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Anemia affects more than ¼ of the world's population, mostly concentrated in low-resource areas, and

carries serious health risks. Yet current screening methods are inadequate due to their inability to separate

iron deficiency anemia (IDA) from genetic anemias such as thalassemia trait (TT), thus preventing targeted

supplementation of oral iron. Here we present an accurate approach to diagnose anemia and anemia type

using measures of pediatric red cell morphology determined through machine learning applied to optical

light scattering measurements. A partial least squares model shows that our system can accurately extract

mean cell volume, red cell size heterogeneity, and mean cell hemoglobin concentration with high accu-

racy. These clinical parameters (or the raw data itself) can be submitted to machine learning algorithms

such as quadratic discriminants or support vector machines to classify a patient into healthy, IDA, or TT.

A clinical trial conducted on 268 Chinese children, of which 49 had IDA and 24 had TT, shows >98% sensi-

tivity and specificity for diagnosing anemia, with 81% sensitivity and 86% specificity for discriminating IDA

and TT. The majority of the misdiagnoses are IDA patients with particularly severe anemia, possibly requir-

ing hospital care. Therefore, in a screening paradigm where anyone testing positive for TT is sent to the

hospital for gold-standard diagnosis and care, we maximize patient benefit while minimizing use of scarce

resources.

Introduction

Anemia is a wide-spread and persistent public health con-
cern. Estimates of the global prevalence of anemia place the
burden at approximately 1/4 to 1/3 of the world's population,
primarily concentrated in low-resource settings with poor ac-
cess to healthcare.1,2 Despite anemia's vague clinical manifes-
tation (fatigue, pale skin, tingling in limbs), anemia carries
serious health risks, including slowed cognitive development
in children,3,4 significantly increased mortality for mother

and child during pregnancy,5,6 reduced productive work
capacity,7 and increased susceptibility to infection,8 with
anemia being an independent predictor of mortality in the
elderly.9

Anemia can have many underlying causes. In this work
we are primarily concerned with nutritional and genetic
causes. The most common form of anemia worldwide is
iron deficiency anemia (IDA), which can be easily treated
with iron supplementation. To address the heavy global bur-
den of anemia, some researchers have explored widespread,
population-level iron supplementation,10 including iron-
fortified staple crops such as millet and rice.11 However,
anemia persists as a public health issue due to the potential
dangers of iron over-supplementation. The famous Pemba
study, found that widespread iron supplementation in areas
where genetic anemias are prevalent led to an overall ad-
verse outcome for subjects who received supplementation
but were already iron replete,12 with this result confirmed
in additional clinical trials.13–15 While the cause of iron-
associated toxicity is not fully elucidated, it is believed to be
related to the fact that iron supplements bypass the body's
typical mechanisms for iron extraction and storage from
food, increasing serum iron levels and interfering with in-
flammatory and other processes in the body,16 including
interfering with pregnancy,17 and increasing susceptibility to
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and severity of Plasmodium falciparum malaria.18 This is par-
ticularly critical for areas where Thalassemia trait (TT) is en-
demic. TT is a collection of genetic anemias where the body
has a reduced capacity for synthesis of either the α, β, or δ

chain of hemoglobin. TT carriers have a markedly reduced
capacity to process iron, and therefore excess iron can easily
lead to toxic iron overload.19,20

In many parts of the world genetic anemias can be
highly prevalent. For example, in South-eastern China, esti-
mates of TT prevalence are greater than 10% of the popula-
tion.21,22 Thus, iron supplementation must be accompanied
by population-level screening to determine anemia status in
order to safely deliver potential benefits without risk to the
otherwise healthy. Point of care technologies to screen for
anemia have a long history, with methods such as
Tallquist's paper-based colorimetric scale having nearly 100
years of use.23 Methods have traditionally focused on mea-
suring hemoglobin concentration, with commercial point-of-
care assays such as HemoCue24 already part of established
clinical practice. Newer noninvasive tests of hemoglobin
concentration based on diffuse light propagation through
tissue are also under development and have seen limited
deployment,25 while paper-based assays have also seen rene-
wed interest.26 However, these methods all rely on hemoglo-
bin measurements that cannot determine anemia type, ren-
dering it of limited use for supplementation purposes in
areas where genetic anemias are common.

Clinical tests for nutritional deficiency measure serum
iron, serum ferritin, zinc protoporphyrin, and other chemi-
cal markers. Hennig et al. have developed a non-invasive
method of screening for iron deficiency by determining se-
rum ferritin concentration using autofluorescence of zinc
protoporphyrin (ZPP) measured in the inner lip.27 However,
ZPP levels can fluctuate with inflammation and other disor-
ders, and thus as a screening method it lacks sensitivity. In
developed countries with low levels of hemoglobinopathies
and parasitic illnesses, ZPP has shown promise,28 but else-
where it has limited diagnostic ability29,30 with some cau-
tioning against its use as a screening indicator.31 Mean-
while, Srinivasan et al. recently reported a paper-based test
of serum iron using a cell phone as a colorimetric reader,
however with rather poor accuracy when used in whole hu-
man blood.32 Further, neither of these methods test for the
presence of genetic disorders. Thus, multiparametric tests
that screen for, and differentiate, both iron and genetic sta-
tus are still needed.

The most robust method for testing genetic status is
through gel electrophoresis or polymerase chain reaction
(PCR). However, these tests require highly trained operators
working in well-staffed clinical laboratories, rendering them
impractical for population-level screening in areas where ge-
netic anemias are common. When considering genetic ane-
mias, besides reductions in hemoglobin concentrations and
alterations in hemoglobin structure, these anemias also
manifest through altered red cell morphology (with the
crescent-shaped blood cells of sickle disease being the most

famous example). For TT, researchers have long proposed
using cell morphology, including mean cell volume (MCV),
red cell distribution width (RDW), and mean cell hemoglo-
bin concentration (MCHC) as a sensitive and specific
method for anemia screening.33,34 We previously reported
that quadratic discriminant analysis (QDA) applied to the
three red cell parameters MCV, RDW, and MCHC
outperformed established indices in discriminating healthy
from anemic patients, and IDA from TT patients in Chinese
children.35 However, these parameters are currently mea-
sured in the hospital by a complex flow cytometry system
that requires regular maintenance and operation by a highly
trained user. This makes their measurement by standard
methods unsuitable for wide-spread population-level screen-
ing. Further, variations in genetic profiles worldwide also
lead to varying performance of established diagnostic indi-
ces in different populations. MCV, RDW, and MCHC are re-
lated to the size, polydispersity, and average refractive index
of red blood cells, respectively. Elastic light scattering is an
established metrology method with nanometer-scale preci-
sion that can extract exactly these parameters from polydis-
perse suspensions such as latexes, nanoparticles, as well as
biological cells.36–38 We previously demonstrated the proof-
of-concept of a cost-effective red cell analyzer for measuring
light scattering from whole blood, without sample flow or
any moving parts, to quickly determine red cell morphol-
ogy.35,37 However, as our prior work was primarily focused
on establishing, through historical review, that cell mor-
phology could accurately separate anemia types, the valida-
tion of our instrument was strictly limited to a 10-patient
proof of concept study of healthy adult subjects.

In this study we expand on our prior work through three
advances: (1) a full-scale clinical study on more than 200 pe-
diatric subjects, including a substantial fraction suffering
from IDA and TT. (2) A machine-learning based analysis
scheme, not previously reported on elastic light scattering
data, which improves both robustness and accuracy com-
pared with our prior reported physics-based model. (3) Im-
proved construction of our system to enable it to be trans-
ported out of a laboratory setting, enabling all of the
measurements to be performed at a field site. The results
show that the sensitivity and specificity using our simple in-
strument coupled with machine learning methods outper-
forms prior results using established morphometric indices
and gold-standard laboratory equipment. Further, our
method is easy to perform, requiring only 10 μL of blood
that is simply obtained via finger stick or heel prick, and
has a per-test cost of ∼US$1. This makes it amenable to op-
eration by minimally trained users in field settings, as phle-
botomy is not required. It gives results in minutes, allowing
relatively high throughput for large population screening.
The high sensitivity and specificity of the method, particu-
larly for separating healthy and anemic subjects, indicates
it holds great promise for use as a wide-spread screening
method for nutritional and genetic anemias in Southeast
Asia and elsewhere that TT and IDA are endemic.
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Materials and methods
Collection of clinical data and reference laboratory testing

In order to test the feasibility of our device, blood was tested
from 268 children at the Children's Hospital of Chongqing
Medical University, including 195 healthy children, 49 chil-
dren with IDA and 24 with TT from December 2017 to Febru-
ary 2018. Our study was approved by the Ethics Committee of
the Children's Hospital of Chongqing Medical University, ap-
proval number (2016) . Our experiments
were performed using discarded, anonymized samples that
were collected as part of routine clinical practice at the Chil-
dren's Hospital of Chongqing Medical University and not for
the purposes of this study. Therefore, informed consent was
not required.

WHO diagnostic criteria were used to distinguish different
types of anemia. Patients 6 months to 6 years old with hemo-
globin less than 110 g L−1 and those 6 to 14 years old with he-
moglobin less than 120 g L−1 were considered anemic. For di-
agnosis of IDA, the serum iron of patients must be less than
11 μmol L−1. For deletion α-thalassemia patients, polymerase
chain reaction reverse dot blot (PCR-RDB) technology was
used to detect the −α3.7, −α4.2 and −SEA α-thalassemia dele-

tion genes. For mutation α-thalassemia patients, PCR-RDB
technology was used to detect the common Quong Sze (QS),
Constant spring (CS) and Westmead (WS) mutation sites. For
β-thalassemia patients, PCR-RDB technology was used to de-
tect the following common mutation sites and start codons:
CD41-42Ĳ−TCTT), IVS-2-654 C → T, CD17 A → T, -28 A → G,
CD26 G → A, CD71-72Ĳ+A), CD43 G → T, -29 A → G. PRC-RDB
was also used to identify the following nine rare mutation
sites: ATG → AGG, CD14-15Ĳ+G), CD27-28Ĳ+C), -32 C → A, -30
T → C, IVS-1-1 G → T, IVS-1-5 G → C, CD31Ĳ−C), CAP +40−+43
(−AAAC).

After being collected, blood samples were stored in an eth-
ylene diamine tetra-acetic acid (EDTA)-coated anticoagulation
tube. Reference clinical values of red cell parameters were
measured using Sysmex XE-2100 hematology analyzer, a spe-
cialized flow cytometer where blood is split into multiple
measurement channels and analyzed using a combination of
fluorescence, forward- and side-scattered light, and electrical
impedance. Serum iron was measured using a Johnson &
Johnson VITROS 5.1 FS biochemical analyzer. Genetic testing
was performed using an ABI Verity PCR amplifier, UVP HB-
100 hybridizer, and Bio-Rad electrophoresis and gel imaging
systems with its supporting reagents. Thalassemia genetic

Fig. 1 Light scattering system and data pre-processing. (A) Schematic of portable light scattering system. Lens focal lengths are L1 = 25 mm, L2 =
25 mm, L3 = 50 mm, L4 = 12 mm. FP = Fourier plane, FP′ = relayed image of FP. (B) Scattering coordinate system relative to the optical axis,
showing the circular symmetry of the scattering pattern as well as the portion of that pattern captured by our imaging system (grey region in
pattern). Θi = incident angle of illumination relative to optical axis. Θs = scattering angle relative to Θi. (C) Raw scattering pattern from a sample of
NIST-traceable 7 micron polystyrene beads. (D) Determination of scattering center. Red is the adaptive binarization of (C), blue points are the max-
imum intensities for each row of the each red region. Dark green circles represent best fit circles to each set of blue points. (E) Final azimuthally-
averaged scattering pattern.
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testing utilized a PCR amplifier (Verity, ABI Corporation,
USA), HB-1000 hybridizer (UVP Corporation, USA), and
electrophoresis and gel imaging systems. In performing these
analyses, we utilized Yaneng BIO α-thalassemia and
β-thalassemia point mutation gene detection kits.

Elastic light scattering system

A schematic of our system is shown in Fig. 1A, a photograph of
the as-built prototype is shown in ESI† Fig. S1, along with the
details of cost and portability of the system. Light from inex-
pensive 532 nm and 650 nm laser diodes are coupled into sin-
gle mode fibers to ensure high wavefront quality. Light emerg-
ing from these fibers is collimated and the central portion of
the beam is selected by irises. The light is then directed at an
angle onto a sample chamber containing diluted, sphered
whole blood. Incident light is not collected by the detection sys-
tem, while scattered light is directed onto a 14-bit CCD camera
(Microvision, EM200, China). Light incident on a collection of
spheres gives rise to a scattering pattern of circular fringes as
seen in Fig. 1B and C, whose spacing, fringe contrast, and
intensity can be related to the mean scatterer size, scatterer
polydispersity, and average scatterer refractive index. The
optical arrangement is designed to capture this angularly-
dependent scattering pattern by imaging the Fourier plane of
the collection lens (L2) onto the CCD with an appropriate mag-
nification (0.24× in our system). In the Fourier plane, scattering
angle θs is mapped to the radial coordinate of a polar coordi-
nate system, as shown in Fig. 1B. The zero degree scattering is
defined by the propagation direction of the incident beam,
while our optical system collects the forward-directed portion
of the 4π-steradian sphere of scattering angles. Compared to
our prior-reported system,35 the utilized wavelengths have been
changed, and the optical system has been redesigned to elimi-
nate a dichroic mirror, reducing cost while minimizing
wavefront aberrations that can interfere with the generation of
a clean scattering pattern.

Blood preparation

In order to obtain the most robust estimates of cell morphol-
ogy, we dilute the blood, such that each photon passing
through the sample undergoes at most one scattering event
before reaching the detector. We also sphere the red blood
cells using an isovolumetric sphering buffer such that their
scattering is orientation independent.39,40 A photographic de-
piction of the blood preparation process is given in the ESI†
Fig. S2. Briefly, 10 μL of whole blood is diluted 300 times in
phosphate buffered saline (PBS) containing 0.26 μmol so-
dium dodecyl sulfate (SDS). SDS is an anionic surfactant
which intercalates in the red cell membrane altering the sur-
face tension of blood cells and forcing them into a uniform
spherical shape. 10 μL of this diluted sample is then placed
within a disposable, 100 μm thick sample chamber (Life
Technologies, C10228) and measured. The measurement pro-
cess consists of taking images at both the green and red
wavelengths, with a total measurement time of about 2 mi-

nutes. These images are then averaged via a process de-
scribed in the Data Processing section, below, to obtain the
final data, shown in Fig. 1C.

Data processing

All data processing and analysis was performed using
MATLAB (R2017a, The MathWorks, Natick, MA). Statistical
comparisons were performed using SPSS 13.0 (IBM, Armonk,
NY). Prior to regression and classification analysis, raw data
was converted from two-dimensional images into one-
dimensional scattering patterns, as shown in Fig. 1C–E.
Fig. 1C is the original scattering image obtained by the CCD
camera. First, we subtract a constant offset representing the
average dark noise level in the camera. Then we use an adap-
tive binarization algorithm to identify each fringe in the scat-
tering pattern (shown as the red region in Fig. 1D). Following
this we use a polynomial fitting algorithm to calculate the X
position of maximum intensity for each Y position in each
fringe (shown as the blue points in Fig. 1D). Finally, we use a
least squares circle-fitting algorithm applied to the blue
points to find the best-fitting circles for each fringe (shown
in green in Fig. 1D) and use this to determine each fringe's
center point. Using the average center position among all
fringes, and angle calibration information obtained using a
NIST-traceable polystyrene sphere sample (see the ESI† Fig.
S3), we can determine the scattering angle for every point in
the scattering pattern. This allows us to azimuthally average
the scattering pattern due to its circular symmetry. We take
the azimuthal median value, which neglects streaks in the
scattering pattern caused by scratches in the plastic sample
chamber. The final averaged scattering curve is shown in
Fig. 1E.

As described later in the text, PLS regression was used to
extract clinical parameters from the scattering data, and was
implemented using a linear kernel. PCA–SVM and QDA were
used to classify the samples as healthy, IDA, or TT. PCA–SVM
was performed using a radial basis function kernel and stan-
dardized variables. PLS regressions, QDA classifications, and
PCA–SVM classifications were all validated using 10-fold
cross validation, where 90% of the data is used to construct
the regression or classification model, and the remaining
10% is tested. The calibration and testing procedure is re-
peated 10 times until all samples have been used as both cal-
ibration and test samples.

Table 1 Descriptive statistics of clinical measurements (μ ± σ)

Variable HC IDA TT

No. of samples 195 49 24
MCV (fL) 85.50 ± 3.35 70.98 ± 7.79a 63.15 ± 6.56ab

MCHC (g L−1) 32.72 ± 0.73 31.61 ± 1.91a 31.02 ± 0.93a

RDW (%) 13.02 ± 0.78 16.44 ± 3.25a 16.72 ± 2.04a

a Significantly different compared with HC group, p < 0.05.
b Significantly different compared with IDA group, p < 0.05.
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Results and discussion
Overview of clinical data

Table 1 presents the major descriptive statistics of the 268
patients analyzed in our pilot study. A complete table includ-
ing age and gender breakdowns is provided in the ESI† Table
S1. Significance testing between two groups was conducted
with the Bonferroni test in the case of homogeneous vari-
ances, and with Dunnett T3 for inhomogeneous variances.
The Chi-square test and Fisher exact test were used to com-
pare the rates of multiple groups for continuous and categor-
ical variables (age group and sex), respectively. All tests were
performed at an α = 0.05 level of significance. There was no
statistically significant difference in sex between groups (p >

0.05). There were significant differences in the age and age
composition of each group (p < 0.01), as anemia is most
common among infants and young children in China, and
tends to decrease with age. The differences between MCV,
MCHC and RDW for anemic patients of any kind versus
healthy controls (HC group) were statistically significant. Fur-
thermore, the MCV, was statistically different between IDA
and TT groups, as expected based on prior results.

Extracting red cell morphology from elastic scattering curves
using partial least squares

To confirm that our light scattering system can accurately report
red cell size and refractive index, we extracted the MCV, MCHC,

and RDW from the scattering patterns. Previously, we utilized a
strict physical model to fit the scattering patterns. In that model,
theoretical scattering from various size distributions are simu-
lated, and the best fit to the experimental data is determined.
However, in our testing we discovered that the physics-based
model was highly intolerant of slight deviations of our pattern
from theory, caused by variations in optical throughput at differ-
ent angles, and slight sample-dependent backgrounds. There-
fore, we utilized the chemometric method partial least squares
(PLS) regression to correlate changes in the scattering patterns
with clinical parameters. A full introduction to PLS can be found
in the classic paper of Haaland and Thomas.41 It should be ac-
knowledged that PLS regression generally assumes a linear
model correlating observed signals and the underlying variables.
This would be the case for, say, Raman spectra of a complex
chemical mixture. In our measurements the scattering pattern
can be thought of as a linear combination of scattering patterns
from all individual scatterers. However, the required model rank
for such a complete model is much too large. Despite this, in
our dataset, maximum model accuracy was obtained using a
model rank of 12, beyond which adding additional vectors to
the PLS model did not increase accuracy. We note that due to
the modest size of the dataset, particularly among diseased sub-
jects, the errors must be interpreted as the errors of cross valida-
tion. However, as we show in the ESI,† the ultimate performance
of the PLS-extracted values to discriminate anemia status does
not strongly depend on the PLS model rank.

Fig. 2 (Top) Correlation analysis and (Bottom) Bland–Altman analysis between measurements of MCV, MCHC, and RDW by the clinical gold
standard or the portable light scattering instrument. Blue points represent TT, red points are IDA, and green points are from healthy subjects. In
the correlation plots, the solid black line represents the line of perfect prediction. The magenta dashed lines represent the 95% CI of the clinical
analyzer. In the Bland–Altman analysis, the solid lines represent the average disagreement between the two methods, while the dashed lines
represent the 95% CI of the disagreement.
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A comparison between the clinical values and the PLS pre-
dictions based on the scattering patterns are shown in Fig. 2.
The top row shows the correlation between our method and
the clinical analyzer, while the bottom row presents the re-
sults of a Bland–Altman analysis. The results of our analysis
on the three groups of blood samples demonstrates quite
close agreement with clinical results, especially for MCV and
MCHC, where the majority of the points fall within the 95%
CI of the clinical analyzer. This agreement is in spite of the
fact that clinical analyzers measure cells one at a time using
complex flow cytometry, guaranteeing highly accurate results.
By contrast, our method requires no flow or moving parts
and measures population-level information in a single shot.
Therefore we obtain highly accurate information despite
using substantially simpler instrumentation.

These extracted parameters can then be used to separate
healthy and anemic subjects, as well as IDA from TT subjects.
Further, these values may find use in other clinical tasks
such as in diagnosis or monitoring of other diseases known
to alter cell morphology, such as macrocytic anemias due to
liver dysfunction, B12 or folate deficiencies.42

Anemia screening using light scattering

We previously demonstrated that using quadratic discrimi-
nants analysis (QDA), healthy, IDA, and TT samples could be

separated using just three clinical parameters: MCV, MCHC,
and RDW, as measured by a gold-standard analyzer. Using
the results from our PLS analysis, we generated QDA decision
surfaces to separate healthy and anemic patients, and to sep-
arate IDA and TT. The calculated decision boundaries are
shown as black shaded surfaces in Fig. 3. We performed an
identical QDA analysis using the MCV, MCHC, and RDW
values determined by the gold standard analyzer (surfaces
shown in the ESI† Fig. S4). Receiver operating characteristic
(ROC) curves were generated to analyze the performance of
each method for both separating healthy and anemic sub-
jects and for discriminating between IDA and TT. These are
shown in Fig. 4A and B, respectively. We can see that for dis-
criminating healthy vs. anemia, both the gold-standard pa-
rameters (grey line) and the PLS-determined parameters (blue
line) have excellent performance, reaching nearly 100% sensi-
tivity and specificity, as seen in Table 2, which tabulated area
under the curve (AUC), sensitivity, specificity, and Youden's
index (YI)43 for each curve in Fig. 4A. However, when consid-
ering IDA vs. TT, the performance of the PLS-determined
values drops somewhat. This is due to our light scattering
system having slightly higher error in determining MCHC rel-
ative to the gold standard method. As shown in the ESI† Fig.
S5, for IDA patients there is a linear relationship between
MCV and hemoglobin. Thus, IDA patients with severe anemia
(HGB lower than 90 g L−1) have MCV values similar to TT
subjects. The major parameter separating severe IDA subjects
and TT subjects is a small difference in MCHC. A potential
solution to this dilemma would be to set up a second mea-
surement channel that determines the absorption of the sam-
ple to provide a separate (and more accurate) measure of he-
moglobin.44,45 A tabulation of performance metrics for each
curve in Fig. 4B is shown in Table 3.

As described above, PLS expects a linear model between
the observed data and underlying latent variables. This as-
sumption is violated to some degree in our dataset, poten-
tially limiting the PLS performance. While the PLS-
determined clinical values are useful for clinical interpreta-
tion, our goal is simply classification of a sample into
healthy, IDA, or TT. Therefore, another option is to forgo the
intermediate step of using PLS to extract the red cell parame-
ters, and create a machine learning model that directly uses
the raw scattering data to classify the patients into healthy,
IDA, or TT. This has the advantage of not requiring any
model of the data but relying purely on pattern matching. A
principal component analysis decomposition of the dataset
shows that even the first three principal component scores
demonstrate strong visual separation of the data into healthy,
IDA, and TT groups (see ESI† Fig. S6), indicating that a classi-
fication method based on a simple PCA decomposition of the
raw data may have good performance.

To implement this, we created a principal components
analysis–support vector machines (PCA–SVM) classification
model starting from the raw data, and validated using 10-fold
cross validation. For each round of validation, the PCA de-
composition utilized only training data, preventing any

Fig. 3 Classifying samples into healthy, IDA, and TT groups using QDA
based on PLS-extracted values of MCV, MCHC, and RDW. (A) QDA de-
cision between healthy and anemia. (B) QDA decision between IDA
and TT.
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information from the test set from being used in the calibra-
tion process. The first 10 principal component scores for
each sample were used to create the SVM classification
model. The remaining test samples were projected into the
PCA space defined by the calibration set, and then classified
using the established SVM model. As seen in the red line in
Fig. 4B, the PCA–SVM model outperforms the PLS–QDA
model, with an AUC similar to the QDA model using the
gold-standard clinical data, albeit with somewhat reduced
sensitivity. Similarly to the PLS validation, the optimum num-
ber of PC scores to pass to SVM was selected via cross valida-
tion. However, as detailed in the ESI,† the PCA–SVM perfor-
mance does not strongly vary with model rank, indicating the
robustness of the method.

Our results can also be compared with previously devel-
oped diagnostic functions that use red cell morphology to
discriminate IDA and TT. While several diagnostic functions
have been reported in the literature, our prior results have in-
dicated the top-performing indices are:

(1) England and Fraser index (EF): MCV-RBC-(5 *Hb)-5.19;46

(2) Ehsani index (E): MCV-10*RBC;47 and
(3) Sirdah index (Si): MCV-RBC-3*Hb.48

Note that these functions require additional parameters,
typically including the red cell count and the hemoglobin
value, available only using complex instrumentation. When
examining the ROC curves and Tables 2 and 3, we see that,
despite using values determined by complex gold-standard
clinical equipment, these indices all have lower performance
than our method for discriminating IDA and TT, indicated by
lower AUC and YI values.

Conclusions

In order to address the need for targeted prescription of iron
supplementation in areas of the world where both IDA and
Thalassemia trait are endemic, a large-population screening
technique that can separate nutritional and genetic anemias
is needed. In this paper we have addressed this challenge by
presenting a screening method based on measurement of red
cell morphology that can accurately screen for anemia and
separate anemia into IDA and TT in Chinese children. Advan-
tages of our system over traditional methods of determining
red cell morphology is that ours requires: (i) only 10 μL of
blood, easily extracted by a finger stick or heel prick; (ii) has
no flow or other moving parts, meaning it should not require
maintenance and would be optimal for use by an untrained
user; (iii) is small enough to be portable and placed in small
clinics, with potential for further size reductions in the fu-
ture; and (iv) is more than one order of magnitude less ex-
pensive than current clinical instrumentation, increasing its
utility for widespread deployment in low resource settings. By
exploiting a Fourier imaging scheme, a large number of scat-
tering angles can be captured simultaneously with azimuthal
redundancy in the data, yielding high information content
with high SNR. Using a partial least squares model, we are
able to extract the mean cell volume, red cell distribution
width, and mean cell hemoglobin concentration with high

Fig. 4 Receiver operating characteristic curves for various diagnostic indices. (A) ROC curves for distinguishing healthy vs. anemia. (B) ROC curves
for distinguishing IDA vs. TT. For both classification problems, discrimination based on light scattering data outperforms discrimination using
established indices and gold-standard measurements.

Table 2 Discrimination between healthy and anemic subjects for various
indices

Index AUC Sens Spec YI

CLI + QDA 99.46 97.44 97.26 0.94
PLS + QDA 99.28 98.46 98.63 0.97
PCA + SVM 99.75 99.49 93.15 0.93
EF 98.79 95.89 99.49 0.95
E 94.00 80.82 96.41 0.77
Si 98.94 95.89 99.49 0.95

Table 3 Discrimination between IDA and TT subjects for various indices

Index AUC Sens Spec YI

CLI + QDA 83.50 87.50 85.71 0.73
PLS + QDA 79.59 79.17 81.63 0.61
PCA + SVM 84.86 81.17 85.71 0.67
EF 78.53 75.51 87.50 0.63
E 78.23 87.67 66.67 0.54
Si 78.32 75.51 87.50 0.63
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accuracy compared a clinical gold standard blood analyzer,
although inaccuracy in MCHC determination does lead to
confusion between TT subjects and those with severe IDA.

Data from our system was used to separate healthy, IDA,
and TT subjects in a large cohort of Chinese children, with
excellent performance. In particular, the performance of our
system using a support vector machines classification model
was approximately equivalent to classification using raw data
from the gold standard instrument, further confirming that
our system can accurately probe red cell morphology, despite
not requiring any flow or other moving parts. The majority of
misclassifications of IDA vs. TT (∼75% of misclassifications)
were IDA patients that were misclassified as TT. As the major-
ity of the classification power in our data is found in the
MCV, and as MCV for IDA subjects is correlated with hemo-
globin concentration, the IDA patients misdiagnosed as TT
may indicate moderate to severe anemia.

In a wide-scale population screening program for anemia,
the goal is to provide the greatest benefit to the population
while minimizing use of scarce resources. A proposed para-
digm is to measure all subjects using the portable light scat-
tering instrument. Based on the red cell morphology, sub-
jects classified as healthy or those with IDA will be
discharged or prescribed iron supplementation, respectively.
Those registering as TT will be sent to the hospital for further
gold-standard testing. Given that the IDA misclassifications
are typically those IDA subjects with more serious anemia,
and given that those with severe anemia may already be suf-
fering deleterious effects of iron deficiency, evaluation in a
hospital setting may be called for. Therefore, if all patients
who register as TT on our instrument are sent for gold-
standard testing, we can speculate that the “wasted” re-
sources of IDA patients being sent to the hospital may be
mitigated by the fact that their symptoms may warrant obser-
vation by a doctor. Additionally, the sensitivity and specificity
of our system may be improved by adding an additional mea-
surement channel to probe hemoglobin through simple ab-
sorbance measurements.

Further, in low-resource settings IDA often persists despite
nutritional interventions due to helminth and other parasitic
infections of which IDA is merely a symptom.49 Therefore,
our system can act not only as a screening tool, but also as a
method to conveniently monitor response of patients to ther-
apy, identifying those patients for whom nutritional interven-
tions are not sufficient.

Finally, as described in the introduction, point of care
tests of iron status are currently under active research. These
chemical tests may be combined synergistically with the mor-
phological assay presented here, providing orthogonal and
multiparametric information about anemia status at the
point of care.
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