Food & Function

CORRECTION

View Article Online
View Journal | View Issue

Cite this: Food Funct., 2018, 9, 4036

Correction: Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties

Robbe Heymans,*^a Iris Tavernier,^a Sabine Danthine,^b Tom Rimaux,^c Paul Van der Meeren^d and Koen Dewettinck^a

DOI: 10.1039/c8fo90023j

rsc.li/food-function

Correction for 'Food-grade monoglyceride oil foams: the effect of tempering on foamability, foam stability and rheological properties' by Robbe Heymans et al., Food Funct., 2018, DOI: 10.1039/c8fo00536b.

The authors regret that the values of G'_{LVR} in Table 1 are shown incorrectly in the original manuscript. The values should be displayed with the final character superscript.

A corrected version of Table 1 has been presented below:

Table 1 Rheological properties (i.e. storage modulus in the linear visco-elastic region, phase angle in the linear visco-elastic region, yield point τ_y and flow point τ_t) of the MG-oleogels prepared in the starch pasting cell

Sample	G'_{LVR} (Pa)	Phase angle LVR (°)	$ au_{ m y}$ (Pa)	$ au_{\mathrm{f}}\left(\mathrm{Pa}\right)$
PAC	$(2.01 \pm 0.73) \times 10^{0a}$	54.0 ± 3.7^{a}	n.a.	n.a.
AC	$(1.36 \pm 0.14) \times 10^{3b}$	$11.9 \pm 1.2^{\rm b}$	2.0 ± 1.6^{a}	8.5 ± 5.2^{a}
ACS	$(3.65 \pm 0.15) \times 10^{4c}$	3.0 ± 0.2^{c}	$22.3 \pm 2.0^{\rm b}$	$74.2 \pm 4.3^{\text{b}}$
SAC	$(6.41 \pm 0.30) \times 10^{5d}$	$13.9 \pm 0.4^{\mathrm{b}}$	$20.0 \pm 0.0^{\rm b}$	59.5 ± 2.2^{c}
MMACS	$(3.33 \pm 0.10) \times 10^{5e}$	1.6 ± 0.2^{d}	68.7 ± 6.7^{c}	98.5 ± 9.7^{d}

n.a. = not applicable. Means within the same column with different letters are significantly different ($P \le 0.05$).

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^aLaboratory of Food Technology & Engineering, Department of Food Technology, Safety and Health, Ghent University, Coupure Links 653, 9000 Gent, Belgium. E-mail: Robbe.Heymans@Ugent.be; Tel: +32 9 264 61 98

^bDepartment of Food Science, University of Liège, 5030 Gembloux, Belgium

^cVandemoortele R&D Centre, Prins Albertlaan 79, 8870 Izegem, Belgium

^dParticle and Interfacial Technology Group, Department of Applied Analytical and Physical Chemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium