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Molecular dynamics simulation of potentiometric
sensor response: the effect of biomolecules,
surface morphology and surface charge†
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The silica–water interface is critical to many modern technologies in chemical engineering and biosen-

sing. One technology used commonly in biosensors, the potentiometric sensor, operates by measuring

the changes in electric potential due to changes in the interfacial electric field. Predictive modelling of

this response caused by surface binding of biomolecules remains highly challenging. In this work, through

the most extensive molecular dynamics simulation of the silica–water interfacial potential and electric

field to date, we report a novel prediction and explanation of the effects of nano-morphology on sensor

response. Amorphous silica demonstrated a larger potentiometric response than an equivalent crystalline

silica model due to increased sodium adsorption, in agreement with experiments showing improved

sensor response with nano-texturing. We provide proof-of-concept that molecular dynamics can be

used as a complementary tool for potentiometric biosensor response prediction. Effects that are conven-

tionally neglected, such as surface morphology, water polarisation, biomolecule dynamics and finite-size

effects, are explicitly modelled.

1 Introduction

During the last century, significant progress in the study of
electrified charged interfaces has enabled the development of
a wide range of new technologies, such as electrochemical fuel
cells1 and the ability to engineer colloids2 and materials for
water purification.3,4 Despite this progress, improved under-
standing is required for the reliable design and modelling of
these technologies. In particular, the complex interaction
between surface charge and the electrodynamics of water
polarisation, charged analyte molecules and electrolyte ions
remains a topic of active research.

An example of one such technology are potentiometric
sensors. The response of potentiometric sensors originates
from a change in electric potential within the system resulting
from interfacial electrodynamics. A popular class of potentio-
metric sensors are ion-sensitive field-effect transistor (IS-FET)
sensors. IS-FETs were initially popularised in the 1970s by

Bergveld5,6 and can detect changes in pH due to surface char-
ging reactions and ion-adsorption at the oxide–electrolyte
interface. Starting with the work of Cui et al.7 in 2001, field-
effect sensors have been functionalised with receptors specific
to the biomolecular analyte for the task of sensing the bio-
molecular analyte, often referred to as ‘BioFET’ sensors. This
functionalisation facilitates a type of biosensor which has
many advantages over standard immunological detection
methodologies, for example, the capability for label-free, low-
cost electrostatic analyte detection.8 In the present work, field-
effect sensors are focused on as an example application
system; however, the interfacial physics described is relevant
to all kinds of potentiometric biosensors.9,10

The silica–water interface, in particular, was investigated in
the present work as it is a popular choice as oxide material for
potentiometric sensors given its low-cost and simple
production by thermal treatment of silicon wafers.11–13 Silica–
water interfaces are among the most abundant on the planet,
and therefore the relevance of understanding their interfacial
electrodynamics extends beyond sensor response into under-
standing geochemical processes such as dissolution
kinetics14–16 and prebiotic biochemistry.17

Reliable and accurate quantitative predictions of the
response of field-effect sensors due to interaction of analyte
molecules are currently unavailable even when the most sophi-
sticated models are used, and qualitative predictions of the
response of field-effect sensors remain challenging.8,13 The
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majority of field-effect sensor models incorporate a model of
the electrical double layer primarily based on either the
Poisson–Boltzmann equation18–28 or the linearised Poisson–
Boltzmann equation,13,29–31 which were first developed in the
early 20th century.32 This approach neglects effects that are
expected to be important to the generation of a potentiometric
signal, examples of which would include, but are not limited
to, the effects of van der Waals interactions, water polarisation,
electrolyte–protein ion dynamics and the finite size of bio-
molecules. Furthermore, difficulty in controlling the experi-
mental conditions necessary for reproducible response, such
as the analyte–receptor density at the sensor surface,8 has
contributed to difficulties in validating and improving the
predictive power of field-effect response models.

There are several research questions which are particularly
problematic to understand via Poisson–Boltzmann-based
models, for example, the experimental observation of potentio-
metric response due to the binding of electrically neutral non-
polar organic molecules33,34 and the anomalously large signal
of hexanol compared to butanol on bare silica.33 Other
examples include the enhancement of potentiometric bio-
sensor response at high ionic strength by the addition of a bio-
molecule-permeable polyethylene glycol surface layer35 and the
changes in high frequency signal induced by biomolecule–
electrolyte dynamics.8,35–37

The aim of the present work is to use molecular dynamics
simulations as a novel tool for prediction of potentiometric
biosensor response and for improving our understanding of
the interfacial electrodynamics. The simulated surface poten-
tial is calculated as a function of surface charge for a simple
experimentally well-characterised system – the silica–water
interface. The results are validated against analytical models
and experimental pH sensing data. Using the relationship
between response and surface charge as a baseline, the magni-
tude of response due to the addition of a model charged bio-
molecule – DNA – is investigated. For biomolecular systems, a
molecular dynamics-based approach has several advantages
over conventional mean-field models due to its explicit treat-
ment of biomolecule dynamics, water polarisation and finite-
size effects.

Various durations of molecular dynamics simulation have
been used in the literature to calculate the surface potential at
the silica–water interface: ∼1 ns (ref. 38) (reactive forcefield),
3 ns (ref. 39–42), 20 ns (ref. 43) and ∼30 ns.44 Although
sufficient for obtaining qualitative changes in potential, this
duration is too short to reliably quantitatively distinguish the
millivolt changes in surface potential expected from bio-
molecular signal and pH changes. For example, DNA is known
to take at least 300 ns for its ionic atmosphere to equilibrate45

and at least 90 ns is required to obtain a silica–water surface
potential with a mean potential stable to within several milli-
volts.46 In the present work, we perform 24 simulations of the
silica–water interface for 320 ns and several simulations
including DNA molecules for 480–680 ns, totalling an exten-
sive total simulation duration of at least 8 μs between all simu-
lations. Furthermore, compared to our previous work,39–42 we

use a forcefield which has increased reliability for describing
the silica–water-bio interface and a methodology for evaluating
the electrostatics with increased accuracy.43,46,47 Combined,
these considerations ensure that the present work is amongst
the most rigorous molecular dynamics simulations of the
silica–water interfacial potential and electric field to date. This
work is of particular novelty because molecular dynamics-
based oxide–water surface potential calculations remain rare,
likely due to historical difficulties in obtaining accurate force-
fields which integrate both organic and inorganic molecules.

The surface potential calculation methodology used has
been detailed and discussed in our most recent work for a
simple crystalline silica–water system.46 In the present work,
we focus on the application of understanding potentiometric
sensor response and nanoscale electrodynamics. We report a
novel prediction and explanation of the effects of nano-mor-
phology on surface potential changes, and provide the first
proof-of-concept that molecular dynamics can be used as a
complementary tool for potentiometric biosensor response
prediction.

The Background section is structured as follows: section 2.1
presents commonly used models for the electrical double layer
as these will be directly compared to the molecular dynamics
simulations of the present work. Then, in section 2.2, the com-
monly-used site-binding model for the prediction of the
response of potentiometric sensors to changes in pH and its
limitations is introduced. In section 2.3, a brief outline of the
surface chemistry of silica is provided because accurate model-
ling of the surface chemistry is crucial for an accurate mole-
cular dynamics model of the interface. Finally, the literature
experimental data are presented on the effects of the surface
morphology on sensor response (section 2.4) and the addition
of DNA on sensor response (section 2.5).

2 Background
2.1 Mean-field electrical double layer models

In this section, a brief overview of analytical mean-field electri-
cal double layer models relevant to potentiometric sensor
response modelling is presented. A more detailed background
for these models can be found in ESI 1.†

The simplest and most common model of field-effect
sensor response treats the response due to biomolecules as
charge on a parallel plate capacitor model of the surface (also
called the ‘constant capacitance’ model or the Helmholtz–
Perrin model48). In such models, the measured change in
potential is assumed to be equal to the change in surface
charge from biomolecule binding divided by a capacitance
value which describes the coupling of the analyte to the FET
semiconducting channel.49,50 Even though this method may
be useful for estimating the density of bound molecules from
an experiment, it provides no generally transferable insight
into the precise relationship between the contents of the elec-
trical double layer (i.e. biomolecule binding, electrolyte ionic
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strength etc.) and sensor response and is therefore not con-
sidered in the present work.

Aside from the Helmholtz–Perrin model, field-effect sensor
response models almost exclusively utilise the Poisson–
Boltzmann equation (or the more general Poisson–Nernst–
Plank equation) to describe the electrical double layer. Such
models therefore explicitly incorporate the effect of ionic
strength on the response. Primary differences between field-
effect biosensor models lie in the way that the biomolecular
component is treated in a mean-field manner: for example,
whether the biomolecular charge is treated as a ‘smeared out’
surface charge over an infinitely thin surface charge layer27,51

or as an ion-permeable membrane of finite thickness.52,53

Some recent attempts at modelling field-effect sensor response
model the charges on the biomolecule discretely in a conti-
nuum solvent.13,30,54,55 Such an approach provides a good
compromise between atomistic and continuum approaches,
but neglects the important effects of biomolecule dynamics,
surface morphology and water polarisation.

In the present work, the surface charge to surface potential
relationship for the Poisson–Boltzmann equation, the Debye–
Hückel theory and the modified Poisson–Boltzmann
equation is presented for comparison with the molecular
dynamics results; expressions will be labelled using subscripts
pb, dh and mpb, respectively. The surface potential φs refers to
the potential only at the surface. The equations relating to the
position dependent potential are shown in ESI 1.†
These models were chosen in the present work due to their
simplicity and widespread usage. In addition, they require no
or minimal system-specific empirical parameters, and there-
fore provide predictions that are transferable across oxide
systems without overfitting to a particular oxide–electrolyte
system.

From the Poisson–Boltzmann equation, an analytical
expression for the surface charge density (σ) to surface poten-
tial (φs) relationship can be obtained, often termed the
Grahame equation (ESI 1†). Rearranging the Grahame
equation for surface potential provides the following
expression, shown assuming a symmetric valency electrolyte:56

ϕs;pb ¼ 2kbT
qz

arcsin h
σffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8c1εrε0kbT
p

� �
; ð1Þ

where φs is the electric potential at the surface, q is the
elementary charge, ε0 is the permittivity of free space, εr is the
relative permittivity of the medium, z is the valence of the elec-
trolyte ion i, c∞ is the bulk concentration of electrolyte ion i
(expressed as a number density, units of m−3), kb is the
Boltzmann constant and T is the temperature.

Assuming φ is small
qziϕ rð Þ
kbT

����
���� � 1

� �
, the Poisson–

Boltzmann equation can be linearised and rearranged result-
ing in eqn (2), the Debye–Huckel model57–60 surface–charge
potential relationship:56

ϕs;dh ¼ σ

ε0εrκ
; ð2Þ

in which the reciprocal of κ is the Debye length which, for a
symmetric 1 : 1 monovalent electrolyte is equal to:

1
κ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε0εrkbT
2q2c1

s
: ð3Þ

This approximation of assuming φ is small is termed the
Debye–Hückel approximation. Despite this approximation not
being strictly valid in most situations of interest in colloid
science and electrochemistry,57 it is commonly used. One
reason for this is its convenience, whereby electrostatic screen-
ing by electrolyte can be described in a simple parameter – the
Debye length, which is inversely proportional to the square
root of the ionic strength.

The Poisson–Boltzmann equation neglects finite size
effects, and thus provides inaccurate results for highly concen-
trated systems. One way of dealing with this is the incorpor-
ation of a parallel plate-like layer at the surface which rep-
resents accumulated charge, called the ‘Stern’ layer.48,61 In
reality, the region modelled by the Stern layer contains both
highly polarised water molecules and accumulated electrolyte
ions.61 An alternative method which does not require empiri-
cal fitting of a Stern layer capacitance is the ‘modified’
Poisson–Boltzmann equation, as shown in eqn (4) for a z : z
symmetric electrolyte.62 The modified Poisson–Boltzmann
equation simply constrains the maximum density of counter-
ions permissible at the surface to an (semi-)empirical finite
value based on packing constraints.62,63 The corresponding
surface charge to surface potential relationship, which can be
solved numerically for φs,mpb, is:

σ ¼ sgn ϕsð Þ2zqci1
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
v
ln 1þ 2v sinh2 zqϕs;mpb

2kbT

� �� �s
ð4Þ

where v = 2a3c∞ is a dimensionless measure of the non-dilute-
ness by which a represents the mean spacing of ions at their
maximum possible concentration (a = cmax

−1/3). The
phenomenological parameter a could be taken to be the radius
of an ion (e.g. 1.84 Å hydrodynamic radius of a sodium ion64)
but considering at high electric fields (i.e. high surface
charges) there is a well-known decrease in permittivity of the
liquid at the interface,60 ion–ion correlation effects could
extend the value to as high as 10 nm.62,63

2.1.1 Mean-field models: biomolecular response. As a
result of electrostatic screening, potentiometric sensors show a
decreased signal with both increased distance of the bio-
molecule65 from the surface, and increased ionic strength.8,66

To quantify this, it is common in the field of biomolecular
potentiometric sensing to use the Debye–Hückel model
(eqn (2)) to estimate the characteristic length after which
electrostatic interactions are significantly weakened, termed
the ‘Debye length’. At a distance of several Debye lengths from
the biomolecular charge the charge from the biomolecule is
expected to be highly screened and thus have little effect on
the sensor. The simplicity of an analytical expression provides
a useful and rapid tool for evaluation of the importance of
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ionic screening, however, the justifiability of using the Debye–
Hückel model for highly charged polyelectrolytes such as DNA
is questionable, due to the assumption of low surface potential
and neglect of steric interactions.

An alternative which is more justifiable at high surface
potentials is the Poisson–Boltzmann equation without lineari-
sation (Grahame equation, eqn (1)). The Grahame equation
has commonly been used to calculate the surface potential
due to binding of charged biomolecular analyte such as DNA
or, conversely, to calculate the charge due to bound bio-
molecules, given a measured surface potential.65,67–69 For
example, the change in surface potential can be calculated
before and after analyte binding, assuming that the intrinsic
(i.e. silanolate, in the present work) surface charge (σsurf ) is
additive with the charge contribution from DNA (σDNA). In
other words, the DNA is assumed to be an infinitely thin
smeared layer of uniform charge density on the surface which
does not change the intrinsic charge, i.e. the biomolecule does
not affect the charging of silanolate groups:

Δφ ¼ φðσsurf þ σDNAÞ � φðσsurfÞ ð5Þ
The calculated shift in surface potential is strongly influ-

enced by the choice of intrinsic surface charge density, and
often this information is not measured but estimated, provid-
ing a large source of error in such calculations. Such calcu-
lations also often result in signals too weak compared to
experimental response and thus the theoretical basis for the
observed biomolecular signals remains unclear.70 This has
provided motivation for the creation of improved models68

and the present work.

2.2 Site binding models

The Nikolsky–Eisenman equation and ion exchange theory is
widely used to describe glass-membrane electrodes and
ion-sensitive electrodes,71 however this approach is limited to
estimating the selectivity of the sensor against competing
ions.72 In the field of IS-FET sensing research, site-binding
models are instead commonly used to describe the surface
potential as a function of pH,73–75 in which the surface charge
is calculated based on several chemical equations for reactions
of hydroxyl groups at the surface combined with a model of
the electrical double layer. Potentiometric ion sensor
modelling has been extensively reviewed by Bermejo76 and
Bobacka et al.71

In the site-binding model,73,77 for an oxide with a ‘sensi-
tivity factor’ of 1, the change in potential due to change in pH
is the same as that predicted from the Nernst equation for a
semi-permeable membrane with a change in proton activity
(i.e. ∼59 mV per pH at room temperature). For many oxides,
including silica, a potentiometric response weaker than 59 mV
per pH is often measured and in the site-binding model; this
is explained via a reduced value of the sensitivity factor. The
sensitivity factor is a function of both the ability of the oxide
surface to deliver or take up protons (‘surface buffer capacity’)
and the differential double-layer capacitance, with this capaci-

tance being primarily determined by the ion concentration of
the bulk solution.73,77

Even though site-binding models have proved useful in
IS-FET design and will likely continue to do so, they present
several fundamental limitations. Firstly, they do not provide
any information on the effect of surface morphology on
response and, secondly, they rely upon empirical parametrisa-
tion of many properties. These properties can vary greatly even
for a single material, for example, there is debate over the
correct acid–base dissociation constant value for silica78 and
the density of surface sites is preparation dependent,79 so
there is a risk of the model being overfit, and used descrip-
tively rather than predictively. Finally, site-binding models are
not suitable for prediction of sensor response to binding of
the biomolecular analyte. In the present work, we propose
molecular dynamics as a complementary approach to existing
models to explore the response to surface morphology and bio-
molecular binding.

2.3 Silica surface chemistry

Silanol groups (Si–OH) at the silica surface react with H+/OH−

in water to form a charged surface layer.80 These chemical
reactions are evidenced to be the primary surface charging
mechanism for hydrated silica,58 with electrolyte effects
having a measurable but less significant effect.81 Ionic
strength can be important, for example, for ultrapure water
(<0.001 M); negligible surface ionisation can occur due to the
lack of availability of charge stabilising cations.82 In the
present work, the ionic strength of the simulated system was
300 mM. This ionic strength is relevant to physiological con-
ditions (e.g. high ionic strength biosensing experiments), bio-
mimetic synthesis,83 or applications such as ocean geochemis-
try (salt water = ∼0.7 M (ref. 84)).

The precise extent of surface ionisation depends on the pH,
silanol density, the type of silanol group (e.g. isolated, vicinal
or occluded in pores), the ionic strength of the solution and
the type of cations and anions.85 At pH values relevant to most
biosensing conditions (pH 6–9), silica is negatively charged
and only gathers a positive charge under extremely acidic con-
ditions (pH <2),86,87 as evidenced by the measured point-of-
zero charge (i.e. the pH for which the net charge of the surface
is zero) of pH between 2 and 4.88

2.4 Nano-morphology and potentiometric sensor response

When comparing two systems with identical hydroxyl densities
and compositions, commonly-used site-binding models
predict no effect on sensor response from changes in surface
morphology. Nonetheless, some experiments suggest that
amorphous surfaces are beneficial to pH sensor response: for
example, sputtered silica was shown to have a higher pH sensi-
tivity than thermally grown silica,89 the addition of nanowires
to a planar Al2O3/SiO2 surface increased pH sensitivity by 5 mV
per pH (55 mV per pH to 60 mV per pH),90 and texturing a sila-
nised silica surface with silanised silica nanoparticles
increased pH sensitivity by 11 mV per pH (43 mV per pH to
54 mV per pH).91,92 However, other experiments have shown
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no effect of increased surface porosity on pH sensitivity, but
it did show an increase in capacitance.93,94 It is clear that
further work is needed to clarify the precise relationship
between surface morphology and pH sensitivity. Molecular
dynamics simulations provide the unique ability to directly
investigate the effect of nanoscale changes in morphology on
the electrodynamics at the interface. In the present work,
novel molecular dynamics simulations are used to investigate
this relationship.

2.5 Experimental potentiometric sensing of DNA

Experimental DNA sensing experiments often involve first the
immobilisation of single stranded (‘probe’) DNA, followed by
hybridisation with a complementary strand. In the present
work, the absence of DNA versus the presence of DNA is simu-
lated, which is analogous to the sum of hybridisation and
immobilisation signals. Experimental field-effect biosensor
DNA hybridisation signals were reviewed by Poghossian et al.,
ranging from no significant response to ∼120 mV response.70

Nishio et al. reviewed immobilisation signals to be 32–100 mV
with hybridisation signals generally being weaker, between
11–14 mV.55 Such a large variation between experiments is due
to variation in factors such as probe density, buffer compo-
sition, reference electrode setup, DNA sequence and surface
chemistry. This variation makes rational design difficult and is
part of the motivation for the present work which can systema-
tically explore changes in the electric double layer due to
biomolecules.

At high ionic strength, the signal from DNA is commonly
expected to be reduced due to screening. However, DNA has
been demonstrated to produce signals with a magnitude of
several millivolts even in high ionic strength solutions of 0.5 M
or 1 M.95,96 This suggests that the 0.3 M ionic strength used in
the present work should generate a detectable signal provided
there is sufficient bound DNA. The density of the surface
bound DNA molecules used in the present work (8.58 × 1012

molecules cm−2) is likely higher than typical densities but is
not unreasonable given that a density of surface bound DNA
molecules (‘probe density’) as high as 1 × 1013 molecules cm−2

has been found by Surface Plasmon Resonance
measurements.97

3 Computational methods
3.1 Model setup

This section is divided into three parts: the setup of the silica
surface models (section 3.1.1), the surface charge and electro-
lyte setup (section 3.1.2) and finally the DNA molecule setup
(section 3.1.3). Analytical model results were calculated at
298.15 K assuming a relative permittivity of 78.5, an ionic
strength of 0.3 M and a 1 : 1 monovalent electrolyte.

3.1.1 Silica model setup. A crystalline silica model was
used with a Q3 isolated silanol terminated surface, derived
from the (101̄) cleavage plane of α-cristobalite, with a silanol
density of 4.804 OH per nm2 in its fully protonated state. A

silanol density of ∼5 OH per nm2 has been used by other
authors successfully to reproduce experimental IS-FET data,98

is often used in IS-FET modelling73 and is expected to be the
density of fully hydrated silica as discussed in ESI 2.†

A different silica model was used to emulate an amorphous
silica surface. The model consists of a periodic unit cell of
silica with little internal ordering and a similar silanol density
to the crystalline model of 5.09 OH per nm2. This model has
an increased surface area compared to the crystalline surface
and has silanol groups distributed over a greater distance from
the surface. A side-by-side comparison of the two models can
be seen in Fig. 1(a) and (b).

Both silica models originate from the INTERFACE model
database.85 Details such as cell dimensions are summarised in
Table 1. In both models, atoms within ∼11 Å of the base were
rigidly constrained for all simulations to emulate a silica bulk.
Comprehensive details of the silica model setup can be found
in ESI 3.†

3.1.2 Surface charge and solvent box setup. With the
increase of pH, the surface charge density increases and the
surface potential becomes more negative. Potentiometric titra-
tion experiments can be used to obtain the relationship
between surface charge density and surface potential. This
relationship is non-linear, but to a first order approximation it
is treated as a linear relationship, and in the present work, the
approximate empirical relationship presented by Emami
et al.85,99 was used in order to compare simulated systems of a
given surface charge density to the corresponding ‘effective
pH’. Specifically, 0.024 C m−2 pH−1 was used, which corres-
ponds to measurements for silica surfaces terminated by Q3

isolated silanol groups, with a density of ∼4.7 OH per nm2

under 0.1–0.3 M ionic strength conditions.85,99

Various silica models with differing extents of surface
charge were prepared by deprotonating the top-surface silanol
groups. For each system, neutralising Na+ counterions were
added to maintain charge neutrality. This procedure is analo-
gous to the addition of NaOH to a neutral silica surface in an
experimental setup, where negatively charged silanolate
groups would form at the surface due to reaction with hydrox-
ide ions and there would be a simultaneous increase in the
bulk Na+ concentration.

Once electroneutrality was attained, NaCl was added to set
the bulk ionic strength. NaCl of approximately 300 mM ionic
strength was used based on the initial volume of the water
box, with the specific number of ions used and the cell size
shown in Table 1. Details of the solvent preparation are pre-
sented in ESI 3.† In brief, two different initial configurations
of counterions were considered in order to test convergence to
thermodynamic equilibrium. A TIP3P solvent box with an
initial height of 73 Å was used with ions placed randomly. A
control system at low ionic strength was also investigated as
detailed in ESI 4.†

3.1.3 DNA model setup. The initial canonical DNA dodeca-
mer (5′-GGGGGGGGGGGG-3′) structure was generated and
placed in a solvent box as described in ESI 3.† A water box with
an initial height of 100 Å was used, and initialised with its
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helical axis normal to the surface of the crystalline silica
model with a surface charge density of −0.083 C m−2.
CHARMM36 forcefield parameters100 were used with phos-
phate groups added to the terminal groups resulting in a DNA
molecule with a net charge of −24q which was neutralised
with sodium ions. Lavery et al. analysed the amount of time
needed for equilibration of the ionic atmosphere around DNA
in the bulk electrolyte and concluded that at least 300 ns were
needed.45 Consequently, a 320 ns equilibration was performed,
followed by 180 ns with harmonic constraints applied to the
DNA atoms. Harmonic constraints (0.5 kcal mol−1 Å−2) were
applied so that the DNA remained surface-bound and to
remove any significant effect of biomolecule dynamics. These
constraints were then removed, allowing free diffusion of the
DNA, and simulated for a further 180 ns of dynamics.
Snapshots of the constrained and unconstrained systems are
shown in ESI 5.† As described for the bare silica–electrolyte
systems, two repeats were performed with different initial elec-
trolyte configurations.

3.2 Simulation parameters

Mean-field (analytical model) calculations in the present work
were performed at 298.15 K assuming a relative permittivity
for the medium of 78.5.

For molecular dynamics simulations, the INTERFACE force-
field was used. The forcefield provides CHARMM forcefield
compatible parameters for silica and sodium ions.101 Unlike
most forcefields of silica–water interfaces, the INTERFACE for-
cefield has parameters to treat the charged silica–water inter-
face and has been shown capable of accurately reproducing a
broad range of experimental observables such as water contact
angle, adsorption energy of peptides (at a charged surface),
water adsorption isotherm, immersion energy in water and the
cell parameters of quartz.85,101,102 The forcefield likely rep-
resents the state-of-the-art for accurate classical molecular
dynamics simulation of the electrified silica–water(–bio-
molecule) interface. A discussion of the forcefield parameters
and validation is found in the ESI 6.†

Table 1 A simulated system summary showing the structure (crystalline/amorphous), the surface charge density (ρ) in units of C m−2 and the
number of silanolate, chloride and sodium ions, respectively. pHeff is shown in parentheses, and is the approximate empirical pH for this surface
charge density as presented in the Methods section 3.1.2. A separate simulation was also performed in which DNA was added to the crystalline 4.81
OH per nm2 simulation at 300 mM NaCl, with 24 additional Na+ to neutralise the negatively charged DNA molecule. The crystalline system also had
a repeat simulation at 0 mM bulk ionic strength as presented in ESI 4

Model ρ(pHeff) SiO− Cl− Na+ Model ρ(pHeff) SiO− Cl− Na+

0 (∼3.0) 0 15 0 + 15 0 (∼3.0) 0 22 0 + 22
Crystalline −0.041 (∼4.7) 3 15 3 + 15 Amorphous −0.048 (∼5.0) 5 22 5 + 22
4.81 OH per nm2 −0.083 (∼6.4) 6 15 6 + 15 5.09 OH per nm2 −0.086 (∼6.6) 9 22 9 + 22
33.5 Å × 34.9 Å −0.12 (∼8.1) 9 15 9 + 15 40.3 Å × 41.4 Å −0.12 (∼8.2) 13 22 13 + 22
∼300 mM NaCl −0.17 (∼9.9) 12 15 12 + 15 ∼300 mM NaCl −0.16 (∼9.8) 17 22 17 + 22

−0.39 (∼19) 28 15 28 + 15 −0.38 (∼19) 40 22 40 + 22

Fig. 1 Periodic slabs used to model the silica surface in the present work. Green, red, yellow and grey atoms are sodium, oxygen, silicon and hydro-
gen, respectively: (a) side-on view of crystalline silica surface, (b) side-on view of amorphous silica surface. Both surfaces are analogous in that they
contain approximately the same surface silanol density and surface charge density and are only terminated by Q3 silanol groups. These images were
taken from a trajectory of the −0.083 C m−2 models, with the sodium ions introduced to maintain charge neutrality. For the crystalline system, the
negative silanolate charges are all located randomly within the first atomic layer, whereas for the amorphous system, charges were distributed ran-
domly between the first atomic layer and 5 Å below.
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Details of the molecular dynamics software parameters can
be found in our previous work46 and in ESI 7.† In brief, a 2 fs
time step was used with NVT Langevin dynamics at 298.15 K
with the SETTLE algorithm for all hydrogen atoms.103 A
minimum of 320 ns of dynamics was performed for each simu-
lation, with analysis over the last 180 ns. A simple harmonic
restraint was applied to water molecules, which evaporated to
return them to the bulk. The electrostatics were evaluated
using the particle-mesh Ewald (PME) method using the
EW3DC correction, which provides enhanced accuracy for
polarised systems.43,46,47

3.3 Analysis methodology

The analysis methodology is detailed in ESI 7† and was dis-
cussed in our previous work.46 In summary, the charge density
was calculated by averaging the charge density into xy slabs
along the z-axis, thus reducing the system to a one-dimen-
sional grid. The electric potential was calculated by double
integration of the charge density from Poisson’s equation,43,47

with integration performed using the trapezium rule and the
electric potential and field set to zero at z = 0 Å.43,104 In order
to calculate the surface potential the surface was defined as
the z position of minimum electric potential in the region
where there is a large potential drop due to silanolate charge;
the surface location is indicated as a vertical solid black line in
Fig. 2 with the dashed lines indicating the maximum and
minimum z-positions. The surface potential was then calcu-
lated as the difference between the mean potential in bulk
water (between z = 80–85 Å) and at the surface. For potential
calculations the analysis was performed over the last 180 ns of
the trajectory in three 60 ns parts; the standard error of the
mean (ddof = 1) was calculated based on the mean of these
three parts. For the plot showing electric field, the field was
calculated every 100 ps over the last 180 ns (1800 frames) for
both repeats of each simulation. The resulting data for the two
repeat simulations were combined (3600 frames) and the
mean electric field plotted, with 95% confidence intervals
shown, using 1000 bootstrap intervals. For the water polaris-
ation plot, the z-component of the water polarisation was cal-
culated as a function of water molecule orientation multiplied
by water number density.

4 Results and discussion

The results are split into five subsections. Firstly, in section 4.1
the charge structure of the electric double layer is analysed. In
the following sections, metrics directly related to the response
of many potentiometric sensors are calculated and discussed.
Specifically, section 4.2 presents the electric field below the
silica substrate, with the aim of emulating the ‘field effect’
which controls the response of field-effect sensors. The change
in surface potential due to changes in surface charge density/
‘effective pH’ is presented in section 4.3, and in section 4.4 the
change in surface potential due to addition of DNA is pre-
sented. Finally, in section 4.5, the effect of molecular dynamics

simulation duration on the accuracy and precision of calculated
electrostatic properties for biosensing applications is presented.

4.1 Charge density profile

In Fig. 2, the distribution of charge as a function of z is shown.
The crystalline system, shown in subfigures (a), (b) and (c), is
compared side-by-side with the amorphous system, shown in
subfigures (d), (e) and (f ). The z position defined as the
surface for surface potential calculations is indicated by a verti-
cal black line, and the coloured curves are drawn with increas-
ing darkness corresponding to increased surface charge
density, as shown in the figure legend. The charge is shown as
integrated charge density of the system from z = 0 and there-
fore shows the total charge density in the unit cell up to a
given z position (i.e. in the bulk the value is zero as the system
is net electroneutral). In subfigures (a) and (d), the total
charge density is presented, but in subfigures (b) and (e) only
the contribution from sodium ions is presented. In subfigures
(c) and (f), only the contribution from water charges is pre-
sented (i.e. the negative oxygen and positive hydrogen atoms
of the TIP3P water model).

The positions of the dashed vertical black lines in Fig. 2
show that the silanols were distributed over a broader range of
z positions in the amorphous structure than in the crystalline
structure. An important result of this, combined with the
effect of the irregular morphology of the amorphous system, is
that the amorphous model charge distribution, shown in
Fig. 2(d), becomes less structured compared to the charge dis-
tribution of the crystalline system, as shown in Fig. 2(a). The
sodium ion distribution was similar between crystalline and
amorphous systems (Fig. 2(b) versus (e)). Comparison of
Fig. 2(c) and (f ) reveals that the water in the crystalline model
had three discrete layers, in contrast to the amorphous system
in which the layers were less distinguishable, showing broader
water density peaks, with less structure. The formation of
three discrete layers on crystalline glass surfaces is supported
by ab initio molecular dynamics studies.105

4.1.1. Stern layer. The Stern layer is important in determin-
ing the surface potential for high charge density systems, and
so, even though the Stern layer is only strictly defined in the
Gouy–Chapmann–Stern model, in this paper, the interfacial
region up to the second minima in the water density profile
(2 layers of water) was used to define a Stern-like layer and
analysed in more detail.

In Fig. 3(a) the density of sodium ions within the Stern-like
layer increased approximately linearly with an increase of
surface charge density for both amorphous and crystalline
silica models. This is in agreement with the molecular
dynamics simulation of Lee et al., which showed similar
behaviour at high surface charge densities, upon an ideal
structureless surface106 and is a result of increased electro-
static attraction between the negatively charged surface and
positively charged sodium ions. The sodium ion density for
the amorphous system was higher than that for the crystalline
system, which is explained by the increased surface area and
amorphous morphology providing cavities with improved
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favourability for sodium binding. The surface accessible
surface area (1.4 Å solvent probe radius) was 53% larger for the
amorphous model compared to the crystalline model (details
in ESI 3†). Comparison of the amorphous and crystalline

charge density and water polarisation profiles will be dis-
cussed later.

In Fig. 3(b) it can be seen that net polarisation of water
within the Stern-like layer increased approximately linearly

Fig. 2 The integrated charge density of the system as a function of the z position for increasing surface charge density (from light to dark lines)
with the crystalline silica model shown on the left (a, b, c) and the amorphous silica model shown on the right (d, e, f ). Subfigures are shown for the
combined charge density of all atoms (a, d), only the sodium ions (b, e) and only the oxygen and hydrogen atoms in water molecules (c, f ). For each
plot, the integration was performed from the silica (at z = 0 Å) to the bulk water. For the crystalline model, the silanol density showed two peaks,
the largest at 27.0 ± 0.1 Å and a smaller peak at 27.5 ± 0.1 Å. For the amorphous system the silanol density showed silanols distributed between
22.0 ± 0.1 Å and 28.4 ± 0.1 Å with the highest density at 25.6 ± 0.1 Å. Shown on the figure by solid black vertical lines is the surface definition
described in the Methods section. Dashed vertical black lines indicate the minimum and maximum z-positions at which charged silanolate groups
were present. Both (b) and (e) show that with increased surface charge density there was an increase in sodium ion accumulation at the surface.
Comparing (a) to (d), it can be seen that the amorphous structure resulted in a more diffuse charge distribution than the crystalline system primarily
due to less structured water layers, evident on comparing (c) to (f ).

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2018 Nanoscale, 2018, 10, 8650–8666 | 8657

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
A

pr
il 

20
18

. D
ow

nl
oa

de
d 

on
 1

1/
9/

20
25

 1
2:

54
:0

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8nr00776d


with charge density up to −0.17 C m−2 for both the amorphous
and crystalline model systems. The polarisation is a measure
of both the net orientation of waters in the z direction and
their density, and thus is proportional to the electric-field
imparted by the molecules and their effect on surface
potential.

Fig. 3 includes one result at very high surface charge
density which is not relevant to typical experimental con-
ditions of silica–water interfaces as a surface charge density
above −0.17 C m−2 would require a highly alkaline medium
(>pH 11)85,99 to form. Furthermore, experiments show that
highly alkaline conditions (>pH 9) result in significant dis-
solution of silica14 which remains a challenging task to simu-
late even using ‘reactive’ molecular dynamics forcefields.38

Nonetheless, simulation of high surface charge densities is of
interest both for exploring the limiting case and because it is
attainable by other oxide systems. For example, δMnO2 demon-
strates a surface charge of −1 C m−2 at pH 8 despite having a

similar point-of-zero charge to silica.107 At a surface charge
density of −0.38 C m−2 the linear trend in Fig. 3(b) ceased and
there was instead a relative decrease in water polarisation. This
decrease was not a result of decreased orientational ordering
(as evidenced in ESI 8†), but rather due to a decrease in the
density of bound water due to displacement by the particularly
high density of sodium ions bound at these extreme surface
charges as depicted in the schematic inset of Fig. 3(b).

4.2 Electric field and the field-effect

Field-effect sensors measure the surface potential change (or,
more precisely, a threshold voltage shift) due to binding of
analyte molecules or changes in pH. The underlying physical
mechanism is that the long-range electric field (‘field effect’)
from the analyte-bound surface extends through the oxide,
and thus modulates the carrier concentration in the semicon-
ducting layer below the analyte-binding surface, resulting in a
change in threshold voltage. To emulate this property via
simulation, the electric field at a distance from the oxide inter-
face was calculated via the force on a positive test charge
centred below the oxide slab.

Prediction of biomolecular potentiometric response is a key
motivation for the present work and thus the electric-field
response due to DNA specifically was investigated. DNA
sensing experiments often use an oxide surface which has
been chemically functionalised with a layer of material such as
(3-aminopropyl)triethoxysilane (APTES). This layer is chemi-
cally bonded to single stranded DNA to provide a highly selec-
tive template for the binding of specific single stranded DNA
via a hybridisation reaction. In the present work, we are pri-
marily interested in evaluating whether the simulation meth-
odology can provide potentiometric-response prediction for
charged biomolecules in general and so we modelled DNA on
a bare silica surface to eliminate additional complexity and to
provide a more general model system given that many
different surface functionalisation layers are used in the litera-
ture. The CHARMM forcefield used in this work is well suited
to the incorporation of organic, solvated molecules like APTES,
and has been used to model APTES in the literature.108

DNA was added to the crystalline silica system with an
intrinsic silanolate surface charge density of −0.083 C m−2 and
constrained near the surface and the electric field response for
this DNA system is shown in the blue bar of Fig. 4. A shift in
the electric field due to the addition of DNA and due to
increased negative surface charge density was observed. The
direction of the shift is consistent with an increase in negative
charge at the surface, as expected for negatively charged DNA.
The graph shows a response due to changes in effective pH of
0.007 V nm−1 pH−1 (linear regression of data from green bars
of Fig. 4). A shift of 0.007 V nm−1 was observed for the
addition of DNA (blue bar), and given that a typical pH sensor
can detect changes of at least 1 pH unit, the simulated change
in electric field of 0.007 V nm−1 pH−1 due to DNA is significant
with regard to the expected limit-of-detection of a sensor.

This response to DNA provides a proof-of-concept for this
molecular dynamics simulation methodology as a novel way of

Fig. 3 Comparison of both the cumulative water polarisation (a) and
sodium ion number density (b) across the Stern-like layer near the
surface as a function of the surface charge density. Schematic insets are
included to show qualitative differences between low and high surface
charge systems. Both the crystalline system (black) and the amorphous
system (blue) are shown; for each surface charge density the result of
the repeat simulation is also shown. The cumulative number density was
calculated as the integral of the number density across the Stern-like
layer similar to the work of Lee et al.106 The approximate ‘effective pH’

(see Methods) is shown on the top-most x-axis of subfigure (a). The
cumulative polarisation density was calculated by integrating the polar-
isation across the Stern-like layer as described in the Methods section.
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investigating the field effect for biosensing applications at a
molecular scale and can provide a platform for systemically
exploring molecular scale effects which may be relevant for
optimising FET-sensor response such as surface morphology,
buffer composition, biomolecule structure and biomolecule
dynamics.

4.2.1 Improvement on previous work. Our previous work46

had some limitations compared to the present work, for
example, shorter timescales, a less accurate forcefield and a
less accurate method of evaluating electrostatics but in that
work we also investigated the effect of DNA on the electric
field. In that work, DNA was added to a crystalline silica
surface model with −0.2 C m−2 surface charge density and
with an electrolyte of similar ionic strength (0.2 M) to the
present work (but with a mixed valency electrolyte:
NaCl : MgCl2) and a statistically significant change in electric
field due to DNA addition was calculated. It was not possible
to determine whether the signal was significant with regard to
the resolution of detection of experimental measurements. As
an improvement over the previous work, in the present work
the surface charge density–electric field relationship was used
to provide a model calibration method and evidence that this
DNA induced change in electric field would be large enough to
be experimentally measurable.

The effect of distance of DNA from the surface was also
observed in the present work. In the red bar of Fig. 4, the

result from the system after the DNA was permitted to freely
diffuse from its initial surface position (unconstrained) is
shown as a red bar. The DNA moved greater than 1 nm away
from the surface and the electric field returned to that which
was indistinguishable from the control shown in green. The
distance-dependent reduction in electric field was a result of
screening from polarised water and ions in solution.
Experiments also show a strong distance-dependent reduction
of DNA signal.65 At 300 mM NaCl, the Debye length is 0.55 nm
and therefore based on the Debye length screening arguments
(section 2.1.1), the influence on the interface is expected to be
negligible after the DNA reaches 1–3 nanometres distance,
which is in agreement with the present molecular dynamics
simulation result.

While the electric field was used for this analysis, there was
a strong correlation between the total electrostatic energy of
the system (double integration of the entire charge density)
and the electric field below the silica–water interface, as
shown in ESI 9.† Given this correlation, it is possible that the
total stored electrostatic energy may also be a viable metric of
estimating the sensor response from molecular dynamics
simulations.

4.3 Surface potential: effect of pH

4.3.1 Mean-field models. The surface potential shift as a
function of surface charge and effective pH is shown in Fig. 5
for three mean-field models—the Grahame equation (eqn (1),
solid line), the Debye–Hückel model (eqn (2), short dashed
line), and the modified Poisson–Boltzmann model (eqn (4),
circles for a = 0.189 nm and long dashed line for a = 1 nm).
A monovalent 1 : 1 electrolyte is assumed (e.g. NaCl) with two
ionic strengths shown: 300 mM (blue) corresponding to the
same ionic strength as the molecular dynamics simulations
performed, and a more dilute 100 mM (green) for comparison.

Fig. 5 shows that the surface potential became increasingly
negative with an increase in the surface charge density in all
cases. A linear surface charge–surface potential relationship
occurs for the Debye–Hückel model due to the constant capaci-
tance of this model whereby the Debye length is constant as a
function of surface charge.48 In contrast, both the Poisson–
Boltzmann and modified Poisson–Boltzmann models have a
non-linear surface charge/surface potential relationship.48,106

At low surface potentials, they provide similar predictions;
however, at high surface potentials they differ because the
modified Poisson–Boltzmann model prevents unphysically
dense accumulation of ions at the surface, and thus has a
lower differential capacitance62 or, equivalently, a steeper
slope in Fig. 5.

The a parameter for the modified Poisson–Boltzmann
equation represents the maximum density of ions possible at
the surface, with smaller values meaning higher maximal
density. a = 0.189 nm is the hydrodynamic radius of a sodium
ion64 and a = 1 nm a plausible higher value considering the
contributions from solvent and ion-correlation effects result-
ing in more disperse ions at the surface.62 The a parameter is
being used here to provide a range of predictions from the

Fig. 4 Bar chart of the electric field as a function of surface charge
density for the crystalline silica model. The electric field is calculated
from the force on a test charge below the silica substrate with an
increasingly positive value expected from a more negatively charged
surface. The green bars show the electrolyte-only system, where each
bar represents the combined data from two repeat simulations. The
black bars show the bootstrapped 95% confidence interval as described
in the Methods. The blue and red bars show systems including DNA con-
strained near the surface (blue) and free to diffuse (red). From the blue
bar, it can be seen that there is a change in electric field due to the
introduction of DNA which was constrained near the surface (within
1 nm of the surface). After the constraints were removed, the DNA
diffused slightly away from the surface (the lowest position of the DNA
fluctuating between approximately 1 and 3 nm from the surface), result-
ing in no significant change in the electric field compared to the
control. To illustrate the difference between constrained and uncon-
strained systems, snapshots of the DNA system are shown in ESI 5.†

Nanoscale Paper

This journal is © The Royal Society of Chemistry 2018 Nanoscale, 2018, 10, 8650–8666 | 8659

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
A

pr
il 

20
18

. D
ow

nl
oa

de
d 

on
 1

1/
9/

20
25

 1
2:

54
:0

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8nr00776d


Fig. 6 Comparison of the surface potential simulated via molecular dynamics (solid lines) with experimental data (dashed lines) as a function of
surface charge. The simulated surface potentials are presented relative to the system with no surface charge by subtraction of the surface potential
for the zero surface-charge system. The literature data are displayed with the electrolyte used in the legend, and were measured by using methods
indicated by markers: ◆ X-Ray Photoelecton Spectroscopy (XPS),109 ■ Electrolyte-on-insulator (EOS),88, ★ Impedance110 ● IS-FET.89,111–113

Experimental data are plotted as a function of measured pH, whereas simulated data are plotted as a function of surface charge density, with both
the axes aligned using the approximate linear empirical relationship between surface charge density and pH described in the Methods section. The
high pH sensitivity of the data of Sakata et al. was obtained using a sputtered silica sample, as opposed to conventional thermally grown or native
oxide, and for these data, the point-of-zero charge was not identified, so only potential differences can be shown, with the data manually aligned to
a point-of-zero charge of ∼3 in agreement with typical experiments. Molecular dynamics (MD) simulation of the crystalline silica–electrolyte system
(black lines) and amorphous silica–electrolyte system (blue lines) are shown. The error bars indicate 95% confidence interval over three 60 ns
repeats and quantify uncertainty in the mean due to temporal fluctuations, with two repeat simulations for each surface charge performed to quan-
tify thermodynamic convergence.

Fig. 5 Calculated surface potential as a function of surface charge from three mean-field models—the Grahame equation (eqn (1), solid line), the
Debye–Hückel model (eqn (2), short dashed line), and the modified Poisson–Boltzmann model (eqn (4), circles for a = 0.189 nm and long dashed
line for a = 1 nm). Two ionic strengths of a monovalent 1 : 1 electrolyte are shown: 300 mM (blue) and 100 mM (green). Simulated data are plotted as
a function of surface charge density, with the approximate linear relationship between surface charge density and pH shown as described in the
Methods section.
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modified Poisson–Boltzmann model, without resorting to
empirical parametrisation. It can seen that at these charge
densities, if a = 0.189 nm, then the results are equivalent to
the Poisson–Boltzmann equation but that if a = 1 nm the
modified Poisson–Boltzmann equation predicts a larger poten-
tial response. In all cases, the Debye–Hückel model predicts
the largest response, but is technically invalid at potentials
much greater than kbT/q (∼26 mV).

All three mean-field models show a strong dependence on
ionic strength, which is contradicted by experimental evidence.

4.3.2 Experimental data. Fig. 6 shows the change in
surface potential as a function of surface charge density
(effective pH) for experimental data (dashed lines). The amor-
phous silica molecular dynamics model (blue solid lines) and
the crystalline silica molecular dynamics model (black solid
lines) are also shown. Only surface charge densities below
−0.12 C m−2 are shown in the figure because anomalous
surface potential behaviour at high surface charge densities
has already been discussed in our previous work46 and
because such high surface charge densities are beyond the
reach of most experiments.16,85,99 The surface potential simu-
lated by molecular dynamics can only be approximate, due to
the difficulty of defining a precise surface layer in atomistic
simulations.46,106

A comparison to experimental pH response data was dis-
cussed in our previous work.46 In summary, the experimental
data are highly variable due to variation between silica surface
preparation and electrolyte composition; however, molecular
dynamics simulations and mean-field models show a qualitat-
ive agreement with some experimental data up to highly
effective pH.46 Silica often shows a sub-Nernstian response114

in the 30–40 mV per pH range,8,46,112,114 but the ideal Nernst
response (∼59 mV per pH) has been reported89 as shown in
Fig. 6 (pink circles). This untypically high pH response was
likely due to differences in silica structure as the silica was
sputtered as opposed to being thermally grown or naturally
formed.

4.3.3 Molecular dynamics models. In the pH range 3–8,
the crystalline molecular dynamics silica simulation, shown in
Fig. 6, demonstrated approximately 25–45 mV per effective pH
and the amorphous simulation showed approximately 59 mV
per effective pH; this increased surface potential change with
effective pH or surface charge can be explained by the amor-
phous system showing higher sodium ion accumulation, as
shown in Fig. 3(a) for a given surface charge. As discussed, this
is likely due to an increased surface area with the cavities of
the amorphous surface providing more favourable surface
adsorption sites. If sputtered silica demonstrates a higher
nanoscale surface area, the results of the present work provide
a potential theoretical explanation for why sputtered silica has
evidenced enhanced pH response compared to thermally
grown silica.89 As presented in the background, some experi-
ments support the concept of nano-texturing resulting in
increased pH response,89–92 but the relationship remains
unclear with further work being required to clarify the precise
relationship.

The amorphous system showed a decrease in the polaris-
ation of water compared to the crystalline system (Fig. 3(b)),
due to the amorphous structure reducing the ability of water
to form a highly ordered and oriented monolayer. This
decrease in polarisation would be expected to cause a smaller
magnitude surface potential; however, it is counteracted by
increased sodium ion binding (Fig. 3(a)), resulting in the
observed larger magnitude of surface potential for the amor-
phous system versus the crystalline system.

4.3.4 Comparison of mean-field models, experiments and
molecular dynamics. The modified Poisson Boltzmann
equation predicts accumulation of cations in multilayers (i.e.
extending away from the surface) due to increasing surface
charge density, resulting in quadratic surface charge/surface
potential dependence.106 In contrast, in molecular dynamics
simulations, water polarisation can compensate for a large
component of the surface charge such that larger surface
charge densities are required for multilayer cation formation.
As a result, in the molecular dynamics simulation, the cations
accumulated primarily within the first molecular layer (Stern-
like layer), and the resulting potential response (Fig. 6) showed
a more linear surface charge/surface potential dependence
than the modified Poisson–Boltzmann equation in Fig. 5 in
this charge density regime.

Comparison of Fig. 5 and 6 shows that the mean-field
models at 300 mM ionic strength significantly underestimates
the potential response of the two experiments shown at 1 M
ionic strength110,111 and that predicted by the molecular
dynamics models. The reason for this underestimation is in
part due to ignoring the effect of water polarisation. The
mean-field models use a constant permittivity for the liquid
throughout the system, which is in contrast to the present
molecular dynamics simulations which simulate the spatially-
dependent polarisation of water. If a lower permittivity is used
in the mean-field model, a larger potential results.

Another reason for the underestimation is due to the strong
ionic-strength dependence observed in the mean-field models.
Experiments show ionic strength to have a weaker effect, with
pH being the dominant determinant of response.81 The strong
ionic strength dependence compared to that observed experi-
mentally is due to neglect of the acid–base chemical equilibria;
for example, in ultrapure water (ionic strength less than
0.001 M), negligible surface ionisation can occur due to the
lack of availability of charge stabilising cations.82 Modelling
such equilibria is often performed empirically via site-binding
models as it remains too computationally intensive to simulate
the effects of ionic strength of acid–base equilibria from first
principles.80 While site-binding models can provide accurate
prediction of potentiometric pH response with sufficient para-
metrisation, they cannot provide molecular-scale insight such
as the discussed effects of surface morphology.

4.4 Surface potential: the effect of DNA

As presented in the background (section 2.5) potentiometric
sensor response to DNA binding is highly variable due to difficul-
ties in controlling experimental conditions, and the theoretical
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basis for the magnitude of experimentally observed response
remains an open research question. Thus in this section the
effect of DNA on potentiometric response is investigated.

The shift in surface potential due to addition of DNA (i.e.
combined immobilisation and hybridisation signal) was calcu-
lated to be −5 ± 12 mV in one simulation and −24 ± 8 in a
repeat simulation (95% confidence intervals calculated as per
Fig. 6), with only the latter simulation being statistically
significant (unpaired t-test p = 0.48 and 0.011, respectively).
The high uncertainty of the potential calculations can be con-
trasted with the electric field results for the same simulations,
the data for which were previously shown in Fig. 4. The electric
field calculations showed strong statistical significance
between the absence and presence of DNA, with p = 0.0005
and p = 0.0001, respectively. As discussed in our previous
work,46 surface potential calculations via molecular dynamics
are highly sensitive to changes at the position selected as the
‘surface’ layer, whereas the long-range electric field calcu-
lations performed in this work are more reliable. The electric
field calculations showed a response equivalent to one
effective pH unit, which is consistent in magnitude with the
approximately 25 mV surface potential shift observed due to
DNA in one of the two DNA simulations.

In the present work, the simulated DNA–crystalline silica
model system has a DNA density of 8.58 × 1012 molecules cm−2

and 12 base pairs (24 negative charges per DNA) and thus a
surface charge density of σDNA = −0.33 C m−2. The silanolate
surface charge density was σsurf = −0.083 C m−2. Eqn (5) can be
used with the Grahame equation (eqn (1)) to predict a shift in
surface potential of 77 mV. Thus the Grahame equation pre-
dicts a shift in surface potential greater than that predicted by
the molecular dynamics simulation of 5–24 mV; however,
given the variation in experimental DNA sensing data, the
quantitative accuracies of the molecular dynamics and mean-
field models are currently difficult to evaluate.

Further complicating the issue, the predictions between
different mean-field models are highly variable. For example,
while response calculated using eqn (5) is often presented
using the Grahame equation in the literature, it is instead
possible to use eqn (5) with either the Debye–Hückel model or
the modified Poisson–Boltzmann equation. In such cases,
different predictions are obtained; specifically −79 mV and
−756 mV for the modified Poisson–Boltzmann equation with a
= 0.184 nm and 1 nm, respectively, and −264 mV for the
Debye–Hückel model. ESI 1† presents visualisations of the
differences in predictions of each model. As these equations
have broad utility to the biosensing community, easy-to-use
open-source code is also provided to facilitate members of the
biosensing community to easily investigate the effects of chan-
ging surface charge (intrinsic or biomolecule), ionic strength
and electrolyte composition for this set of three equations.

Future work will further validate the model by the investi-
gation of biomolecular systems which show more reproducible
experimentally measured surface potential shifts such as poly-
styrenesulfonate (PAS) and polyallyamine hydrochloride (PAH),
which form a polyelectrolyte multilayer.67,69

4.5 Effect of simulation duration and convergence

Large fluctuations in potential and electric field occur at the
1 ps timescale; for example, as discussed, a change in pH was
shown to correspond to approximately 0.007 V nm−1, which
can be compared with a typical standard deviation for the elec-
tric field of 0.025 V nm−1.‡ Calculation of potentiometric (bio-)
sensor response therefore requires the ability to distinguish a
small change in a noisy signal; this problem is somewhat alle-
viated in experimental systems by measurement equipment
averaging over macroscopic timescales (microseconds to
seconds). Potential and electric field calculations are shown as
a function of simulation duration in ESI 10.† The results show
that the duration used in this work can provide precise calcu-
lations of the mean electrostatic properties and evidences
thermodynamic convergence, thereby demonstrating the
merits of the longer duration of simulations in the present
work compared to other reported calculations of the silica–
water interfacial potential.38–41,43,44

5. Conclusions

Understanding the electrodynamics of the silica–water inter-
face is vital to many modern technologies such as electro-
chemical fuel cells,1 water filtration3 and biosensing.77 In par-
ticular, the electrostatic potential and electric field are particu-
larly relevant for understanding the response of potentio-
metric biosensors such as field-effect transistor-based sensors.
With a particular focus on understanding the field-effect bio-
sensors, in the present work, molecular dynamics simulations
of the electrostatic properties at the silica–electrolyte-bio-
molecule interface have been presented. The effect of varying
surface charge density and the addition of a highly charged
model biomolecule (DNA) was investigated and the results
were compared against three commonly used analytical mean-
field models of the electrical double layer. Both a crystalline
and an amorphous silica surface model were investigated, and
their differences compared and contrasted. Molecular
dynamics simulations were performed for significantly longer
duration than in the related literature, facilitating increased
precision and accuracy of the electrostatic properties.

The first few molecular layers at the surface dominate the
electrostatic properties of highly charged interfaces and there-
fore a layer close to the surface was analysed in more detail,
referred to as the ‘Stern-like’ layer within the present work.
Water formed three highly ordered surface layers in the crystal-
line silica model, in contrast to the amorphous model which
showed much less water structuring. Sodium ion density in
the Stern-like layer was found to increase approximately line-
arly with surface charge density. Water polarisation increased
approximately linearly up to a surface charge density of −0.17
C m−2, but at the very high density of −0.38 C m−2, water

‡Calculated over 180 ns, with snapshots taken at 100 ps intervals for the −0.041
C m−2 crystalline silica model.
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polarisation was found to decrease due to displacement by the
high density of sodium ions present at the interface. An
empirical relationship was used to relate the surface charge
density to the measured pH for these systems. Using this
relationship, these simulations predict that, for both amor-
phous and crystalline silica systems, from pH 2 to 12, both
sodium ion accumulation and water polarisation do not reach
a maximum. At higher pH, and therefore at higher surface
charge, maximal water polarisation occurs; however, at such a
high pH the effects of silica surface dissolution become sig-
nificant. These effects cannot be simulated using the current
methodology but attempts to describe them have been made
in other ‘reactive’ forcefields.38

The surface potential properties were calculated and com-
pared to transferable models of the electrical double layer. The
amorphous surface showed a larger change in surface poten-
tial for a given change in surface charge density or effective pH
than the crystalline model, despite both systems being
approximately equal in hydroxyl density, charge density and
electrolyte ionic strength. The greater surface potential shift of
the amorphous system was explained to be as a result of
increased sodium ion accumulation due to a higher surface
area and an increased availability of favourable sodium ion
binding sites. This novel result suggests that for pH sensor
design, amorphous surfaces will have enhanced pH response
compared to more structured surfaces with a lower surface
area. By contrast, commonly used models for describing pH
response of potentiometric sensors, such as site-binding
models, cannot describe such differences due to surface
morphology.

The electric field below the silica substrate was calculated
as a measure of the ‘field effect’, the phenomenon which
drives the response of field-effect transistor-based sensors.
A shift of 0.007 V per nm per effective pH was calculated.
When DNA was introduced, a similar magnitude shift of
0.007 V nm−1 was calculated, and given that typical IS-FET
sensors can resolve changes of at least one pH unit, this result
predicts that this DNA-system should be experimentally detect-
able. The response rapidly diminished with distance of the DNA
from the surface, in agreement with expectations based on the
Debye–Hückel model. This result provides a first proof-of-
concept for this type of simulation applied to potentiometric
biosensing applications. The effects of biomolecule dynamics,
biomolecule–ion interactions (e.g. ion displacement by bio-
molecules), the finite size of the biomolecule and the surface
morphology are all explicitly treated, providing a wealth of infor-
mation unavailable in current potentiometric biosensor models.
Thus we posit that molecular dynamics provides a novel com-
plementary tool to existing potentiometric biosensor models.

Conventional mean-field models provide predictions that
are often insufficient for the rational design of potentiometric
sensors with regard to the binding of molecular analytes. For
example, recent studies have shown potentiometric detection
of neutral alkanes when applied in nitrogen gas33 or humid
vapour,34,115 both of which are predicted to produce no signal
using Poisson–Boltzmann-based models due to the lack of

charge on each alkane molecule. The measured response is
likely due to changes in electric field induced by water polaris-
ation and analyte dipole orientation, both of which would be
described by the present molecular dynamics model and will
be investigated in future work.

A unique capability of potentiometric biosensors is detec-
tion of electrostatic properties, in contrast to conventional bio-
sensors which often operate via mass and optical detec-
tion.116,117 As a result of this capability, properties unmeasur-
able using conventional biosensors can be determined such as
conformational changes of the analyte.118 It is therefore antici-
pated that simulation of the response of potentiometric bio-
sensors via methods which are capable of modelling the
dynamics of molecules will become increasingly important as
potentiometric sensing becomes more widespread in the form
of point-of-care diagnostic devices and environmental sensing
applications.
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