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Crystal structure prediction algorithms, including ab initio random structure searching

(AIRSS), are intrinsically limited by the huge computational cost of the underlying

quantum-mechanical methods. We have recently shown that a novel class of machine

learning (ML) based interatomic potentials can provide a way out: by performing a high-

dimensional fit to the ab initio energy landscape, these potentials reach comparable

accuracy but are orders of magnitude faster. In this paper, we develop our approach,

dubbed Gaussian approximation potential-based random structure searching (GAP-

RSS), towards a more general tool for exploring configuration spaces and predicting

structures. We present a GAP-RSS interatomic potential model for elemental

phosphorus, which identifies and correctly “learns” the orthorhombic black phosphorus

(A17) structure without prior knowledge of any crystalline allotropes. Using the tubular

structure of fibrous phosphorus as an example, we then discuss the limits of free

searching, and discuss a possible way forward that combines a recently proposed

fragment analysis with GAP-RSS. Examples of possible tubular (1D) and extended (3D)

hypothetical allotropes of phosphorus as found by GAP-RSS are discussed. We believe

that in the future, ML potentials could become versatile and routine computational

tools for materials discovery and design.
Introduction

Exploring and cataloguing new crystal structures is one of the principal tasks in
chemistry. Decades of careful experimental work are collected in the Inorganic
Crystal Structure Database (ICSD)1 and the Cambridge Structural Database
(CSD),2 which have been impressive examples of “big data” since long before the
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phrase became fashionable. While structural space has traditionally been
explored by synthesis, more recent work has shown that ab initio structure
searching can play an important and complementary role in this regard.
Computational tools, including genetic algorithms,3–5 particle swarm optimisa-
tion,6,7 or ab initio random structure searching (AIRSS),8,9 can predict structures
that are (sometimes) far from what chemical intuition would suggest. Many of
these predictions have subsequently been validated by experiments10–14 or have
given rise to databases of their own.15 We only mention in passing the prediction
of organic molecular crystal structures, which has likewise seen fundamental
breakthroughs.16–19

Despite their predictive power, these structure searching methods are nor-
mally driven by quantum-mechanical density-functional theory (DFT) computa-
tions, and therefore they are limited to systems with relatively small unit cells.
The allotropes of elemental phosphorus,20–22 which are the topic of the present
paper, directly illustrate the problem at hand. The thermodynamically stable
“black” (orthorhombic) form, as well as the high-pressure As-type (rhombohedral)
allotrope, exhibit simple crystal structures with only one symmetry-independent
atom each (Table 1). Such systems are easily amenable to ab initio crystal struc-
ture prediction, and various, especially layered, hypothetical allotropes have been
proposed in recent years.23–32 On the other hand, “violet” (Hittorf’s) phosphorus33

has a notoriously complex structure that was solved more than 100 years aer the
initial synthesis34 and contains no fewer than 21 symmetry-independent atoms in
the unit cell. Systems of this size have hitherto been out of reach for ab initio
crystal structure prediction.

It has recently been suggested that machine learning (ML) based interatomic
potentials could help with this long-standing issue.35–38 Such potentials are tted
to reference databases of DFT energies and forces and, once generated, they allow
one to perform atomistic simulations with close to DFT quality but at a compu-
tational cost that is orders of magnitude lower.39 Indeed, we have recently shown
Table 1 Experimentally known crystal structures of phosphorus.20 Z is the number of
atoms in the conventional unit cell; Z0 gives the number of symmetry-inequivalent atoms
in the cell, and is therefore a measure of structural complexity. Themolecular (“white”) and
amorphous (“red”) forms are omitted from this study for simplicityb

Space group Z Z0 Source Ref.

Black P Cmca 8 1 High-pressure synthesis 43
As-type Pa R�3m 2 1 From black P (p > 5 GPa) 44
Simple cubic P Pm�3m 1 1 From black P (p > 11 GPa) 44
Hittorf’s P P2/c 84 21 Slow cooling from Pb melt 34
Fibrous P P�1 42 21 Resublimation with I catalyst 45

a Occasionally referred to as “blue P” in recent literature,46 especially in the monolayer form.
b To explore whether our GAP would be able to nd molecular (“white”) P, we carried out
a set of preliminary searches at low density (1.0 g cm�3). The resulting structures did
include distorted P4 units, but also other small fragments, and we expect that the GAP
will need to have “seen” these in iterative training to distinguish them more clearly. We
also expect that fully capturing the intricate structural details of white P, including its
packing variants,74 will require additional reference data; this is the topic of ongoing
work. Regarding amorphous forms, our searches are restricted to relatively small periodic
unit cells which cannot fully represent the amorphous allotrope(s).

46 | Faraday Discuss., 2018, 211, 45–59 This journal is © The Royal Society of Chemistry 2018
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that an ML-based Gaussian approximation potential (GAP), initially developed for
amorphous carbon,40 can be used to identify crystalline allotropes.36 This has
added around 150 entries to the Samara Carbon Allotrope Database (SACADA, ref.
15). Very recently, the use of ML to speed up global searching and crystal structure
optimization itself has been reported,41,42 but we focus here on the use of explicit
interatomic potentials (“force elds”) for this purpose. What is more, in recent
work,37 we have argued that RSS can be used to construct the interatomic
potential from scratch, exploring and tting a complex potential energy surface
(PES) at the same time. This points towards a more general “data-driven” strategy
for atomistic materials modelling.

In this Discussion paper, we aim to take new steps in this direction and further
develop our emerging method (which we call “GAP-RSS”). Aer briey summa-
rising its components, we present results for elemental phosphorus, generating
and applying the rst GAP-RSS potential for this material. Our protocol
“discovers” the crystal structure of black P during the iterations and, by
construction, adds it to the reference database without prior knowledge of any
existing allotropes. We then use this potential for some exercises in crystal
structure prediction: we show that a brous allotrope of P (Table 1) appears to be
prohibitively hard to nd in free searches, and we outline the use of an alternative
approach, showing exemplary predicted structures in 1D and 3D. We also discuss
open questions and expected future directions.

Methodology

The protocol for GAP-RSS potential tting and structure searching consists of
three components: single-point DFT computations, GAP tting to an updated
reference database, and structural optimisation using GAP. We give details of
these in sequence, and an overview is provided in Fig. 1.

DFT computations

These provide the input data for GAP tting: initially, single-point DFT compu-
tations are done for randomised atomic congurations, later, for intermediates or
local minima of GAP-RSS searches. We obtain these data using standard DFT
procedures, with high numerical accuracy to minimise noise in the input for
tting. In this work, we used the PBEsol functional,47 which has been validated for
black P before,48 and on-the-y ultra-so pseudopotentials as implemented in
CASTEP.49 Reciprocal space was sampled on dense k-point meshes (maximum
spacing 0.02 Å�1). The cut-off energy for plane-wave expansions was 600 eV, and
an extrapolation scheme was used to counteract nite-basis errors.50 In Fig. 1, all
parts that involve single-point DFT computations (viz. the construction of the
reference database) are enclosed by dashed lines.

GAP tting

With reference data available, an interatomic potential is tted to these using GAP.
The frameworkwas introduced in 2010 (ref. 51) and has since been used to generate
potentials for diverse molecular and solid-state materials.40,52–54 A high-dimensional
t to reference energy and force data is performed based on structural similarity or
kernel functions, comparing atomic environments one by one. The initial choice for
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 211, 45–59 | 47
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Fig. 1 Overview of the GAP-RSS protocol as introduced in ref. 37 and extended here by
a selection step. We start from a set of randomised seed structures for a given chemical
composition (in generations 0–3, 250 each; in generation 4, 5000). The reference data-
base of energies and forces is then built by single-point DFT computations: first, for
unrelaxed structures (generation 0), later, at various stages of structural relaxation (1–4),
performed by fitting interim GAPs to the evolving database. Initially, we feed all structures
back into the training (up to generation 3); later, we only add selected structures. As
a criterion to select cells, here we use coordination numbers, demanding that all atoms in
a candidate structure must have three nearest neighbours, and discarding any structures
which do not comply. The GAP-RSS iterations are deemed “converged”when the resulting
potential shows satisfactory performance. Here, we do so after generation 4, as that
version of the potential has “found” black P from scratch (see Fig. 3 and 4).
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these have been many-body descriptors, most importantly the Smooth Overlap of
Atomic Positions (SOAP), which includes all neighbours of an atom up to a cut-off
radius.55 To improve the stability of the t, similar to our previous work on amor-
phous materials modelling40 and structure searching,36,37 we combine the many-
body SOAP expansion with non-parametric two-body (“2b”) and three-body (“3b”)
terms that encode interatomic distances and bond angles, respectively. The 2b and
SOAP descriptors have radial cut-offs of 5.0 Å, whereas that for the 3b term is 2.6 Å
(to include only “true” bond angles involving nearest-neighbour contacts). The nal
GAP uses 10 sparse points (that is, tting coefficients) for the 2b term, 100 for the 3b
term, and 3000 for SOAP. The convergence and smoothness parameters for the
SOAP expansion are nmax ¼ lmax ¼ 8 and sat. ¼ 0.75 Å, respectively, which were
48 | Faraday Discuss., 2018, 211, 45–59 This journal is © The Royal Society of Chemistry 2018
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found to be suitable for GAP-RSS in ref. 37. For a more detailed walk-through of the
underlying ML framework, we refer the reader to ref. 56.
GAP-RSS relaxation

This is the heart of the technique: structural space is explored by optimising
random structures, akin to the well-established AIRSS technique, but now using
GAP. In AIRSS (and consequently in GAP-RSS), it is important to make a sensible
choice of randomised initial structures. For example, a reasonable minimum
interatomic distance (“hard-sphere” criterion) is imposed. Furthermore, exploit-
ing space-group symmetry can signicantly reduce the number of attempts
required. Here we search with 2–16 atoms in the unit cell, allowing for either 1, 2,
4, or 8 symmetry operations to be present. To some extent, this penalises rhom-
bohedral space groups and their subgroups, but our data below show that the
rhombohedral A7 structure is found by our protocol nonetheless. We choose the
initial densities to be distributed around 2.5 g cm�3, in between the black and red
forms of phosphorus, and we constrain the P–P distances in the initial structures
to at least 1.8 Å. An independent set of randomised input structures is generated
for initialisation and for each new generation of the potential.
Results and discussion
Exploring the potential energy surface of elemental phosphorus

To showcase the principle of GAP-RSS, in this paper we explore the potential
energy surface (PES) of elemental phosphorus. This is summarised in Fig. 2,
where we show the energy–volume data for the reference database that is built
Fig. 2 Left: energy–volume plot of single-point DFT data during the generation of a GAP-
RSSmodel for phosphorus, given relative to the most stable structure. The different stages
of building the database (cf. Fig. 1) are highlighted in different colours. Right: binned
distribution for energies in these datasets, drawn on the same vertical axis.

This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 211, 45–59 | 49
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during construction of the potential. We start with randomised input structures,
the data for which are added to the database without relaxation (light green points
in Fig. 2; generation 0). We then extend the database by three rounds (generations
1–3), where snapshots of both intermediate (teal) and relaxed (purple) structures
are added; nally, in generation 4, we perform a larger search and keep only the
unique structures with all-threefold coordinated atoms (“3c”, determined using
a 2.4 Å bond-length cut-off; light grey points). Aer this, we deem the database
“converged” for the purpose of the present study, by the (subjectively chosen)
criterion that the GAP has “learned” black P; see below. Future work will be
concerned with less heuristic criteria for convergence. The distributions shown
on the right-hand side of Fig. 2 illustrate how the different parts of the database,
and thus of the PES, comprise progressively lower-lying structures.

We will show in the following that, concomitant with increasing exploration of
the phase space, the GAP-RSS interatomic potential becomes more accurate,
ultimately describing crystal structures without prior knowledge. We stress that in
most of the previous literature on tting ML potentials, reference databases are
constructed by including known crystal structures (and distorted variants
thereof).39,40,53

To assess the quality of the potential, we use it to compute energies for
independent test sets of structures not included in the training, for which the DFT
energies are known. The results are shown in Fig. 3a. The description of the
higher-energy regions (“RSS intermediates”, open symbols) appears to converge
quite early on, but it carries a residual root-mean-square prediction error of the
order of 0.05–0.10 eV per at. that does not improve with further iterations. The
same is observed, and is even more pronounced, for a test set of randomised seed
structures, where the error is practically constant at z0.10 eV per at. for all the
GAP generations (not shown in Fig. 3a for clarity). This is intuitively under-
standable: the PES is smooth, and since the high-energy structures are so diverse,
Fig. 3 Quality of the evolving interatomic potential, assessed by computing the energies
for independent test sets (configurations outside the database) with different generations
of the GAP, and reporting the root-mean-square error against the DFT data. (a) Errors for
sets of structures from an independent GAP-RSS run without symmetry, taken after 5 CG
steps (“intermediates”) and 200 CG steps (“minima”); (b) the same for sets of distorted unit
cells of known allotropes, viz. Hittorf’s and black P. In generation 4, our GAP has “seen”
black P and therefore the predicted error for this allotrope falls close to zero (see the
arrow).

50 | Faraday Discuss., 2018, 211, 45–59 This journal is © The Royal Society of Chemistry 2018
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only a handful of them are required for acceptable sampling. A similar observa-
tion was made for liquid carbon in our earlier work: the high-temperature liquid
contains many different environments and is thus straightforward to “learn” from
a single ab initio MD trajectory. In contrast, the amorphous regions of the PES
required several rounds of GAP-driven MD and iterative renement of the
potential.40

For the purposes of GAP-RSS, these ndings are encouraging: the early steps of
relaxation appear to be easily “learned” by the potential, and even a notable
degree of residual error can be tolerated if the potential is successful in navigating
the high-energy region of the PES (say, the green data points in Fig. 2). In contrast,
a growing database is needed for the relaxed minima. Indeed, testing for a set of
local RSS minima outside the database initially leads to a signicant prediction
error above 0.5 eV per at. (lled symbols in Fig. 3a), but this gradually improves
and falls below 0.1 eV per at. with increasing quality of the potential.

The latter accuracy turns out to be acceptable for exploratory searches, but it is
still worse than what one would expect from an ML potential for the stable allo-
tropes. Our long-term vision for GAP-RSS is therefore to nd stable minima (such
as black or orthorhombic P) during the iterations and automatically include them
in the reference database. We expect this to improve the accuracy substantially,
which is supported by the following result. Fig. 3b shows test set errors as before,
but now for ensembles of distorted unit cells of two experimentally known allo-
tropes. The orthorhombic structure of black P is a particularly interesting test, as
it competes with other, more highly symmetric structures that are very close in
energy on the PES.22 Our potential, during generation 4, did succeed in nding
black P, and hence includes this structure type in the nal reference database.
This is reected in Fig. 3b: the energy errors for black P get progressively lower,
but only in generation 4 do they drop to very close to zero.

Likewise, the computed energy–volume scans for black P (Fig. 4a) progressively
improve during the GAP-RSS iterations, but the structure needs to have been
“seen” and included in the tting (in generation 4) to achieve an accurate result.
The same is true for computed structural properties (Fig. 4b): for this test, we fully
relaxed the black P structure with each version of our potential, as well as with
DFT. In generation 4, all three GAP-computed lattice parameters come very close
to the DFT benchmark.

“Learning” high-pressure structures

Two important phosphorus allotropes, As-type and simple-cubic, are obtained
from the black form at high pressure (Table 1).44 With this in mind, we decided to
explore what effect external pressure would have on the result of GAP-RSS for this
element; doing so has already been suggested and proven to be benecial for
exploring the PES of elemental boron.37 To sample higher-pressure structures, we
apply hydrostatic external pressure during the GAP-RSS relaxation runs, with
a randomised value in each run. The values are drawn from an exponential
distribution with the probability density P of nding a given pressure p,37

P(p) ¼ l exp(�lp) � p0

where l is the rate parameter (we chose l ¼ 5, a narrower distribution, to sample
more around the low-pressure region but still include some high-pressure points),
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 211, 45–59 | 51
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Fig. 4 Quality of the evolving interatomic potential, assessed by computing properties of
black P. (a) Energy–volume scans for the orthorhombic unit cell (scaling lattice vectors and
atomic coordinates without further relaxation), comparing progressive GAP generations
(lines) to DFT reference data (circles). (b) Lattice parameters, obtained by fully relaxing the
crystal structure of black P with each generation of the GAP. DFT results, obtained at the
same computational settings as for the reference database, are given as horizontal lines.
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and p0 is an arbitrarily chosen reference. In this work, we tested the settings of
p0 ¼ 10 GPa and p0 ¼ 100 GPa, respectively. For both, we generated new sets of
potentials through iterative GAP-RSS tting, starting with the same ensembles of
seed structures as used in the pressure-free searches reported above (p0 ¼ 0 GPa).

The results are easily rationalised by looking at the evolving energy–volume
scans again, but now for the high-pressure forms (Fig. 5). For reference, our
pressure-free search (p0 ¼ 0 GPa) already yields an acceptable description of both
allotropes in generation 4 (purple lines), but it fails to reach quantitative accuracy,
especially for the simple cubic form. Searching with moderate external pressure
(p0 ¼ 10 GPa) visibly improves the description of both high-pressure forms: the
GAP and DFT data are now in better agreement. Note that due to the nature of the
exponential distribution, most of the pressure values drawn are signicantly
smaller than p0, and thus correspond to typical experimental conditions. When
using external pressures that are an order of magnitude higher (p0¼ 100 GPa), the
description of the As-type form deteriorates visibly, whereas the simple cubic
form is already “learned” very easily in generation 2 (bottom right panel in Fig. 5).
All this is intuitively understood, as the experimentally observed sequence of
pressure-induced phase transitions is black / As-type / simple cubic, with
transition pressures around 5 GPa and 11 GPa, respectively.44,57
Fibrous phosphorus

“Fibrous” P, described by Ruck et al. in 2005,45 is structurally reminiscent of
Hittorf’s P: both allotropes exhibit characteristic tubes built from covalently
bonded cage motifs, reminiscent of organophosphorus compounds.58,59 The
difference between the two allotropes is in the arrangement of the tubes, which is
simpler (all tubes parallel) in brous P. Both allotropes contain 21 independent
52 | Faraday Discuss., 2018, 211, 45–59 This journal is © The Royal Society of Chemistry 2018
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Fig. 5 Energy–volume scans similar to those in Fig. 4a, but now assessing the high-
pressure forms, As-type (top) and simple cubic P (bottom). Data were obtained with three
separate sets of GAP-RSS iterations that utilise, from left to right: no external pressure (i.e.
the main dataset), 10 GPa, or 100 GPa of reference pressure p0, as defined in the text. In all
cases, the respective lowest DFT energy point is set as zero. The data for generation 0 are
outside the range of the energy axis.
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atomic positions (Table 1), which are repeated by space-group symmetry two and
four times, respectively.

We performed 100 000 attempts to nd the structure of brous P using GAP-
RSS, seeding with 21 independent, randomised atomic positions in space
group P�1. However, this search was unsuccessful, and none of the attempts led to
the known structure aer minimisation. We show three of the resulting struc-
tures, as mere examples, in Fig. 6. This reects the more general problem that in
global structure determination, the searching task becomes exponentially more
complex with system size (and each independent atom adds three structural
degrees of freedom), as discussed by Stillinger60 and in ref. 9. While the GAP still
provides an approximation of the DFT potential energy surface, and therefore
some care must be taken when transferring conclusions from GAP-RSS to (DFT-
based) AIRSS, we take the present ndings as clear evidence that the structure
of brous P (and, by extension, Hittorf’s P) is too complex to nd in free random
searches.
Merging modular decomposition and GAP-RSS: towards fully data-driven crystal
structure prediction

Inevitably, a fully unconstrained random search for more and more complex
structures will fail at some point, as discussed above. Very recent work has shown
that molecular network analysis can be used to great effect in this regard.61
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 211, 45–59 | 53
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Fig. 6 Unsuccessful attempts to find fibrous P in free searches. Exemplarily, we show
three low-energy, DFT-relaxed structures resulting from 100 000 GAP-RSS attempts (21
symmetry-independent atoms in space group P1�). One of these structures is a stacking
variant of As-type phosphorus (left); the two other are low-symmetry configurations that
are clearly different from the tubular structure of fibrous (and Hittorf’s) P.
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Inspired by Pauling’s iconic rule of parsimony, stating that the number of
constituents in a crystal structure tends to be small,62 it was proposed in ref. 61 to
decompose a crystal structure into building blocks such as to minimise the
(mathematically quantiable) information content. Here we combine this with
GAP-RSS searching, and argue that both together provide a useful way forward for
the prediction of complex crystal structures.

Fig. 7a summarises the procedure and illustrates how the structure of brous P
is decomposed into two fragments using the approach of ref. 61. While this is
a purely automated, data-driven procedure, its outcome is oen in line with
chemical intuition.61 Indeed, in the original publication on brous P, the struc-
ture was described as a sequence of alternating [P8] and [P9] cages, interspersed
with P2 dumbbells.45 Similar fragments have been identied by Thurn and Krebs
in the crystal structure of Hittorf’s P;34 they have been discussed in Baudler’s
seminal work on the nomenclature of phosphorus cages,58 and have been the
topic of comprehensive theoretical analyses both in the gas phase and in the
bulk.22,59,64 Without chemical knowledge, but with an algorithm to nd the most
simple and representative building units, the network analysis likewise “cut” the
chains into fragments.61 In these, the well-known [P9] cage was combined with P2
dumbbells on either side, forming a [P13] unit (“Fragment A”), whereas the [P8]
cage was recovered directly (“Fragment B”). We believe that alternative ways of
decomposition, e.g. isolating the [P9] cage, may also be useful as starting points
for structure searches—as will combinations of different fragments. We also note
the advantage of a chemically “agnostic” approach: while there is an extensive
body of literature on the building blocks of P allotropes,22,58,59 future work might
be concerned with new materials where the local atomic structure is a priori
unknown.

Even with an exemplary and simplied approach that uses only one fragment
or the other (Fig. 7a), our GAP-RSS searches readily identied several hypothetical
phosphorus allotropes with different dimensionalities. We ltered the output
with more stringent criteria than in the preceding GAP-RSS generations, enforc-
ing a minimum “non-bonded” (beyond-nearest-neighbour) distance of 2.9 Å,
54 | Faraday Discuss., 2018, 211, 45–59 This journal is © The Royal Society of Chemistry 2018
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Fig. 7 (a) Overview of the fragment-based approach to structure analysis and structure
searching introduced in ref. 61 that we combine here with GAP-RSS. Two fragments have
previously been identified in the structure of fibrous P (see text),61 and here we use both
separately to generate seed structures for GAP-RSS structure searches. (b) Example of
a 1D-periodic structure identified by this procedure. The tube “inherits” some of the
structural information from Fragment B, namely, fused five-membered rings (dashed box).
Full topology information is given in the text. (c) The same for a 1D structure composed of
six-membered rings only. (d–f) Examples of 3D-periodic structures from the same search,
labelled according to their network topologies.63
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removing any structures that contain three- or four-membered rings (which are
expected to be under signicant strain), and post-relaxing selected structures
using dispersion-corrected DFT.65–67 We explored the effect of feeding structural
data back into the GAP as before, but now for the more ordered structures coming
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 211, 45–59 | 55
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from fragment-based searches, and generated two additional generations of the
potential. An intermediate generation was used to nd the structures shown in
Fig. 7 (generation 5a); another, nal one additionally contains all the minima
found in that search (5b). We observed that this reduces the energy error for
distorted unit cells of Hittorf’s P (cf. Fig. 3b) from 0.19 eV per at. (generation 4) to
0.16 eV per at. (5a), and further to 0.13 eV per at. (5b); note that in none of these
generations has our GAP-RSS potential “seen” the actual crystal structure of
Hittorf’s P. A full account of this, including the results of much more diverse
searches, will be published elsewhere, and for the sake of brevity we present only
a few salient examples here.

As expected, several 1D tubular motifs were found in our GAP-RSS searches,
packed in different ways to form extended structures. One of these tubes, shown
in Fig. 7b, retains some features of the [P8] cage from which the initial seed is
constructed: namely, fused ve-membered rings, of which there are four in the
[P8] cage (topology symbol [54]), and up to three in the chain structure (dashed box
in Fig. 7b). Another structure found by GAP-RSS, shown in Fig. 7c, breaks up the
initial seed fragment, forming a tube that consists of only six-membered rings.
This corresponds to a sphere-packing graph for a hexagonal net (63) with coin-
cidence vectors (m, n) ¼ (3, 2).68 In this, it is also equivalent to one of the smallest
theoretically possible carbon nanotubes.

The same protocol also identied fully three-dimensional structures. One of
them is a rare binodal net, bbe-3,3-Imma (Fig. 7d), which has occasionally been
observed in MOFs.69 We nd another structure with a uninodal pbp net con-
taining six- and eight-membered rings (Fig. 7e) that had originally been proposed
for a hypothetical carbon structure dubbed “6.82P” (ref. 70) and also investigated
as a hypothetical allotrope of P.27 We nally nd the uninodal lig net (Fig. 7f),
which corresponds to the anion network in the Zintl phase LiGe.71 Such a struc-
ture has not been proposed for P thus far, but it is in conceptual agreement with
the Zintl–Klemm–Busmann framework (in which the group-14 element is viewed
as “Ge�”, and thus takes the structural signature of a group-15 element due to its
excess electron).72 The computed dispersion-corrected DFT energies65–67 for the
structures shown in Fig. 7d–f arez+2 kJ mol�1 (bbe-3,3-Imma) andz+8 kJ mol�1

(pbp and lig) above that of black P, placing them well within the experimentally
and computationally derived stability range of known allotropes.22

In ongoing work, beyond the scope of this paper, we are performing much
larger-scale searches, including attempts to nd “brous” P and possible related
structures using GAP-RSS, and trying to understand the observed preference for
the experimentally known form. It seems especially interesting to study such
tubular forms since some of these structural units can be chemically extracted
from phosphorus-rich compounds.73

Conclusions

Machine learning-based interatomic potentials can speed up random structure
searching by orders of magnitude. Therefore, they seem well poised to become
useful tools for crystal structure prediction and materials discovery. We expect
them not to replace DFT-driven searching, but to provide a valuable complement,
especially for very large and complex structures that are outside the reach of DFT.
In this paper, we have discussed and further developed our recently introduced
56 | Faraday Discuss., 2018, 211, 45–59 This journal is © The Royal Society of Chemistry 2018
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technique, dubbed Gaussian approximation potential-driven random structure
searching (GAP-RSS), which combines ideas from the elds of potential tting
and structure prediction. We believe that this technique will be of interest not
only for nding new structures, but also for the automated generation of fast,
exible, and accurate interatomic potentials for diverse materials.
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73 A. Ptzner, M. F. Bräu, J. Zweck, G. Brunklaus and H. Eckert, Angew. Chem., Int.

Ed., 2004, 43, 4228–4231.
74 A. Simon, H. Borrmann and J. Horakh, Chem. Ber., 1997, 130, 1235–1240.
This journal is © The Royal Society of Chemistry 2018 Faraday Discuss., 2018, 211, 45–59 | 59

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8fd00034d

	Data-driven learning and prediction of inorganic crystal structures
	Data-driven learning and prediction of inorganic crystal structures
	Data-driven learning and prediction of inorganic crystal structures
	Data-driven learning and prediction of inorganic crystal structures
	Data-driven learning and prediction of inorganic crystal structures
	Data-driven learning and prediction of inorganic crystal structures

	Data-driven learning and prediction of inorganic crystal structures
	Data-driven learning and prediction of inorganic crystal structures
	Data-driven learning and prediction of inorganic crystal structures
	Data-driven learning and prediction of inorganic crystal structures
	Data-driven learning and prediction of inorganic crystal structures

	Data-driven learning and prediction of inorganic crystal structures
	Data-driven learning and prediction of inorganic crystal structures
	Data-driven learning and prediction of inorganic crystal structures


