the rescaled on-site
energy εd + U/2. The on-site energy obtained within DFT is indicated as
the vertical dashed line.
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previous sections, we expect the Au/PTM/Au system exhibiting
Kondo behavior to have such a highly asymmetric coupling.
This condition is indeed fulfilled for CFGs B2 and B4, and to a
minor extent also for CFG T4, so that the energy dependence
of the transmission approximately corresponds to the voltage
dependence of the conductance. Note that for such highly
asymmetric coupling the dominant effect of the voltage is a
shift of the molecular energies due to its induced local electric
field, while for the case of approximately symmetric coupling
(ΓL ≈ ΓR) the current induced non-equilibrium change of occu-
pation gives an additional important contribution and there-
fore needs to be taken into account. In the next section we will
therefore generalize these relations and provide the non-
equilibrium relations for the conductance that are also valid
for arbitrary values of ΓL and ΓR.

As outlined in ref. 24 and in the ESI section S7,† the total
transmission function is the sum of the elastic transmission,
T, and of the inelastic impurity transmission, TR,AI, so that
Tt = T + TR,AI. The elastic transmission has contributions from
electrons flowing through the impurity, TAI, from the back-
ground transmission, TB, and from interference terms, TI (T =
TAI + TB + TI). Notably, at zero-temperature, for a system in the
Kondo regime one has TR,AI(EF) = 0, because the imaginary
part of the impurity many-body self-energy vanishes at EF in
accordance with the Fermi-liquid picture.51

The calculated low energy transmissions for the B2, B4 and
T4 configurations are presented in Fig. 7. Here U is set to 1 eV,
since this is the charging energy that provides a Kondo temp-
erature in the experimental range. The results for different
values of U are shown in the ESI section S7.† One can clearly
identify the Kondo peak around EF, which has a width of the
order of 1 meV, in good agreement with the experiments.16

The overall dominant contribution comes from TAI for all
cases. While the background transmission and interference
terms are negligible in the highly asymmetric setups (CFGs B2
and B4), they are rather large in the break-junction geometry
T4. Importantly, while in the B2 and B4 geometry the trans-
mission values are very small, for the T4 break-junction con-
figuration they can reach values up to 0.8, and such variations
are indeed found in experiments.16 In the present case the
magnitude of both the background transmission and of the
Kondo peak become large for symmetric coupling (ΓL ≈ ΓR),
while they progressively decrease as the coupling becomes more
asymmetric. However, we point out that the background trans-
mission may generally be very large if the overlap between the
Au electrodes is large or if the electrodes are very broad. In that
case one may still have ΓL ≫ ΓR for the molecule itself, but the
background current will be much larger than that flowing
through the molecule. Therefore, for a comparison between
theory and experiments for the Kondo conductance itself ideally
one needs to separate out the background conductance. While
this is difficult to do in experiment, our simulation scheme
allows to perform this separation for each atomic configuration.
In Fig. 7 we also plot the incoherent transmission TR,AI and Tt =
T + TR,AI, which determines the measured conductance. As
stated above, TR,AI vanishes at EF, while it leads to a further
overall enhancement of the transmission spectrum away from
it. It therefore does not affect the zero-bias and zero-tempera-
ture conductance, but it plays an important role at finite bias
and finite temperatures, as discussed below.

Although the results shown so far are obtained for zero
temperature, we can obtain an estimate of the temperature
dependence of the full width at half maximum (FWHM, W) of
the Kondo peak in the DOS by performing a low energy expan-
sion of the SIAM DOS. For the system investigated here we con-
sider the half-filled particle-hole symmetric case, and moreover,
since Γ ≪ U, we are in the so-called strong correlation regime.56

As shown in the ESI section S6,† in such a regime the depen-
dence of the FWHM on temperature for a SIAM with energy-
independent hybridization Δ = Γ/2 is approximately given by:

Wðθ; Δ̃Þ ¼ Δ̃2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ π2kB2θ2

2Δ̃
2 þ 1

� �2
s

� 1

vuut
: ð7Þ

Here Δ̃ is the renormalized quasi-particle spectral width,
Δ̃ = zΔ, and z ¼ ½1� @E<ðΣðE; θ ¼ 0ÞÞE¼EF �

�1 is the so called
wave-function renormalization factor.22,56 Note that here we
use the zero temperature limit of Σ(E, θ), since we perform the
perturbation expansion around θ = 0, but in general z can also
be evaluated at finite temperature by using the finite-tempera-
ture Σ(E, θ) in its definition above. Furthermore, in the
particle-hole symmetric regime Δ̃ is related to the Kondo tem-
perature as56

kBθL ¼ π
4
Δ̃: ð8Þ

Note that the relation in eqn (7) is different from the widely
used form given in ref. 57, since in that reference the energy

Fig. 7 Zero-bias transmission including the zero-temperature NRG
self-energy for the B2, B4 and T4 structures, and for U = 1.0 eV. Here T
is the total coherent transmission, Tt is the total transmission including
incoherent effects, TAI is the coherent transmission component of the AI
itself, TB is the coherent background transmission, TI is the interference
term, and TR,AI is the incoherent transmission. The total transmission is
then Tt = T + TR,AI, with T = TAI + TB + TI. Note the different scales of the
transmission-axis for B2, B4 and T4.
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dependence of the real part of the many-body self-energy is
neglected. In the ESI section S6† we show that W(θ, Δ̃) from
eqn (7) reproduces rather well the NRG results up to tempera-
tures of about 2θL.

In experiments, θL can be obtained by fitting eqn (7) and (8)
to the measured temperature dependent data for the FWHM of
the conductance peak. Note that this is somewhat larger than
the FWHM of the DOS due to the additional temperature
induced broadening of the Fermi distribution of the electrons
(see ESI section S8†).

From our NRG calculations we can extract effective values
of Δ̃ for the three configurations B2, B4 and T4, which take
into account the energy-dependent hybridization at an average
level (see ESI section S6†). The resulting values, together with
the corresponding Kondo temperatures, are shown in Table 1.
Note that the values for θL calculated in this way are in good
agreement with the values calculated directly from the NRG
susceptibility (Fig. 4). In Fig. 8(a) we present the resulting
temperature dependent FWHM for all three systems calculated
using eqn (7) and the parameters in Table 1.

Finally, within the approximation considered in this
section we also estimate the temperature dependence of the
normalized conductance of the Anderson impurity at zero-
bias. If one neglects the interference terms (TI ≈ 0), then one
can write G(V, θ) ≈ GAI(V, θ) + GB(V, θ), where GB is the back-
ground conductance originating from TB, and GAI is the con-
ductance due to TAI + TR,AI. The temperature dependence of GB

is usually small, and for small V also the voltage dependence
can be neglected, so that we set GB to be a constant back-
ground conductance. Within the approximations used in this
section, the temperature dependence of GAI is derived in the
ESI section S8 (eqn (S29) of the ESI†) to be

GAIð0; θÞ
G0

� 1� π4

16
θ

θL

� �2

¼ 1� π2
kBθ

Δ̃

� �2

; ð9Þ

where G0 = GAI(0, 0). If accurate experimental data are available
at low θ, then the mapping of the measured temperature
dependent conductance profile to this equation allows to
determine the experimental θL. However, in many experiments
including also those for Au/PTM/Au junctions in ref. 16, the
low temperature conductance data is too noisy, so that θL is
estimated from the high temperature data. Since no analytic

expression is available for the whole temperature range, in ref.
58 a functional form is introduced in order to fit calculated
NRG results in ref. 59. The proposed fitting curve is:

GAIð0; θÞ
G0

¼ 1

1þ ðθ=θ̃KÞ2
 !s

; ð10Þ

where θ̃K = (21/s − 1)−1/2θK, and θK and s are phenomenological
parameters. The value of θK sets the temperature at which the
conductance is reduced by a factor 2 (GAI(0, θK) = GAI(0, 0)/2).
The second order expansion of this relation leads

to GAIð0; θÞ=GAIð0; 0Þ � 1� sð21=s � 1Þ θ

θK

� �2

. As outlined in

the ESI section S8,† for the particle-hole symmetric SIAM one
can approximate θK ≈ θL. Furthermore, the condition that the
second order expansion needs to be equal to the form given in
eqn (9) then sets the value of s to be s ≈ 0.20.

A comparison of the temperature dependent conductance
obtained using eqn (10) for the B2, B4 and T4 structures with
the experimental data in ref. 16 is plotted in Fig. 8(b). The
experimental normalized conductance agrees rather well with
the calculated curves, in particular with the one for T4, which
has the highest Kondo temperature of all the calculated struc-
tures. We denote as “Exp1” and “Exp2” the data for the two sets
of experiments presented in Fig. 3c and d of ref. 16, respect-
ively. When extracting the experimental Anderson Impurity

Table 1 Renormalized quasi-particle spectral width, Δ̃, and corres-
ponding Kondo temperature θL calculated with eqn (8), as well as wave-
function renormalization factor, z, for the configurations B2, B4, T4
(note that Δ̃ and z given here are denoted as Δ̃∑ and z∑ in the ESI
section S6 and in Table S1). For U = 1 eV we also give the value of U/πΔ,
with the values of Δ = Γ/2 taken from Fig. 2

B2 B4 T4

θL (K) 1.91 1.96 4.09
Δ̃ (meV) 0.210 0.215 0.449
z 0.00315 0.00326 0.00598
U/πΔ 5.63 5.44 5.05

Fig. 8 (a) Full width at half maximum of the Kondo peak in the DOS, W,
calculated with the model eqn (7); (b) normalized impurity conductance
as function of temperature using the function in eqn (10), for the B2, B4
and T4 configurations. The results are compared to experimental data
from ref. 16, denoted as “Exp1” and “Exp2”.
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conductance one has to first subtract the background conduc-
tance, GB. Our calculations show that the background conduc-
tance depends significantly on the detailed atomic structure,
as shown by the values of TB in Fig. 7. However, in experiments
only the total conductance is accessible. One can approximate
the background conductance by the conductance at zero bias
for a very large applied magnetic field, which can be extracted
from Fig. 3g–h of ref. 16. In this way we extract the ratio of
background conductance to the total conductance at zero bias
and zero temperature to be about 0.29 for Exp1, and 0.34 for
Exp2.

While the results presented in this section show good
agreement with the experiments in ref. 16, the limitation is
that the equations are all based on the assumption of a par-
ticle-hole symmetric system, which is not generally the case.
Indeed, in ref. 16 it is also shown that by applying a gate
voltage the occupation of the SIAM can be systematically
changed. At particle-hole symmetry the system is characterized
by a single energy scale, kBθL, and eqn (7)–(10) reflect this
property. Away from particle-hole symmetry, however, this no
longer holds and corrections to these formulas enter.
Furthermore, the condition that ΓL is very different from ΓR

does not apply for a general system. In the next section we will
therefore extend the method to the general non-equilibrium
case, and also to the case away from particle-hole symmetry
within a perturbative approach.

5. Non-equilibrium relations:
renormalized super-perturbation
theory

In this section we account for finite-temperature (θ > 0) and
general finite-bias (V ≠ 0) effects by using the renormalized
super perturbation theory (rSPT) described in ref. 22, 23 and
60. The rSPT corresponds to a perturbative method organized
around the particle-hole symmetric strong coupling fixed
point considered in the previous sections. While for the PTM/
Au system considered here we always have U ≫ Δ, the
rSPT relations are in principle valid for arbitrary values of U,
and account for deviations from the particle-hole symmetry at
a perturbative level. It is based on the insight that at the
strong-coupling fixed point the equations have the form of an
Anderson model, albeit with renormalized parameters.56

These parameters are the renormalized hybridization, Δ̃,
which has been introduced in the previous section (Δ̃ = zΔ),
the renormalized energy level, ɛ̃d, which is given by ɛ̃d = (εd +
U/2)/Δ, and the renormalized interaction energy, Ũ, defined
in the ESI section S9.† We introduce the rescaled
renormalized interaction ũ = Ũ/πΔ̃, which lies in the range
from 0 for small U to 1 for very large U (see Fig. S9†). In this
section we present results as function of ɛ̃d, which determines
the deviation from the particle-hole symmetric case, and
which can be tuned experimentally by applying a gate
voltage.16

The Kondo temperature θL near the strong coupling fixed

point is obtained as kBθL ¼ ððgμBÞ2=4Þ lim
θ!0

ðχsÞ�1,60 with the

θ = 0 limit of the static spin susceptibility56

lim
θ!0

χs ¼
ðgμBÞ2

2
ÃAI 0; 0ð Þð1þ ŨÃAIð0; 0ÞÞ; ð11Þ

and where ÃAI(E = 0, θ = 0) = z−1AAI(E = 0, θ = 0) denotes the
equilibrium quasi-particle renormalized spectral density at the
Fermi energy. Note that for the particle-hole symmetric refer-
ence system this definition of θL is equivalent to the one pre-
sented in section 3 (see also ESI section S3†). Up to second
order in ũɛ̃d we have

ÃAIð0; 0Þ � ½πΔ̃ð1þ ð1� ũÞ2ε̃d2Þ��1: ð12Þ
Inserting this into eqn (11) yields the Kondo temperature

kBθL ¼ 2þ 2ð1� ũÞ2ε̃d2

1þ ũ

1þ ð1� ũÞ2ε̃d2

πΔ̃
4
; ð13Þ

which is a generalization to finite ɛ̃d and to arbitrary U of the
result for the symmetric SIAM in the strong coupling limit
given in eqn (8).

A central issue is the relation between renormalized and
bare parameters, which is encoded in the wave-function renor-
malization factor z. The renormalization factor z = Δ̃/Δ can be
obtained from NRG for a general energy-dependent hybridiz-
ation function, and from Bethe ansatz for the case of a con-
stant energy-independent hybridization function.56 A compari-
son between z calculated for a constant hybridization function
Δ(E) = Δ(EF) = Γ/2 using Bethe ansatz and the NRG is shown as
function of the interaction energy in Fig. 9, and demonstrates

Fig. 9 (Main graph) Comparison between the wave-function renormali-
zation factor, z, calculated using NRG, for a constant hybridization func-
tion (black diamonds), and for the three configurations B2 (turquoise
filled disks), B4 (pink open triangles), and T4 (white open rectangles).
The Bethe ansatz solution for the same constant hybridization used in
the NRG calculation is shown as the red solid line. Inset: Wave-function
renormalization factor from the main graph plotted on a semi-logarith-
mic scale.
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that they agree well. To address the question of the effect of an
energy-dependent hybridization function on z, we also calcu-
late z using NRG and with the full energy-dependent Δ(E) for
the B2, B4, and T4 structures (Fig. 5). Importantly, we find that
they also agree rather well with the results for constant hybrid-
ization, showing that the low energy SIAM is largely dominated
by the hybridization function around the Fermi energy. Based
on these results we therefore calculate z and ũ for the rSPT
expansion using the Bethe ansatz for the particle-hole sym-
metric SIAM with constant hybridization Δ(EF) = Γ/2 (see
Fig. S9 in the ESI section S9†), where the values of Γ for each
configuration are given in Fig. 2.

In order to generalize the relations for the conductance, we
first evaluate the equilibrium conductance, G0 = GAI(V = 0,
θ = 0, B = 0), defined in eqn (6) and (S18) of the ESI,† away
from the particle-hole symmetry. Here we have explicitly noted
that we consider the reference case with zero magnetic field
(B). This results to

G0 ¼ 2e2

h
4ΓLΓR

ΓL þ ΓR
2πAAIð0; 0Þ: ð14Þ

Then the extension of rSPT to current-carrying steady states
allows us to evaluate the non-linear low-voltage conductance
for finite temperatures and also magnetic fields, which has the
form:22,23,60

G0 � GAIðV ; θ;BÞ
G0

¼ cθ
kBθ

Δ̃

� �2

þcB
gj jμBB
Δ̃

� �2

þ cV
eV

Δ̃

� �2

�cVEd
eV

Δ̃

� �

� cθV
eV

Δ̃

� �2 θ

Δ̃

� �2

þcθVEd
eV

Δ̃

� �
θ

Δ̃

� �2

:

ð15Þ

This result can be obtained by expanding GAI(θ, V, B) up to
second order in eV/Δ̃, kBθ/Δ̃, and gμBB/Δ̃. The relations for the
expansion coefficients are presented in the ESI section S9,†
and extend the second order coefficients in U given in ref. 22
to arbitrarily large values of U. Note that the equilibrium trans-
mission calculations, presented in the previous section and in
the ESI section S8,† allow to extract the values of cθ = π2 and
also cV = 3/2 in the strong coupling limit (ũ = 1) and at particle-
hole symmetry (ε̃d = 0), and for highly asymmetric coupling to
the electrodes (eqn (S29) in the ESI†). Using the general rSPT
relations given in the ESI section S9† one can see that as long
as ũ = 1 and ε̃d = 0 these values are valid for arbitrary ΓL and
ΓR, so that they are independent of the level of asymmetry in
the electronic coupling to the electrodes. Note that an impor-
tant advantage of the rSPT approach is that it is not restricted
to these limiting cases, and it is valid for arbitrary values of
the parameters, which is a consequence of the fact that it is a
truly non-equilibrium method.

The rSPT expansion coefficients calculated for the B2, B4,
and T4 structures are displayed in Fig. 10 as a function of the
local level energy ɛ̃d = (εd + U/2)/Δ. As noted above, in an experi-
ment this can be modified by applying a gate voltage. We use
the Bethe ansatz ε̃d = 0 for the values of U/πΔ give in Table 1,

which then result to ũ = 0.99999418 for the B2 structure, ũ =
0.99999088 for B4, and ũ = 0.99997705 for T4. These values are
all very close to 1, and indeed replacing them with 1 leads to
essentially the same results, confirming that the Au-PTM
system is in the strong coupling limit. The coefficients there-
fore differ only due to the changes in ΓL/ΓR, for which we use
the DFT values given in Fig. 2. Since cθ and cB are linear-
response properties and do not depend on ΓL/ΓR, they are
identical for all configurations. Consequently, cθ and cB can
also be calculated via NRG. A comparison for these two quan-
tities between rSPT and NRG is given in ref. 23, where a rather
good agreement is found up to moderate values of ɛ̃d.

The effect of the contact asymmetry, as captured by the
ratio ΓL/ΓR, affects the value of the finite voltage coefficients,
as clearly seen in the lower part of Fig. 10. At particle hole sym-
metry (ε̃d = 0) the influence of the contact asymmetry vanishes,
except for cθV. A more detailed analysis of this effect is pre-
sented in Fig. 11, where we show cV as function of ΓL/ΓR for
different value of ɛ̃d and U. It can be seen that the overall vari-
ations of cV are rather large, and only as the system goes into
the strongly interacting regime (large U) the effect of contact
asymmetry becomes small, and it completely vanishes for very
large U and ε̃d = 0, where it reaches the limiting value of 3/2
discussed above. Note that around ΓL/ΓR = 1 (symmetric coup-
ling) cV varies quadratically for small variations of ΓL/ΓR

around 1 (see also ESI section S9†).

Fig. 10 The dependence of the conductance coefficients in eqn (15) on
the deviation from particle-hole symmetry, determined by ɛ̃d = (εd +
U/2)/Δ(EF), for the configurations B2, B4 and T4. The mathematical
relations for the coefficients are given in the ESI section S9,† and the
parameter ζ = 3(ΓL/ΓR)/(1 + ΓL/ΓR)

2 in those equations, which determines
the asymmetry of the electronic coupling to the left and right electro-
des, follows from the values of ΓR and ΓL in Fig. 2 as ζB2 = 2.6 × 10–4,
ζB4 = 2.6 × 10–4, and ζT4 = 0.568. The dimensionless Coulomb repulsion
U/(πΔ(EF)) for the effective Anderson model applicable to each system is
presented in Table 1.
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The rSPT provides a consistent description of the low-temp-
erature, low-field, low-bias transport properties of the
Anderson model. When the parameters are calculated from
DFT + NEGF, and combined with NRG and/or Bethe ansatz,
the method allows for an effectively first principles calculation
of all the transport parameters. If the atomic structure is well
defined, as is the case in STM experiment of molecules or
other adsorbates on flat surfaces,24 the approach is predictive
on a quantitative level. When the structure is not known, as is
the case for the PTM/Au system considered here, the approach
allows to estimate ranges of possible electronic coupling coeffi-
cients, interactions energies and deviations from the particle-
hole asymmetry. In this case the results give a qualitative gui-
dance to experiments as to which atomic structures are
expected to lead to Kondo physics in a measurement.

6. Conclusions

The theoretical modeling of Kondo physics in nanoscale
devices is usually limited to fitting the parameters of a SIAM
to conductivity measurements. Due to this adjustment of the
parameters to the experiment such an approach is therefore
not predictive, and the question whether it captures the right
physics for a given experiment is therefore open. Moreover, it
does not provide any information on the relationship between
the device structure and its conductance as well as its elec-
tronic interactions. In order to overcome this limitation and
provide a predictive model here we present a scheme that
obtains the required parameters of the SIAM from DFT calcu-
lations for realistic atomic structures. Importantly, conduc-
tance measurements are inherently a non-equilibrium process,
and our novel scheme combining DFT, NEGF, NRG and rSPT
is designed to capture such effects. We derive the equations

that relate the equilibrium density of states to the non-equili-
brium conductance versus voltage curves, which is necessary to
interpret experimental conductance measurements in terms of
the electronic and atomic structure of the system. With this
approach it is therefore possible to calculate the electronic and
non-equilibrium transport properties of strongly correlated
molecular junctions in a systematic and predictive way effec-
tively from first principles.

We employ the method for the description of the recently
measured Au/PTM/Au break-junctions. The main limitation of
break-junction experiments is that the statistical nature of the
measurements does not allow a direct understanding of the
atomic structures responsible for the conductance and its vari-
ations. First-principles calculations are therefore essential to
gain a full atomistic insight on the system properties. While
state of the art DFT + NEGF can only be applied to weakly cor-
related systems, the method presented here is proven to over-
come this limitation. In fact, for the Au/PTM/Au break-junc-
tion we show how the molecule–electrode contacts affect the
energy level alignment, charge transfer, hybridization and,
ultimately, the Kondo temperature and conductance.
Importantly, we show that while the Kondo temperature
depends only on the total hybridization of the molecules with
the electrodes, the experimental conductance depends also on
the relative coupling to left and right electrodes, since those
determine the current flow. Our projection scheme allows us
to obtain these required individual electronic couplings from
DFT, and with these we are able to evaluate the low bias con-
ductance versus voltage curves by means of the rSPT. For PTM
molecules weakly coupled to the electrodes, as is the case for a
molecule on an idealized perfectly flat Au surface, we predict
the Kondo temperature to lie below the experimentally accessi-
ble limit. In contrast, for asymmetric junctions with molecules
on a corrugated Au surface, where the central carbon atom has
a good electronic contact with the Au, the calculated Kondo
temperature is in good agreement with experiments. These
results are consistent with the experimental finding, where
only a limited number of junctions exhibit Kondo features in
the conductance at the accessible low temperatures.

Finally, we note that for experimental setups, where the
atomic structure is well characterized, such as for certain
adsorbates or defects on flat metal surfaces, the method will
enable quantitative comparisons with low-noise experiments.
By eliminating free parameters it can therefore lead to a sys-
tematic understanding of the non-equilibrium Kondo physics
of molecular systems. The inclusion of the rSPT allows to
predict systematic changes in non-linear transport at low
voltage, temperature and magnetic field, which cannot be
addressed directly from state of the art calculations of the
transmission coefficient alone. Such changes can be induced
experimentally, for example by varying the scanning tip height,
which modifies the asymmetry in the electronic coupling to
the electrodes, and these can then be calculated effectively
from first principles with the approach presented here. Our
method therefore paves the way toward the rational design of
Kondo systems, and the possibility of performing systematic

Fig. 11 The dependence of the transport coefficient cV, obtained
from the rSPT, is displayed as a function of the asymmetry in the con-
tacts ΓL/ΓR, for different values of the dimensionless Coulomb repulsion
U/(πΔ) and local level energy (εd + U/2)/Δ.
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comparisons with unprecedented accuracy between theory and
experiments.
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