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Rare-earth-doped fluoride nanoparticles with
engineered long luminescence lifetime for

time-gated in vivo optical imaging in the
second biological window
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Biomedicine is continuously demanding new luminescent materials to be used as optical probes for the

acquisition of high resolution, high contrast and high penetration in vivo images. These materials, in com-
bination with advanced techniques, could constitute the first step towards new diagnosis and therapy
tools. In this work, we report on the synthesis of long lifetime rare-earth-doped fluoride nanoparticles by
adopting different strategies: core/shell and dopant engineering. The here developed nanoparticles show
intense infrared emission in the second biological window with a long luminescence lifetime close to

1 millisecond. These two properties make the here presented nanoparticles excellent candidates for time-
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1. Introduction

Fluorescence-based optical imaging utilizes color-encoded
emissions (typically in the visible range) from endogenous or
exogenous fluorophores to acquire detailed images of organs
and tissues as well as subcellular structures to unravel biologi-
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gated infrared optical bioimaging. Indeed, their potential application as optical imaging contrast agents
for autofluorescence-free in vivo small animal imaging has been demonstrated, allowing high contrast
real-time tracking of gastrointestinal absorption of nanoparticles and transcranial imaging of intracere-
brally injected nanoparticles in the murine brain.

cal complexities." This technique is non-invasive and non-
ionizing, and allows video-rate imaging with high spatial resol-
utions not only at the optical microscopy level (sub-micro-
metre, ca. 250 nm), but also at the optical diffraction-limited
level (optical super-resolution, ca. 20 nm)."” As a result, fluo-
rescence imaging is applied in a plethora of fields ranging
from pre-clinical testing and clinical diagnosis, to precise
image-guided surgical excision of tumors, and to molecular-
level monitoring of disease progression.®'> However, fluo-
rescence imaging has been limited by the low penetration
depth of light into tissues (<1 mm for wavelengths in the
visible range of 400-650 nm) and by the autofluorescence of
biological tissues."*'* These two problems result in the loss of
spatial resolution and the decrease of the signal to noise ratio,
and thus in a serious deterioration of the acquired in vivo
images. The problem of penetration has been alleviated in the
past years, as it has been shown that centimeter-scale imaging
depths can be accomplished when shifting both fluorescence
and excitation wavelengths from the visible to the near infra-
red (NIR) optical biological windows, where the absorption of
tissues reaches a minimum. The NIR region of 650-950 nm is
known as the first biological window (NIR I), while the NIR
region of 1000-1350 nm is known as the second biological
window (NIR II) (Fig. 1a). Recent experimental results have
demonstrated that using fluorescent labels emitting in NIR II
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Fig. 1 a. Schematic illustration of the first (NIR I) and second (NIR II)
biological windows. The black curve represents the transmission of light
through a nude mouse skin (thickness of 1 mm). The absorption and
emission spectra of our synthesized NaYF,;:Yb**,Nd**@CaF, NPs are
also included in this figure for reference. b. A schematic depiction of the
general principle of time-gated optical imaging. Periodic excitation is
usually triggered by high repetition pulsed lasers. Image acquisition trig-
gered a determined delay time after the end of each laser pulse.

instead of NIR I result in an improved contrast and imaging
depth due to the reduction of light scattering,"'® which
scales as 7% where A is the wavelength and a has a value from
0.2 to 4 depending on the composition of the tissue."”
Therefore, a range of fluorescent materials with excitation in
NIR I and emission in NIR II have been developed and tested
for small animal imaging. These materials span from small
organic NIR fluorescent dyes to inorganic nanoparticles (NPs),
such as carbon nanotubes,'® rare earth doped nanocrystals,"’
and NIR quantum dots®* > (among them, Ag,S quantum dots
can be highlighted),>** enabling through-skull fluorescence
imaging of the murine brain with sub-10 pm resolution."® Yet,
even in NIR II, infrared-excited autofluorescence from tissues
remains substantial, as some biological components show
non-negligible emissions beyond 1000 nm, resulting in a dra-
matic reduction of the image contrast."® Optical probes with
longer emission wavelengths (>1300 nm) can help improve the
contrast by minimizing spectral overlap with autofluorescence;
however, such probes remained rare.

Time-gated optical imaging is an established stroboscopic
technique, which can eliminate the nuisance of autofluores-
cence by exploiting the long lifetime of emissions from optical
probes (~ps-ms) against the short lifetime (~ns) of tissue
autofluorescence.>”>® Despite their spectral overlap, the differ-
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ence of emission profiles in the time domain allows a straight-
forward removal of the autofluorescence background by cap-
turing images in a time window that excludes the unwanted
natural emissions from tissue endogenous luminophores
(Fig. 1b).>®2° This technique employs periodic laser pulses to
perform light excitation, while the excitation train of pulses is
synchronized, but with a precisely defined time delay (longer
than the lifetime of the autofluorescence), with the activation
of the camera. It has been shown that time-gated imaging,
with long lifetime lanthanide complexes (typically containing
europium or terbium), can allow high contrast fluorescence
microscopy imaging of cells in the visible range.>® Moreover,
in combination with the long emission lifetime (5-13 ps) of
porous silicon nanoparticles, time-gated optical imaging
enables a >20-fold improvement of the signal to background
contrast ratio in vivo when imaging with photoluminescence
(600-900 nm) in the NIR I window.?>*" Despite these advan-
tages, the use of time-gated techniques for in vivo optical
imaging in the NIR II window remains elusive, because most
NIR II luminophores have emission lifetimes commensurate
with that of autofluorescence, significantly limiting their use-
fulness in this regard.

Lanthanide-based luminescent nanomaterials constitute an
emerging class of promising biolabels for in vivo time-gated
optical imaging in NIR II. This is because lanthanide ions
have not only abundant energy levels in the infrared range, but
also typically long emission lifetimes (on the order of 107*-
107 5).**** Moreover, their advantages of characteristic
narrow excitation and emission bands, absence of photo-
bleaching, and no known significant toxic effects neither in
in vivo nor in in vitro, make them perfect as biolabels for
optical bioimaging in the time domain.?® Though particles
doped with infrared-emitting lanthanide ions (such as neody-
mium, Nd**, or erbium, Er’*) have been reported for steady-
state in vivo imaging in the NIR II window, the advantages of
NIR II lanthanide-doped particles with a tailored long lifetime
emission for time domain imaging have not yet been
revealed.>*™! Recently, we demonstrated in a proof-of-concept
that NaGdF:Nd*" particles with a size of 600-800 nm could
enable time-gated optical imaging of mice at 1050 nm, entail-
ing a remarkable improvement in the contrast of fluorescence
images due to the removal of autofluorescence.>” However, to
reach sufficiently long lifetimes (200 ps) and efficient lumine-
scence, micrometer-scale particle size had to be employed,
which is too large for many bioapplications. It is, therefore,
important to develop small-sized lanthanide-doped nanocrys-
tals with tailored long lifetime luminescence for time-gated
optical imaging in the NIR II window.

By examining the energy level structures of lanthanide ions,
we found that ytterbium (Yb®") ions possess a unique structure
and have only one single excited state (*F5/,), which produces
an emission centered at 1000 nm (the *F,, — F/, transition)
lying right across the NIR I and NIR II windows (Fig. 1a).***?
Moreover, the incorporation of Yb®* ions in crystallized
materials typically results in emission lifetimes of hundreds
of microseconds, several orders of magnitudes above the

This journal is © The Royal Society of Chemistry 2018
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autofluorescence lifetime.** Both features make Yb** ion-con-
taining nanocrystals attractive for NIR II time-gated optical
imaging. Note that Yb** ions are commonly used as sensitizers
for many activators (Er*", Ho’", Tm®", etc.) in doped NPs to
produce intense photon upconversion.>** In fact, they do
have excellent radiative properties to be utilized as emitters, as
many types of commercial lasers have employed Yb*" ions to
realize a tunable wavelength lasing output at ~1000 nm.*®*’
However, to excite Yb®" ion emitters, a laser output with a
wavelength at ~980 nm has to be used, which, unfortunately,
overlaps largely with the absorption peak of water molecules
that are dominant in biological samples. Overexposure of bio-
logical species to 980 nm light would cause overheating issues,
resulting in significant cell death and tissue damage.**>*%™!
This problem can be addressed by co-doping NPs with neody-
mium (Nd**) ions, which act as sensitizers for Yb** ions
(Fig. 2a) and have an intense absorption band at around
800 nm where water molecules and biological tissues have an
about 10 times lower absorption coefficient. As a result, we
reason that small-sized Nd**/Yb*" co-doped NPs with engin-
eered bright and long lifetime luminescence at 1000 nm hold
promise for employment as fluorescent biolabels for in vivo
time-gated optical imaging in the NIR II window.

In this work, we report on two approaches to produce a
class of sub-15 nm Nd/Yb-codoped luminescent NPs with
enhanced emission efficiency and long lifetime, allowing high
contrast time-gated in vivo imaging in the NIR II window. The
first one is to incorporate thulium (Tm®") dopants in Yb*/
Nd** codoped fluoride NPs (~13 nm) devoid of shell protec-
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tion, while the second one is to utilize a core/shell structure to
produce enhanced and long lifetime emissions from NaYF,:
Yb**,Nd**@CaF, core/shell NPs (~9 nm). For the first case, we
compared the effect of Tm*" doping in two fluoride hosts
(NaGdF, and NaDyF,) and observed that the presence of Gd**
in the host crystal gives NPs with a lifetime longer than 1 milli-
second. In the second case, we performed a systematic optim-
ization of doping concentrations of both Nd** and Yb** ions in
the NaYF, core, which enabled enhancing the absorption of
excitation light at 800 nm while shortening the distance
between Nd** and Yb*" for an improved energy transfer
efficiency. Coating with an inert biocompatible CaF, shell
served the purpose of reducing surface-related quenching,
thereby increasing the luminescence intensity at 1000 nm by
about 45 times and lifetime from about 50 to 830 ps. The suit-
ability of the NPs developed in both approaches for in vivo
time-gated optical imaging in the NIR II window has been
demonstrated, showing superior performance to that of com-
mercially available Ag,S NPs.

2. Experimental

All synthesis, characterization, and imaging details are
described in detail in the ESL{ All in vivo experiments carried
out in this work were approved by the Ethics Committee from
Universidad Auténoma of Madrid (CEIT) in the frame of the
project MAT2010-21270-C04-01 supported by the Spanish

Ministerio de Economia y Competitividad.
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Fig. 2 a. Schematic illustration of energy transfer in the NaGdF,4:2% Yb,3% Nd,0.2% Tm NPs; b. TEM image of the NaGdF,;:2% Yb,3% Nd,0.2% Tm
NPs (scale bar, 100 nm), with their size distribution shown in the inset; c. emission spectra from the NaGdF4;:2% Yb,3% Nd,0.2% Tm NPs and the
NaDyF4:2% Yb,3% Nd,0.2% Tm NPs in hexane under excitation at 790 nm; d. schematic illustration of the core/shell structure designed to suppress the
surface quenching effect; e. TEM image of the core NaYF4:10% Yb®*,30% Nd** and core/shell NaYF4:10% Yb®*,30% Nd**@CaF, NPs (scale bar, 100 nm),
with their size distribution shown (right); and f. emission spectra from the core and the core/shell NPs dispersed in hexane under excitation at 800 nm.
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3. Results and discussion

We first explored the possibility of obtaining long lumine-
scence-lifetime NPs in single core NPs. We selected
NaGdF4:2% Yb*",3% Nd*',0.2% Tm>" NPs, due to their good
luminescence properties already reported.”” The synthesis pro-
cedure of NaGdF,:22% Yb*' 3% Nd*',0.2% Tm>*" NPs is
described in the ESI.f The host materials and dopants that
enhance the energy transfer process can lead to an intense
and long lifetime Yb®* emission. The mechanism is rep-
resented schematically in Fig. 2a and in detail in Fig. S1.F The
co-doped Nd** and Tm®" ions, which increase the absorption
at 800 nm, and Gd*" acted as the energy bridge for the energy
transfer from Tm** to Nd**, enhancing the emission of Yb**
under 800 nm excitation. The size of NaGdF,:2% Yb*',3%
Nd*",0.2% Tm®" NPs was found to be approximately 13 nm,
according to the transmission electron microscopy (TEM)
image and size distribution shown in Fig. 2b. For comparison,
NaDyF,:2% Yb*',3% Nd*",0.2% Tm>®" NPs were also syn-
thesized, to study the role of Gd*" in the Nd*" — Yb®* energy
transfer process. Fig. 2c shows the emission spectra of
NaGdF4:2% Yb**,3% Nd**,0.2% Tm>" and NaDyF,:2% Yb*>*,3%
Nd*",0.2% Tm*" NPs under 790 nm excitation under the same
experimental conditions. The NaGdF,:2% Yb** 3% Nd**,0.2%
Tm®" NPs show two intense emission bands in the region from
850 nm to 1100 nm, the first one at 980 nm, corresponding to
the *F,, — ’Fs), transition of Yb*'; and the second one at
1060 nm corresponding to the *F5,, — I/, transition of Nd*".
In comparison, the NaDyF42% Yb*",3% Nd*%,0.2% Tm®"
sample shows an emission intensity about 6 x 10" times
weaker. It is also remarkable that the spectrum is dominated
by the 1060 nm band from Nd*", demonstrating the impor-
tance of Gd** in the energy transfer processes that leads to the
Yb*" emission. Dispersibility in water was achieved by coating
the NaGdF;:2% Yb*",3% Nd*%,0.2% Tm*" and NaDyF,:2%
Yb*,3% Nd**,0.2% Tm’" NPs with a PEGylated lipid
(DSPE-PEG-amine). But due to the existence of surface-related
quenching effects, the single core NaGdF,:2% Yb**,3%
Nd**,0.2% Tm>*" NPs cannot support the high doping concen-
tration of lanthanides to further enhance the absorption of
excitation light at 800 nm and increase the number of emitters
for higher luminescence intensity. Recent results show that a
core/shell structure is able to prevent the migration process of
excited energy from lanthanide dopants to surface quenching
sites, which mediates in part the lanthanide cross relaxation
induced concentration quenching effect.’® As a result, a core/
shell structure is crucial for high lanthanide doped NPs, along
with the suppression of surface-related quenching.

In the case of the core/shell NPs, NaYF,:Yb*",Nd*" NPs were
used as seeds for the epitaxial growth of an inert calcium fluo-
ride (CaF,) shell (Fig. 2d). CaF, was chosen as the shell layer
because it has a low lattice mismatch with the core, broad
spectral range of optical transparency and high stability in
aqueous environments; additionally, because its constituents
(calcium and fluoride ions) are common components of bio-
logical tissues, which can enhance the biocompatibility of the
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resulting core/shell NPs.’* Both the NaYF,:Yb** Nd*" core and
the NaYF,:Yb*",Nd**@CaF, core/shell NPs doped with varied
concentrations of Yb*" and Nd*" were synthesized via the
thermal decomposition of metallic trifluoroacetates at high
temperatures (see the ESIT). The TEM image of the synthesized
core NaYF,:Yb**,Nd®" NPs reveals a spherical shape with an
average diameter of about 5.5 nm (Fig. 2e). The obtained core/
shell NPs are monodisperse with a uniform, cubic shape,
having an average size close to 9 nm. The X-ray diffraction
(XRD) patterns indicate that both the core and the core/shell
structures are of the cubic crystallographic phase (Fig. S2t). All
the XRD peaks are consistent with the standard patterns of
a-NaYF, (JCPDS No. 77-2042) and CaF, (JCPDS No. 77-2096).
Energy-dispersive X-ray (EDX) spectra confirm the presence of
Ca in the core/shell structure, suggesting the successful prepa-
ration of the designated NaYF,:Yb*")Nd**@CaF, core/shell NPs
(Fig. S37).

The absorption spectrum of the core/shell NPs (Fig. S47)
displays the characteristic absorption bands of Nd** ions (at
890, 800 and 750 nm) and the absorption band of Yb*" ions
(centered at around 980 nm). The photoluminescence spectra
of the core and core/shell NPs, obtained under optical exci-
tation at 800 nm, are included in Fig. 2f. The emission spectra
show two emission peaks (ca. 1000 nm), centered at 980 and
1011 nm, both of which arise from radiative transitions
between Stark energy sublevels of the excited (*Fs,) and
ground states (*F,,) of Yb®" ions. No luminescence from Nd**
ions was observed in those NPs doped with a high lanthanide
concentration. Note that the excitation spectrum of the core/
shell NPs presents three emission peaks centered at 750, 800
and 860 nm, which matches well with the absorption peaks of
Nd** ions (Fig. S47). This spectral match unequivocally demon-
strates the possibility of Nd** — Yb*" energy transfer processes,
thus enabling the excitation of core/shell NPs through Nd**
absorption in the NIR I window (Fig. 2f).>>>® Fig. 2f also
includes the emission spectrum from the corresponding core
NPs. It is evidenced that the addition of an inert CaF, shell
results in a 45 times increase in the emission intensity. This
can be attributed to the reduction of surface lattice defects of
the core nanocrystals that act as luminescence quenchers, as
well as to the decrease of nonradiative interactions between
surface lanthanide ions and luminescence quenchers from the
surrounding environment (solvents, ligands, etc.), created by
the spatial isolation of the epitaxial shell (Fig. 2d).””*®

To probe the impact of the absorption-enhanced fluo-
rescence and to optimize the energy transfer between Nd**
and Yb®*" ions, we investigated the concentration effect of sen-
sitizer Nd** ions on the overall emission intensity of the core/
shell structure. For this purpose, we prepared a set of
a-NaYF,;:10% Yb**,x% Nd** core NPs doped with different
Nd** contents (x = 10, 20, 40, 60), and then utilized the same
amount of the CaF, shell precursor for coating. All synthesized
core and core/shell NPs present virtually identical sizes, as
shown by the TEM images and size distribution (Fig. S57).
Increasing the Nd*" doping concentration from 10% to 30%
results in a relevant increase in the fluorescence emission

This journal is © The Royal Society of Chemistry 2018
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intensity. However, a decrease in the emission intensity is
observed if the Nd** doping level is further increased (50%
and 80%) (Fig. S67). No significant changes in the shape of the
emission spectrum were observed, revealing a minimum dis-
tortion of the crystalline field of the host lattice (NaYF,) even
at high dopant concentrations of Nd*" ions. Whereas the
absorption of the excitation light can be enhanced by increas-
ing the Nd** doping concentration, the deleterious cross-relax-
ation processes between Nd*" ions are simultaneously acti-
vated, which results in a reduced energy transfer to Yb>* ions.
The final emitted intensity generated by Yb®" ions would result
from the balance between these two effects, indicating an opti-
mized Nd** concentration of 30%.

We next verified the role of the concentration of the activa-
tor Yb>" ions in the overall energy transfer process by evaluat-
ing the emission intensity as a function of Yb*" concentration
in the range from 10% to 60%. As occurred when changing the
concentration of Nd** ions, no effects on the morphology and
size of the NPs were observed (Fig. S71). Increasing the Yb**
concentration resulted in a progressive reduction in the emis-
sion intensity (Fig. S81). This result indicates that a long Yb*'-
Yb*" interionic distance is essential for efficient energy trans-
fer from Nd** to Yb*>" ions. This has been explained in the past
in terms of the activation of an Yb®>" — Nd** back energy trans-
fer process that could occur for high Yb*" concentrations (note
that in a back transfer process, the Yb*" ion acts as a sensi-
tizer).>® Additionally, the reduction of ytterbium emission at
high doping levels could also be due to the activation of con-
centration quenching effects as described in the literature.®
The optimal doping levels for Yb** and Nd** in the NaYF,:
Yb*",Nd**@CaF, core/shell NPs were determined to be 10%
and 30%, respectively.

Finally, to verify that the co-doping approach (simultaneous
incorporation of both Nd** and Yb** in the core) was the best
choice for optimizing the energy transfer rate from Nd** to
Yb**, we evaluated the energy transfer process when the sensi-
tizer and activator ions are spatially separated in the core/shell
structure. In particular, we prepared the NaYF,;:10%
Yb**@CaF,:30% Nd** core/shell structure, and compared the
NIR II emission at 1000 nm with that from single-core co-
doped NaYF,:10% Yb**30% Nd**@CaF, core/shell NPs. We
observed that the separation of Nd** and Yb*" ions in the core/
shell structure lets the emission peak at 860 nm from Nd**
ions dominate over the emission peak at 1000 nm from Yb**
ions, as opposed to the result achieved with the co-doping
approach. Moreover, the interesting NIR II emission at
1000 nm is about 10 times weaker than that of the co-doped
NaYF,:10% Yb**@CaF,:30% Nd** core/shell NPs (Fig. S97).
This result confirms the importance of positioning both Nd**
and Yb*" ions in the core of a core/shell structure to produce a
strong NIR emission at 1000 nm.

Prior to their application in time-gated in vivo imaging
experiments, the optimal core/shell NPs (NaYF,:10% Yb**,30%
Nd**@CaF,) were provided with dispersibility in aqueous
media by replacing the oleate molecules present on the surface
of the NPs with poly(acrylic acid) (PAA, MW = 18 000). The pro-

This journal is © The Royal Society of Chemistry 2018
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cedure is described in detail in the ESI.f The Fourier trans-
form infrared (FTIR) spectra of the as-synthesized and modi-
fied NPs (Fig. S101) showed an increased intensity of the band
at 1724 cm™" (that can be assigned to -C=0 groups) demon-
strating that a large amount of COOH groups had been added
to the core/shell NP surface. This is further supported by the
increased intensity of the band at 3454 cm™" (3100-3600 cm ™",
OH groups), and the decreased intensity of the band at
2927 em™" (CH; groups). This indicates a successful replace-
ment of the original oleic acid ligand by PAA. In addition, the
hydrodynamic size of the PAA-coated core/shell NPs was evalu-
ated to be about 37 nm using dynamic light scattering (DLS)
(Fig. S111), much larger than the size shown in the TEM
(~9 nm) image. This larger size can be attributed to the
presence of PAA in contact with the aqueous environment,
evidencing the successful ligand transfer, and demonstrating
that, even after the ligand transfer, the NPs are small enough
for biological applications. The emission intensity from the
water-dispersible core/shell NPs was about two times lower
than that from the hexane-dispersed form (Fig. S12%), which
could be attributed to the imperfectness of the shell and the
existence of a large amount of -OH groups (a high phonon
energy of ~3500 cm™") in water, resulting in the non-radiative
depopulation of the *F, state of Yb*>* ions.®* The cytotoxicity
of the NPs was evaluated via a methyl thiazolyl tetrazolium
(MTT) assay on HeLa cells, which indicated no significant
effects of the NPs on cell viability (Fig. S137).

To evaluate the suitability of the NPs for time-gated
imaging in the second biological window, the decay curve of
the NIR II emission at 1000 nm (corresponding to the *Fs/, —
*F,,, transition of Yb®* ions) from both types of NPs was
acquired (Fig. 3). The decay curve could be fitted to a single
exponential giving a value of 7z = (1350 + 50) ps for the
NaGdF,:2% Yb**,3% Nd**,0.2% Tm>" NPs (Fig. 3a). This extre-
mely long lifetime makes these particles an ideal fluorophore
for time-gated imaging, as the detection can be delayed
without observing a decrease in the emitted intensity from the
NPs (for a delay of 1 ps the remaining signal will be 99.93% of
the original signal). In good agreement with the observed
emitted intensity, the lifetime of the NaDyF42% Yb*",3%
Nd**,0.2% Tm®*" NPs was 7z = (55 + 5) ps (Fig. 3a), supporting
once more the importance of Gd*" in the emission mechanism
of Yb*". For the PAA-coated NaYF,:10% Yb**,30% Nd*' and
NaYF,:10% Yb**,30% Nd**@CaF, NPs, whereas only core NPs
presented a lifetime of 51 us for Yb®" ions, the lifetime of the
core/shell NPs in aqueous dispersion was determined to be as
long as 833 ps, indicating their suitability for time-gated
imaging (Fig. 3b). Note that the significant difference of the
lifetime for the NaGdF,:2% Yb*',3% Nd*',0.2% Tm®*' and
NaYF,:10% Yb**,30% Nd** core NPs is due to both particles
having a distinct concentration of lanthanide dopants. We also
compared the emission intensity of the core/shell NPs devel-
oped in this work with that of commercial Ag,S NPs, whose
emission band lies at around 1230 nm (Fig. S147), and which
constitute one of the few probes available for high contrast
imaging in the second biological window.°>®® For an equi-
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NaGdF,:Yb3*, Nd3*,Tm3*
T=1350+50 us

NaDyF,:Yb3*, Nd3*,Tm3+*
T=55%5ps

Intensity (arb. units)

Time (ms)

NaYF,:Yb%*, Nd**@CaF,
T=830£20 ps

NaYF,:Yb3*, Nd3*
T=50%5ps

Time (ms)

Fig. 3 Fluorescence decay curves of the emission observed at 1000 nm corresponding to: a. NaGdF,;:2% Yb®*,3% Nd**,0.2% Tm*" NPs and
NaDyF4:2% Yb®*,3% Nd**,0.2% Tm>* NPs. b. PAA-coated NaYF4:10% Yb**,30% Nd**@CaF, core/shell NPs.

valent concentration of NPs in the aqueous dispersion
(10 mg mL™"), our optimized core/shell NPs present a much
brighter emission signal than Ag,S NPs. In addition, the short
lifetime of Ag,S NPs (tens of nanoseconds) does not allow
their application in time-gated imaging, as is demonstrated in
Fig. S15,1 in which a delay time of 10 ps is enough to eliminate
the fluorescence signal generated by Ag,S NPs. The absolute
quantum yield of our core/shell NPs was estimated to be
~11 + 1% using an integrating sphere method, which is
much higher than the emission quantum yield of Ag,S of
0.15-4.7%.°%°° This is in agreement with the observed com-
parison of emission brightness.

Their excellent optical properties led us to test both types of
NPs for autofluorescence-free time-gated imaging. In particu-
lar, NaGdF,:2% Yb*",3% Nd*',0.2% Tm?>" NPs were tested for
real-time tracking of the distribution of NPs after an oral
administration of 200 pL of a 4 mg mL™~" dispersion of NPs in
water. To test the NPs under the most adverse conditions,
C57BL/6 mice were used, as they present a very intense auto-
fluorescence due to the skin pigmentation.” This can be seen
in Fig. 4a, which shows the ventral fluorescence image of a
mouse immediately after NP administration and without
applying any delay. The strong autofluorescence caused by the
skin pigmentation of the animal is clearly observed, together

5min  10min 15 min
. v 0

25 min

.

30 min

65 min 70 min

Fig. 4 a. Fluorescence ventral image of a black CD1 mouse after oral administration of a dispersion of NaGdF,:Yb®*,Nd**,Tm®* NPs in water. The
image was taken without time delay so the autofluorescence of the mouse is clearly seen, especially from the region of the stomach. b. Image of the
same animal after applying a delay time of 1 ps. Only the signal coming from the NPs can be observed. c. Intensity-based real-time tracking of the
distribution of NPs in the stomach. The signal displaces towards the duodenum and the intensity decreases as the NPs get absorbed in the
intestine. d. Time-lapse color-coded composition of the images shown in c, showing the position of the NPs in one color for each time. It can be
seen that the NPs are initially located at the bottom of the stomach (reddish color) but in the final moments the NPs are mainly located close to the
duodenum (greenish color).

17776 | Nanoscale, 2018, 10, 1777117780 This journal is © The Royal Society of Chemistry 2018
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with a strong signal coming from the abdomen, which can be
attributed to the autofluorescence of the animal’s diet and the
liver. Once a delay of 1 ps is applied (Fig. 4b), the signal gener-
ated by the NPs can be easily localized and isolated from the
autofluorescence signal. To obtain these images, only one
accumulation with an integration time of 30 ms was required,
which makes this system compatible with real-time NP track-
ing. In particular, we monitored the transit of the adminis-
tered NPs from the stomach to the intestine, as shown in
Fig. 4c and d. Two combined effects can be observed over
time: first, as the NPs are deposited at the bottom of the
stomach, the fluorescence signal displaces up and to the left,
in the direction of the duodenum; and second, once the NPs
have reached the exit of the stomach, the intensity decreases.
This decrease in the intensity indicates the progressive transit
of the NPs to the intestine. In the particular case shown in
Fig. 4c, it took around 75 minutes for the majority of the NPs
to exit the stomach. The lack of signals from the intestine indi-
cates that the NPs are rapidly absorbed at the beginning of the
tube. Fig. 4d shows a color-coded time-lapse image composed
with the images shown in Fig. 4c. The images have been gener-
ated by overlapping the position of the maxima of fluorescence
in a different color for each time. The figure indicates that the
fluorescence signal is initially (reddish color) located at the
bottom of the stomach, whereas later (greenish color) the NPs

No time gating

o0
=
S
@©
o0
)
£
=
(%)
=t
i
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are concentrated in an upper-left position, which matches the
position of the valve that connects the stomach to the duode-
num. The ex vivo study of the organs confirmed that most of
the NPs had abandoned the stomach, as only a weak emission
was registered in that organ, and that the NPs had been
absorbed in the intestine, as no signal from the NPs could be
observed (Fig. S167). The importance of this study stems from
the fact that the transit time of substances from the stomach
to the intestine, and subsequently, to the bloodstream, depends
on many factors that cannot be externally controlled (e.g. the
amount of food present in the stomach or the level of activity
of the animal can affect the speed of the process).®®®” The
transit rate, in turn, has a strong influence on the absorption
of orally administered drugs as, among other reasons, it deter-
mines the concentration of the drug in the plasma and its bio-
availability.°® Our approach provides a powerful alternative to
the models and simulations that are usually employed to study
gastrointestinal transit,’”’°® because it allows real time tracking
of the NP distribution thanks to their fluorescence.

A different set of experiments, also designed for their
potential of autofluorescence-free in vivo imaging, was per-
formed with the NaYF,:10% Yb*",30% Nd*'@CaF, NPs. In this
case, the core/shell NPs were first used for in vivo autofluores-
cence-free time-gated imaging. In our experiment, we com-
pared the NIR fluorescence images obtained for a C57BL/

Subcutaneously injected NPs

Fluorescence Merge Fluorescence Merge

Fluorescence (At =0)

Fluorescence (At =10 ps)

Fig. 5 a. Optical and NIR (900-1700 nm) images of C57/Bl6 mice, one of them injected with 50 pl NaYF,4:10% Yb®*,30% Nd**@CaF, NPs and the
other acting as a control. Fluorescence images were recorded for no delay and for a 1 us delay time. b. NIR images of NaYF4:10% Yb**,30%
Nd**@CaF, dispersion and feedstuff detected with zero and 10 ps time delay.

This journal is © The Royal Society of Chemistry 2018
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Fig. 6 a. Optical image of a CD1 mouse after intracerebral injection of NaYF,: 10% Yb®*,30% Nd**@CaF, NPs. b. NIR fluorescence image of the
mouse in (a) as obtained with no time delay between excitation pulse and image collection. The merge between optical and fluorescence images is
shown to indicate that the brightest fluorescence emission corresponds to eye autofluorescence. c. NIR time-gated fluorescence image, as obtained
for the mouse in (a) when a 1 ps time delay is introduced between excitation and image collection. The merged images show that the autofluores-

cence generated by the eye was successfully removed.

6 mouse subcutaneously injected with our core/shell NPs and
a control mouse (to which no NPs were administered) when no
delay between laser pulse and image collection was applied
and when a 1 ps delay time was applied (Fig. 5a). In the
absence of any time delay, a strong background of autofluores-
cence is evidenced in both control and injected mice. Indeed,
the autofluorescence-related background is so strong that it is
difficult to elucidate the position of the injection, whereas an
introduction of a time delay leads to a complete removal of the
autofluorescence background, making it possible to trace
clearly the location of the subcutaneous NP injection in the
mouse. These images unmistakably indicate the capability of
time-gated imaging for complete elimination of the autofluor-
escence background in the NIR. This is useful not only to
avoid skin autofluorescence, but also to avoid undesirable
organ autofluorescence, which can be affected by animal diet.
In Fig. 5b, it is shown that the NIR emission signal generated
by a food pellet can be successfully removed using time-gated
imaging. When no decay is established, the foodstuff displays
a weak but non-negligible emission signal, which disappears
when time-gated imaging is applied.

Then, the core/shell NPs were used for transcranial fluo-
rescence imaging. To do so, the core/shell NPs were directly
injected into a CD1 mouse brain, as indicated in Fig. 6a. The
mouse was injected intracerebrally with 100 nL of a dispersion
of NaYF4:10% Yb’",30% Nd**@CaF, NPs. The extremely low
volume of NPs that can be injected into the brain to avoid
adverse effects makes it of paramount importance to increase
the contrast of the image by eliminating any nonspecific back-
ground such as that generated by autofluorescence of the eyes.
In particular, when dealing with head and brain imaging, the
NIR fluorescence signal is hindered by the autofluorescence
emission of the eyes in both NIR I and NIR II windows, which

17778 | Nanoscale, 2018, 10, 17771-17780

can be attributed to the presence of melanin. This is evidenced
in Fig. 6b, where the NIR image (obtained under continuous
wave 808 nm excitation) of a mouse with an intracranial injec-
tion of our infrared emitting core/shell NPs is shown. As
shown in Fig. 6¢, the autofluorescence emission at the eye can
be completely eliminated by performing time-gated imaging
with a time delay of 1 ps, allowing for a straightforward localiz-
ation of the NPs inside the brain. As was the case for orally
administrated NPs, the image shown in Fig. 6b corresponds to
a single accumulation with a 30 ms integration time. This indi-
cates the adequacy of our strategy for performing autofluores-
cence-free real time monitoring of brain structures and pro-
cesses even at very low NP amounts. The results included in
Fig. 6 open the way for the use of rare-earth-doped NPs for
brain imaging as the basis of advanced cerebral studies.

4. Conclusion

In conclusion, we have developed two different approaches for
obtaining NPs with intense luminescence and long fluo-
rescence lifetime in NIR II. First, the effect of the selection of
dopants to optimize the energy transfer processes and the
obtained NaGdF,:2% Yb**,3% Nd**,0.2% Tm®* NPs (~13 nm)
with a bright emission at 980 nm and a lifetime of 1.3 ms was
explored. Second, we synthesized sub-10 nm monodisperse
core/shell NaYF4:10% Yb**,30% Nd**@CaF, NPs with high
dopant concentrations, which show a strong NIR II emission
at 1000 nm with a long lifetime close to 1 millisecond. The
advantages of core/shell engineering and selective doping were
systematically investigated, allowing for a fine optimization of
the fluorescence properties. The possibility of efficient optical
excitation in NIR I and bright emission in NIR II with fluo-

This journal is © The Royal Society of Chemistry 2018
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rescence decay times around 1 millisecond (orders of magni-
tude longer than that of tissue autofluorescence) makes our
NPs superior candidates for high penetration, autofluores-
cence-free in vivo NIR imaging using a time-gated approach.
This was experimentally demonstrated through the perform-
ance of simple but conclusive in vivo experiments in murine
models: real-time tracking of gastrointestinal absorption of
orally administered NPs and transcranial autofluorescence-free
imaging of intracerebrally injected NPs. This fact, coupled
with their outstanding brightness, which surpasses that of
commonly used NIR-emitting Ag,S nanoparticles, makes our
NPs great candidates as contrast agents for high-contrast deep
tissue bioimaging in the time domain.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported in part by the grants from the
Fundamental Research Funds for the Central Universities,
China (HIT. BRETIV.201503 and AUGA5710052614) and the
National Natural Science Foundation of China (51672061). We
thank Dr Lina Wu at the Fourth Hospital of Harbin Medical
University for her kind help with the MTT assay, and
Dr Tymish Y. Ohulchanskyy at Shenzhen University for his
kind help with the fluorescence lifetime measurement. The
work was also supported by the Ministerio de Economia y
Competitividad of Spain (grant MAT2016-75362-C3-1-R). Jie Hu
acknowledges the scholarship from the China Scholarship
Council (No. 201506650003). Dirk H. Ortgies is grateful to the
Spanish Ministry of Economy and Competitiveness for a Juan
de la Cierva scholarship (No. FJCI-2014-21101) and the
Spanish Institute of Health (ISCIII) for a Sara Borell Fellowship
(No. CD17/00210).

References

1 F. Leblond, S. C. Davis, P. A. Valdés and B. W. Pogue,
J. Photochem. Photobiol., B, 2010, 98, 77-94.

2 C.-H. Quek and K. W. Leong, Nanomaterials, 2012, 2, 92—
112.

3 K.-T. Yong, Y. Wang, I. Roy, H. Rui, M. T. Swihart,
W.-C. Law, S. K. Kwak, L. Ye, J. Liu and S. D. Mahajan,
Theranostics, 2012, 2, 681.

4 M. Sauer and M. Heilemann, Chem. Rev., 2017, 117, 7478~
7509.

5 B. Huang, W. Q. Wang, M. Bates and X. W. Zhuang,
Science, 2008, 319, 810-813.

6 S. Andersson-Engels, C. af Klinteberg, K. Svanberg and
S. Svanberg, Phys. Med. Biol., 1997, 42, 815.

This journal is © The Royal Society of Chemistry 2018

View Article Online

Paper

7 Q. T. Nguyen, E. S. Olson, T. A. Aguilera, T. Jiang,
M. Scadeng, L. G. Ellies and R. Y. Tsien, Proc. Natl. Acad.
Sci. U. S. A., 2010, 107, 4317-4322.

8 S. Gioux, H. S. Choi and J. V. Frangioni, Mol. Imaging, 2010,
9, 237.

9 A. L. Vahrmeijer, M. Hutteman, J. R. van der Vorst,
C. J. H. van de Velde and J. V. Frangioni, Nat. Rev. Clin.
Oncol., 2013, 10, 507-518.

10 J. V. Frangioni, Curr. Opin. Chem. Biol., 2003, 7, 626-634.
11 E. A. Cowles, J. L. Kovar, E. T. Curtis, H. Xu and

S. F. Othman, BioRes. Open Access, 2013, 2, 186-191.

12 A. P. Patterson, S. A. Booth and R. Saba, BioMed Res. Int.,

2014, 2014, 1-14.

13 B. del Rosal, 1. Villa, D. Jaque and F. Sanz-Rodriguez,

J. Biophotonics, 2016, 9, 1059-1067.

14 A. M. Smith, M. C. Mancini and S. Nie, Nat. Nanotechnol.,

2009, 4, 710-711.

15 G. S. Hong, S. Diao, J. L. Chang, A. L. Antaris, C. X. Chen,

B. Zhang, S. Zhao, D. N. Atochin, P. L. Huang,
K. I. Andreasson, C. ]J. Kuo and H. J. Dai, Nat. Photonics,
2014, 8, 723-730.

16 G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris,

Q. Wang and H. Dai, Angew. Chem., 2012, 51, 9818-9821.

17 A. N. Bashkatov, E. A. Genina, V. I. Kochubey and

V. V. Tuchin, J. Phys. D: Appl. Phys., 2005, 38, 2543.

18 J. T. Robinson, G. Hong, Y. Liang, B. Zhang, O. K. Yaghi

and H. Dai, J. Am. Chem. Soc., 2012, 134, 10664-10669.

19 D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl,

A. Kulesa, S. Chen, C. M. Roth, R. E. Riman and
P. V. Moghe, Nat. Commun., 2013, 4, 2199-2199.

20 C. Caltagirone, A. Bettoschi, A. Garau and R. Montis, Chem.

Soc. Rev., 2015, 44, 4645-4671.

21 G. Hong, J. T. Robinson, Y. Zhang, S. Diao, A. L. Antaris,

Q. Wang and H. Dai, Angew. Chem., Int. Ed., 2012, 51,
9818-9821.

22 A. Benayas, F. Ren, E. Carrasco, V. Marzal, B. del Rosal,

B. A. Gonfa, A. Juarranz, F. Sanz-Rodriguez, D. Jaque and
J. Garcia-Solé, Adv. Funct. Mater., 2015, 25, 6650-6659.

23 C. Li, Y. Zhang, M. Wang, Y. Zhang, G. Chen, L. Li, D. Wu

and Q. Wang, Biomaterials, 2014, 35, 393-400.

24 Y. Zhang, G. Hong, Y. Zhang, G. Chen, F. Li, H. Dai and

Q. Wang, ACS Nano, 2012, 6, 3695-3702.

25 L. Gu, D. J. Hall, Z. Qin, E. Anglin, ]J. Joo, D. J. Mooney,

S. B. Howell and M. ]. Sailor, Nat. Commun., 2013, 4, 2326.

26 H. Osaki, C. M. Chou, M. Taki, K. Welke, D. Yokogawa,

S. Irle, Y. Sato, T. Higashiyama, S. Saito and A. Fukazawa,
Angew. Chem., Int. Ed., 2016, 128, 7247-7251.

27 D. Jin, J. A. Piper and A. Chem, Anal. Chem., 2011, 83,

2294-2300.

28 X. Zheng, X. Zhu, Y. Lu, J. Zhao, W. Feng, G. Jia, F. Wang,

F. Li and D. Jin, Anal. Chem., 2016, 88, 3449-3454.

29 L. Gu, D. J. Hall, Z. Qin, E. Anglin, J. Joo, D. J. Mooney,

S. B. Howell and M. ]. Sailor, Nat. Commun., 2013, 4, 2326-
2326.

30 M. Rajendran and L. W. Miller, Biophys. J., 2015, 109, 240-

248.

Nanoscale, 2018, 10, 17771-17780 | 17779


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8nr02382d

Open Access Article. Published on 23 August 2018. Downloaded on 8/14/2025 8:21:21 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

31

32

33

34

35

36

37

38

39

40

41

42

43

44
45

46

47

48

49

50

J. Joo, X. Liu, V. R. Kotamraju, E. Ruoslahti, Y. Nam and
M. ]. Sailor, ACS Nano, 2015, 9, 6233.

W. T. Carnall, P. R. Fields and K. Rajnak, J. Chem. Phys.,
1968, 49, 4424-4442.,

J. C. G. Bunzli and C. Piguet, Chem. Soc. Rev., 2005, 34,
1048-1077.

R. Wang, X. Li, L. Zhou and F. Zhang, Angew. Chem., Int.
Ed., 2014, 53, 12086-12090.

E. S. Levy, C. A. Tajon, T. S. Bischof, J. Iafrati,
A. Fernandezbravo, D. J. Garfield, M. Chamanzar,
M. M. Maharbiz, V. S. Sohal and P. J. Schuck, ACS Nano,
2016, 10, 8423-8433.

L. Ma, Y. Liu, L. Liu, A. Jiang, F. Mao, D. Liu, L. Wang and
J- Zhou, Adv. Funct. Mater., 2017, 1705057.

B. del Rosal, D. H. Ortgies, N. Fernandez, F. Sanz-
Rodriguez, D. Jaque and E. M. Rodriguez, Adv. Mater.,
2016, 28, 10188-10193.

D. J. Naczynski, M. C. Tan, M. Zevon, B. Wall, J. Kohl,
A. Kulesa, S. Chen, C. M. Roth, R. E. Riman and
P. V. Moghe, Nat. Commun., 2013, 4, 1345-1346.

Y. Zhong, Z. Ma, S. Zhu, J. Yue, M. Zhang, A. L. Antaris,
J. Yuan, R. Cui, H. Wan and Y. Zhou, Nat. Commun., 2017,
8, 737.

W. Shao, G. Chen, A. Kuzmin, H. L. Kutscher, A. Pliss,
T. Y. Ohulchanskyy and P. N. Prasad, J. Am. Chem. Soc.,
2016, 138, 16192.

M. Kamimura, N. Kanayama, K. Tokuzen, K. Soga and
Y. Nagasaki, Nanoscale, 2011, 3, 3705-3713.

H. Dong, L. D. Sun and C. H. Yan, Chem. Soc. Rev., 2015,
44, 1608-1634.

Y. F. Wang, G. Y. Liu, L. D. Sun, J. W. Xiao, J. C. Zhou and
C. H. Yan, ACS Nano, 2013, 7, 7200-7206.

A. Brenier, J. Opt. Soc. Am. B, 2006, 23, 2209-2216.

L. Tu, X. Liu, F. Wu and H. Zhang, Chem. Soc. Rev., 2015,
44, 1331-1345.

Y. Jeong, J. Sahu, D. Payne and J. Nilsson, Opt. Express,
2004, 12, 6088-6092.

W. F. Krupke, IEEE ]. Sel. Top. Quantum Electron., 2002, 6,
1287-1296.

J. Shen, G. Chen, A. M. Vu, W. Fan, O. S. Bilsel, C. C. Chang
and G. Han, Adv. Opt. Mater., 2014, 1, 644-650.

Y. T. Zhong, G. Tian, Z. Gu, Y. J. Yang, L. Gu, Y. L. Zhao,
Y. Ma and J. N. Yao, Adv. Mater., 2014, 26, 2831-2837.

H. Wen, H. Zhu, X. Chen, T. F. Hung, B. Wang, G. Zhu,
S. F. Yu and F. Wang, Angew. Chem., 2013, 52, 13419-13423.

17780 | Nanoscale, 2018, 10, 17771-17780

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

View Article Online

Nanoscale

X. Xie, N. Gao, R. Deng, S. Qiang, Q. H. Xu and X. Liu,
J. Am. Chem. Soc., 2013, 135, 12608-12611.

X. Zhang, Z. Zhao, X. Zhang, D. B. Cordes, B. Weeks,
B. Qiu, K. Madanan, D. Sardar and J. Chaudhuri, Nano
Res., 2015, 8, 636-648.

N. J. Johnson, S. He, S. Diao, E. M. Chan, H. Dai and
A. Almutairi, J. Am. Chem. Soc., 2017, 139, 3275-3282.

G. Y. Chen, J. Shen, T. Y. Ohulchanskyy, N. ]J. Patel,
A. Kutikov, Z. P. Li, ]J. Song, R. K. Pandey, H. Agren,
P. N. Prasad and G. Han, ACS Nano, 2012, 6, 8280-8287.

K. Prorok, M. Pawlyta, W. Strek and A. Bednarkiewicz,
Chem. Mater., 2016, 28, 2295-2300.

L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi,
L. D. Sun, C. H. Yan and Q. Li, Adv. Mater., 2015, 27,
2065.

Y. F. Wang, L. D. Sun, J. W. Xiao, W. Feng, J. C. Zhou,
J. Shen and C. H. Yan, Chemistry, 2012, 18, 5558.

N. J. J. Johnson, H. Sha, S. Diao, E. M. Chan, H. Dai and
A. Almutairi, J. Am. Chem. Soc., 2017, 139, 3275.

D. Jaque, M. O. Ramirez, L. E. Baus3, J. G. Solé, E. Cavalli,
A. Speghini and M. Bettinelli, Phys. Rev. B: Condens. Matter
Mater. Phys., 2003, 68, 035118.

A. C. Berends, F. T. Rabouw, F. C. M. Spoor, E. Bladt,
F. C. Grozema, A. J. Houtepen, L. D. A. Siebbeles and C. de
Mello Donega, J. Phys. Chem. Lett., 2016, 7, 3503-3509.

R. Arppe, 1. Hyppanen, N. Perala, R. Peltomaa, M. Kaiser,
C. Wurth, S. Christ, U. Resch-Genger, M. Schaferling and
T. Soukka, Nanoscale, 2015, 7, 11746-11757.

X. Zhang, Y. Gu and H. Chen, J. Innovative Opt. Health Sci.,
2014, 7, 1350059.

X. Jia, D. Li, J. Li and E. Wang, RSC Adv., 2015, 5, 80929~
80932.

G. Jingwen, W. Chuanli, D. Dan, W. Ping and C. Chenxin,
Adv. Healthcare Mater., 2016, 5, 2437-2449.

D. H. Zhao, J. Yang, R. X. Xia, M. H. Yao, R. M. Jin,
Y. D. Zhao and B. Liu, Chem. Commun., 2018, 54, 527.

M. Rowland, C. Peck and G. Tucker, Annu. Rev. Pharmacol.
Toxicol., 2011, 51, 45-73.

A. Y. Abuhelwa, D. B. Williams, R. N. Upton and
D. ]J. R. Foster, Eur. . Pharm. Biopharm., 2017, 112, 234~
248.

T. Kimura and K. Higaki, Biol. Pharm. Bull., 2002, 25, 149-
164.

W. Huang, S. L. Lee and L. X. Yu, 4APS J., 2009, 11, 217-
224.

This journal is © The Royal Society of Chemistry 2018


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8nr02382d

	Button 1: 


