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Diverse chemistry of the dianion [closo-BgHol?:
synthesis and reactivity of its mono-anionic
derivative [arachno-BoH,-4,8-Cl,] ¥

Florian Schluter,® Eduard Bernhardt (2 *® and Konstantin Zhizhin®

Attempted protonation of the dianion [closo-BgHol>~ under moisture-free conditions did not afford its
mono-protonated form [closo-BgHiol ™. The reaction of the former closo-borate with CHzCOOH in
dichloromethane yielded a monoanionic product [B,O(MeCO,)s]™. The treatment of [closo-BgHo]?~ with
HCL in dichloromethane afforded its arachno-derivative larachno-BgH;,-4.8-Clb]™ in a high yield. The
experimental solution and quantum-chemically calculated “B and H NMR spectra of the latter
monoanion were found to be in a good agreement; its structure in the solid state was studied by the
single crystal X-ray diffraction experiment for the crystal (PPhy)larachno-BgH;,-4,8-Cly]-0.04HCL
The reaction of [arachno-BgH;,-4,8-Cly]™ with liquid ammonia caused its quantitative conversion into

rsc.li/njc the parent [C[OSO'BQHQ]Zi.

Borates [closo-B,H,,]>” (n > 4) are fundamental building blocks
of the boron cluster chemistry (see for example'™) and these
borates with n = 6-12 were synthesized in 1959-1967.% [closo-
B,H,]>” have three-dimensional aromaticity, while the organic
aromatic compounds have two-dimensional aromaticity'®"*
(and literature cited therein). Among the [closo-B,H,|*~ (n = 6-12),
those with n = 7-9 are the least explored.

Borates with an arachno nine-vertex are described in literature
since 1960.">'° The existence of the monoanion [arachno-BoH, 4]~
has been postulated by Lipscomb,' while the first X-ray structural
characterization in the form of its cesium(i) salt has been per-
formed by Greenwood et al.;»* two possible conformations of this
monoanion (a and b) are shown in Scheme 1.

Its i-configuration appears to be a deviation from Williams
theory. The Williams theory postulates that for the generation
of the arachno-boranes or carboranes from the nido-clusters, a
vertex with the highest connectivity should be removed.'®"®
The examples of the n-configuration of the monoanion [arachno-
BoH,,]™ (in contrast to those of its i-configuration) are very rarely
reported in literature. They include the dianion [n-BoH;5]*” ™
as well as the organometallic and coordination compounds,
such as [n°(CeMeg)RUBgH4],>° [(dppe)Pt,B,Hy; > and
[(PMe,Ph),PtB,H,,NHEt]."* The structure with i-geometry, on
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[n'B9H14]- [i'B9H14]- nido'Blon

Scheme 1 Known nine-vertex conformations of the monoanion arachno-
BoH14~ (@ and b) and that of nido-BioH 4 (c).Y

the other hand, is obtained by removing a corner with a lower
connectivity of nido-B;oH;4 (Scheme 1c). Such geometry has
been however observed for numerous members of the borates,
including the dianion [i-BsH;5]> '" and a series of neutral
coordination compounds [arachno-BsH,;L]."> The borate nido-
B,oH;,4 has been also assigned to this geometry (see ref. 17 and
references therein). The n-configuration has been observed'”
only for one of its halogen-containing derivative, viz., [arachno-
BoH;,-4,8-Br,]”, which is a by-product of the synthesis of
anti-B;gH,, by the reaction of [nido-BHi,| with HgBr, in
dichloromethane."”** In the present communication, we describe
the products of the reactions of [closo-BsHs]*~ with various acids
and the reactivity of these products.

In the first stage of our investigation, we attempted to protonate
[closo-BoHo >~ with acetic acid under anhydrous conditions. Dry
acetic acid was added to the red-orange solution of (PPh,),[closo-
BoH,] in dichloromethane and then, the reaction mixture was
left under pentane atmosphere for 3 days. This reaction resulted in
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the complete destruction of a polyhedral boron cluster, thus
affording the monoanion [B,O(MeCO,)s|” as a major product,
which crystallizes as (PPh,)[B,0(MeCO,)s] in colorless crystals.>®
The heteroleptic products [B,O(MeCO,)s] and B,0(MeCO,), were
already detected spectroscopically few years ago.>*™” It should
be noted that the homoleptic compounds [B(MeCO,),]” and
B(MeCO,); were not described in literature till date.

We also studied the reaction of (PPhy),[closo-BoHy| with HCI
in dichloromethane. Indeed, the bromine-containing compound
[arachno-BoH,;,-4,8-Br,] ™ has been prepared6 using the reaction of
the [nido-BoH,,]~ with HgBr,. The treatment of (PPh,),[closo-BoH,|
with purified gaseous HCI (the oxygen impurities were removed
using three condensation-argon saturation cycles) in dichloro-
methane at —78 °C (the latter makes it possible to remove the
remaining moisture impurities) under inert atmosphere afforded

Fig. 1 Labeling scheme of the atoms in the anion [arachno-BgH1,-4,8-Clo] ™~
and its quantum-chemically calculated structure.
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the chlorine-containing monoanion [arachno-BoH;,-4,8-Cl,]” as
per the following eqn (1):

(PPhy),[closo-BoHg| + 3HCl — (PPhy)[arachno-BoH;,-4,8-Cl,]
+ (PPh,)Cl (1)

The calculated structure of this monoanion with a labeling
scheme of its atoms is shown in Fig. 1.

The initial red-orange solution of (PPh,),[closo-BgHy| in
dichloromethane underwent an immediate decolouration after
the addition of HCI. The resultant reaction mixture was care-
fully mixed with a five-fold volume of pentane and colorless
crystals were formed after 3 days with high yield (83%).

The reaction of a suspension of (PPhy)[arachno-BoH;,-4,8-Cl,] with
liquid ammonia at r.t." resulted in the re-closing of this arachno-
compound into the initial [closo-BoHo]*": after 10 min, the initially
colorless reaction mixture turned yellow, following which NH;3
escaped from the mixture and the intensity of its color increased,
thus indicating the formation of the closo-borate dianion according
to eqn (2):

2(PPhy)[arachno-BoH,,-4,8-Cl,] + 6NH; — (PPhy),[closo-BoH)
+ (NH4)2[CZOSO'B9H9] + 4NH4C1 (2)

The yield of the orange solid product, based on its NMR
spectra, was quantitative.

The initial closo-borate compound and the products of its
transformations were characterized using multinuclear NMR
spectroscopy and by the single crystal X-ray diffraction study as;
their "B NMR spectra are shown in Fig. 2 and 3.

In the spectrum b of new compound (PPh,)[arachno-BoH;,-
4,8-Cl,], the signals of its "'B nuclei split in the integral ratio
2:1:2:2:1:1; the two chlorine-substituted boron atoms have a
singlet character. An assignment of the above signals was made
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Fig. 2 B NMR spectra of the CDsCN solutions of the initial [closo-BgHsl?~ (a), the chlorine-containing derivative [arachno-BgH;»-4,8-Clyl ™ (b) and the

product of its reaction with liquid ammonia (c).
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Fig. 3 General view of the monoanion [arachno-BgH1,-4,8-Cly] ™ in the
crystal (PPhy)larachno-BgH1,-4,8-Cl,]. Thermal ellipsoids are shown with
50% probability.

Table 1 Experimental NMR data for the CD3sCN solution of the chlorine-
containing monoanion [arachno-BgH;,-4,8-Cly]~ in CD3sCN and those
quantum-chemically calculated using GIAO//B3LYP/6-311G?°

Assignment Oug (ppm) Yirp_1y (Hz) o1y (ppm)
B5, B7 2.2 (—1.3)% 149 3.05 (2.53)*
B6 —4.9 (—14.5) 153 2.86 (2.14)
B4, BS —8.6 (—10.0)° —0.41 (1.13)%
B1, B3 -10.9 (-17.3)" 142 2.04 (1.58) ”
B9 —31.4 (—35.5) 145 0.82 (0.32)
B2 —49.1 (—56.3) 152 —0.41 (1.13)°
H10 (—2.35)

H11 (—3.20)

H12 (—4.22)

a

In parentheses: the calculated NMR parameters; ''B NMR data
relative to BF;-OEt, with d11p = 0 ppm; dug = 101.63 — ou1p; 'H NMR
data relative to Me,Si with 01y = 0 ppm; diy = 31.97 — 0. 5 The
averaged calculated d11p. © The averaged calculated 61y for the atoms
H2, H4 and HS.

using the theoretically calculated ''B NMR values, which are
also collected in Table 1.

The bridging hydrogen atoms of [arachno-BoH,,-4,8-Cl,]~
were not detected at room temperature using "H NMR method
due to substantial broadening (due to the dynamic behavior)of
the peaks. The same effect is also observed® in its bromine-
containing analog [arachno-BgH;,-4,8-Br,]”. The calculated
values of d.up for the boron-based framework of [arachno-
BoH;,-4,8-Cl,]” were found to be in a good agreement with
those experimentally observed (except that for the atom Bg).

The colorless single crystals of the salt (PPh,)[arachno-BoH;,-
4,8-Cl,] were also characterized using the single crystal X-ray
diffraction method;*' the molecular structure of its arachno-
anion is shown in Fig. 3.

This structure is very similar to that of the parent anion
[arachno-BoHy4] ", having the same arrangement of both the
backbone and the bridging protons. Two of the residual electron
peaks observed in this spectrum were assigned to the HCI
molecule with about 4% occupancy. In addition, peaks attributed

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018
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Fig. 4 Quantum-chemically calculated structure of the monoanion lara-
chno-BgH1,-4,8-Cly] ™ having Cs symmetric arrangement.

to 3 p-H and 2 endo-H could be found. The bridging proton H10
was evidenced to be deviated from the centrum of the corres-
ponding boron-boron bond, while the same was not observed
for the two other bridging protons. The bond distance B9-H10
(1.126 (12) A) is smaller than that of B4-H10 (1.508 (13) A). The
quantum-chemical B3LYP/6-311G calculations® showed that such
arrangement of the bridging hydrogen atoms in the crystal (PPh,)-
[arachno-BsH,-4,8-Cl,] is energetically preferable by 5.83 k] mol * as
compared with its Cy-symmetric arrangement (Fig. 4).

Such calculated Cs-symmetric structure contains two p-H
and three endo-H atoms and it was not experimentally detected
using the NMR method.

Thus, the dianion [closo-BoHs]*>~ was found to react with
gaseous HCI in dichloromethane under anhydrous conditions,
affording its halogen-containing derivative [arachno-BoH;,-4,8-
Cl,], which undergoes re-closing with NH; to form an initial
closo-borate dianion.
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