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In this paper we report the synthesis of the new layered perovskite oxide carbonate, BazYb,OsCOs3. This

phase is formed when 3BaCOxs : 1Yb,O3z mixtures are heated in air at temperatures <1000 °C, while above

this temperature the carbonate is lost and the simple oxide phase BasYb4Og is observed. The structure of

BazYb,0OsCOz was determined from neutron diffraction studies and consists of a tripled perovskite with

double Yb-O layers separated by carbonate layers, the first example of a material with such a structure.
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Introduction

Perovskite materials have attracted considerable interest due to
a wide range of technologically important properties displayed
by materials with this structure-type, including superconduc-
tivity, ionic conductivity, colossal magnetoresistance, ferroelec-
tric properties, and the ability to catalyse a range of reactions.
In addition to this rich wealth of properties, perovskites also
display a wealth of interesting and, at time, unexpected struc-
tural diversity. In particular, research on high T, cuprate super-
conductors showed the ability of the perovskite structure to
accommodate carbonate and other oxyanions (borate, nitrate,
sulfate, phosphate)." ™ In these situations, the C, B, N, P, S of
the oxyanion group resides on the perovskite B cation site,
while the oxide ions of this group fill 3 (C, B, N)-4 (P, S) of the
available 6 oxide ion positions around this site, albeit
displaced so as to achieve the required geometry for the
oxyanion. The incorporation of oxyanions into other perovskite
transition metal containing systems has also subsequently
been reported, e.g. Sr(Co/Fe/Mn)O;_s, La;_,Sr,Cog sFeo,05_s,
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Further studies showed that analogous BazLn,OsCO3 phases could be formed for other rare earths (Ln =
Y, Dy, Ho, Er, Tm and Lu). The results highlight the ability of the perovskite structure to accommodate car-
bonate groups, and emphasise the need to consider their potential presence particularly for perovskite
systems prepared in lower temperature synthesis routes.

Ba;_,Sr,Cog gFe 035, CaMnO; and La;_,Sr,MnO;-type
materials.”*° Recently the incorporation of sulfate and phos-
phate have also been reported in Ba,(In/Sc),05 leading to new
cubic perovskites with high oxide ion conductivity/proton
conductivity.*'*?

In terms of these doping studies, it has been shown that
oxyanions such as sulfate, borate, and phosphate exhibit
higher thermal stability in the structure than carbonate.
Therefore, work on incorporating carbonate has commonly
employed reaction in evacuated quartz tubes to achieve reac-
tion while preventing carbonate loss.’>'® As such, other
researchers may be viewing such carbonate containing systems
as “exotic” compounds, which would not be formed under
conventional synthesis conditions. This is a particularly worry-
ing omission, since there is a growing trend in research to
move to lower temperature synthesis (e.g. sol gel) routes where
carbonate may be present. Indeed evidence for the importance
of carbonate in materials is illustrated by recent work on other
structure types; for example Li et al. have shown that hexagonal
“YAIO3” is an oxide carbonate,®® with a true composition of
Y;Al;04CO5;, while orthorhombic Ba,TiO, has also been
recently shown to contain carbonate.*®

While prior carbonate doped perovskite work has focused
on systems containing transition metals, such as Cu, here we
extend such studies to investigate whether a perovskite phase
could be formed for non-transition metal systems, with syn-
thesis in air rather than evacuated quartz tubes. In particular,
given that a cubic perovskite, Ba,Yb;sP;sOss has been
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recently shown to be stabilised by phosphate incorporation, we
therefore investigated the possibility that a perovskite contain-
ing carbonate could be formed in the BaCO;:Yb,0; phase
diagram at lower temperatures (<1000 °C) to allow carbonate
incorporation. This led to the identification of a new phase
with BaCOj;: Yb,O;3 ratio of 3:1, and in this paper we report
the synthesis and structural characterisation of this new car-
bonate containing perovskite system. In addition, in order to
investigate the versatility for carbonate incorporation in per-
ovskites, we also illustrate the formation of isostructural
phases for a range of other rare earths.

Experimental

High purity BaCO;, Yb,0; were used to prepare BazYb,05CO;.
The powders were intimately ground in a 3:1 BaCOj3, Yb,0O;
ratio and heated initially to 900 °C for 12 h in air. They were
then reground and reheated to 1000 °C in air for a further 24 h
with regrinding every 12 hours. After the initial synthesis in
air, we also investigated the formation of this compound
under dry N, in order to allow higher temperature heat treat-
ment by reducing CO, loss through reaction with moisture in
the air. In this case, it was found that Ba;Yb,05CO; could be
prepared in a shorter timescale (12 h) by employing a higher
temperature (1050 °C). Note heat treatment in air at 1050 °C
leads to large BazYb,O, impurities due to carbonate loss.
These synthesis routes were then used to make a wider range
of isostructural Ba;Ln,05CO; systems (Ln =Y, Dy, Ho, Er, Tm
and Lu).

Phase identification and initial structure determination was
carried out by Rietveld profile refinement using powder X-ray
diffraction data (XRD) collected on a Panalytical Empyrean
diffractometer (Cu Ka radiation) or a Bruker D2 diffractometer
(Co Ka radiation).

Raman data for Ba;Yb,05;CO; were collected on a Renishaw
inVia Raman microscope using a 532 nm laser in order to
confirm the presence of carbonate in the material.

For the detailed structure determination on Baz;Yb,05COs;,
time of flight powder neutron diffraction (NPD) data were
recorded on the HRPD diffractometer at the ISIS pulsed spalla-
tion source (Rutherford Appleton Laboratory, UK). Structure
refinements using the NPD data were performed using the
Rietveld method with the General Structure Analysis System
GSAS-II suite of programs.®®

Results and discussion

Phase identification and structure determination of
Ba,Yb,05CO;4

Initially a range of BaCO; : Yb,O; mixtures with different ratios
were investigated, and it was found that a new phase was
observed with an optimum BaCOj; : Yb,Oj; ratio of 3 : 1. The for-
mation of this phase was shown to be very sensitive to the syn-
thesis temperature (Fig. 1). At temperatures up to 900 °C, no
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Fig. 1 X-ray diffraction patterns for a 3:1 mixture of BaCOs:Yb,O3
heated at different temperatures, showing the formation of a new
layered perovskite phase, BazYb,05COs; between 950-1000 °C, with
decomposition of this phase to give BazYb4Og at higher temperatures.

reaction was observed, and the XRD pattern showed simply the
presence of the starting materials, BaCO; and Yb,0O;. Heating
to 950 °C led to the appearance of the new perovskite phase,
with the purity improving by heating at 1000 °C. At tempera-
tures above 1000 °C, this compound was shown to decompose,
and the formation of the simple oxide Ba;Yb,Oq was observed,
which suggested that the initial perovskite phase contained
carbonate.

Indexing the pattern for this new phase gave a tetragonal
perovskite-related cell which was tripled along the ¢ direction.
From the unit cell parameters obtained, a structure was then
surmised based on the assumption that oxygen vacancies
around the Yb sites would be less favourable. This predicted
structure consisted of double Yb-O layers separated by carbon-
ate layers.

This structure was then used as the starting point for the
Rietveld refinement of the neutron diffraction data. The refine-
ment was performed using the GSAS-II programme and con-
straints were initially placed upon the carbonate group within
the system which included O-C-O angles constrained to 120°
and C-O bond lengths constrained to 1.28 A, in line with those
expected for carbonate. In line with expectations that oxygen
vacancies would be less favourable around the Yb site, the car-
bonate group was shown to be orientated with two of its
oxygens directed towards the Yb sites, with the remaining
oxygen equatorial to the carbonate layer. This gives an essen-
tially square pyramidal Yb with a sixth longer bond to the car-
bonate oxygen.

There was no evidence for superlattice reflections/lowering
of symmetry indicative of ordering of the orientation of the
carbonate groups. In the final Rietveld refinement of the
Ba;Yb,05CO; structure, the constraints on the O-C-O angles
and C-O distances were removed (the only constraint included
was that the sum of the occupancies of these O sites equal 3 in
line with requirements for a carbonate group). This refinement
led to a good fit to the data with the structural parameters and
bond distances given in Tables 1 and 2, and the observed,

This journal is © The Royal Society of Chemistry 2018
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Table 1 Structural parameters for BazYb,O5CO3

Site Wyckoff
Atom x y z occupancy position Ui,
c1 05 0.435(2) 0.5 0.250 40 0.009(1)
Bal 0.0 0.0 0.0 1.000 1a “
Ba2 0.0 0.0 0.3358(6) 1.000 2g a
Ybl 0.5 0.5 0.1773(2) 1.000 2h 0.018(1)
o1 0.0 0.5 0.1995(3) 1.000 4 a
02 0.5 0.5 0.0 1.000 1c @
03 05 0.148(3) 0.5 0.210(14) 4o a
04 0.397(2) 0.5 0.4019(9) 0.270(7) 8t a
Atom Uy Usa Uss Uiz Uis Uzs
Bal 0.034(1)  0.034(1)  0.015(3)  0.000 0.000 0.000
Ba2 0.024(1)  0.024(1) 0.030(2) 0.000  0.000 0.000
o1 0.008(1)  0.026(1) 0.071(1) 0.000  0.000 0.000
02 0.088(1)  0.088(1)  0.004(2) 0.000  0.000 0.000
03 0.020(5)  0.020(5)  0.008(5)  0.000 0.000 0.000
04 0.043(2)  0.052(2) 0.052(2) 0.000 —0.013(1)  0.000

Ryp = 2.93% GOF = 1.71 P4/mmm a = 4.3258(2) A, ¢ = 11.9036(5) A.
¢ Anisotropic atomic displacement parameters.

Table 2 Selected interatomic distances for BasYb,0O5CO3

Bond Bond length/A Bond Bond length/A
C1-03 1.242(16) (x1) Ba2-03 2.985(5) (x2)°
C1-04 1.376(10) (x2) Ba2-04 2.871(7) (x4)*
Ba1-O1 3.212(2) (x8) Yb1-01 2.179(1) (x4)
Ba1-02 3.059(0) (x4) Yb1-02 2.110(3) (x1
Ba2-01 2.704(5) (x4) Yb1-04 2.711(11) (x1)

“Dependent on orientation of carbonate gp.
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Fig. 2 Observed, calculated and difference profiles for BazYb,0OsCO3
neutron data (upper tick marks — Yb,Os, lower tick marks BazYb,OsCOx3).

calculated and difference neutron profiles shown in Fig. 2 (the
data indicated a small amount (2.5 wt%) of Yb,O3; impurity,
which was included in the final refinement). Given the pres-
ence of small Yb,O; impurity, attempts were also made to
refine the Yb site occupancy. This gave a value just above 1,

This journal is © The Royal Society of Chemistry 2018
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and so in the final refinement was fixed at 1.0. This precludes
both the presence of Yb vacancies or Ba on the Yb site (Ba has
a significantly lower neutron scattering factor than Yb). The
presence of this Yb,O5; impurity is most likely due to a small
amount of amorphous BaCOj;, or Ba volatility as has been
observed for other Ba containing perovskite systems.*' >3

Raman studies of the Ba;Yb,05;CO; material (Fig. 4) con-
firmed the presence of carbonate bands, with the most
significant band (v, symmetric stretch) seen at 1054.51 cm™".
In comparison, BaCO; was also analysed with the carbonate v,
symmetric stretch observed at a higher energy of
1059.53 cm ™. This difference confirms that the CO;*~ peak
was due to the BazYb,O05;CO; material and not just small
amounts of BaCO; reagent.

The final structural model is shown in Fig. 3, which shows
that the structure, consists of double Yb-O layers separated by
carbonate layers, representing a new example of an ordered

;

Fig. 3 (a) Refined structure of BazYb,OsCO3 showing the split carbon-
ate group positions attributed to local differences in carbonate orien-
tation (b) structure illustrating a single carbonate orientation to illustrate
clearer the bonding around the Yb and carbonate.
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Fig. 4 Raman data for BazYb,0sCOs.

Dalton Trans., 2018, 47, 12901-12906 | 12903


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8dt02691b

Open Access Article. Published on 13 August 2018. Downloaded on 1/21/2026 9:26:50 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

perovskite stabilised through carbonate incorporation. The an-
isotropic atomic displacement parameters for O1 and O2
suggest local tilting of the YbOg octahedra to coincide with the
adjacent carbonate orientation.

Synthesis of other Baz;Ln,05;CO; (Ln = rare earth) phases

Following the successful synthesis and structure determi-
nation of Baz;Yb,05COj;, the possible synthesis of analogous
phases with different rare earths was investigated. Similar syn-
thesis in air led to the successful formation of BazLn,05COj3
for Ln = Lu, Tm. For other rare earths (Ln =Y, Er, Ho and Dy)
air synthesis led to samples with large Ba;Ln,Oy or BaLn,0O,

View Article Online
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impurities. For these systems, better quality samples could be
prepared by utilising the dry N, synthesis approach to limit
loss of CO,, and hence maintain the presence of carbonate
in the sample. Attempts to prepare these phases for larger
rare earths, e.g. Sm, Nd, resulted in no presence of the perov-
skite oxide carbonate phase. The structure obtained for
Ba;Yb,05CO; was used for preliminary structure refinement to
obtain cell parameters for these Ba;Ln,0sCO; systems. Each
refinement showed a good fit to the data. However, through
the refinements it became apparent that each still contained
small amounts (~3-4 wt%) of their respective Ln,O; starting
materials.

Table 3 Unit cell parameters for BasLn,OsCOs3 (Ln = Lu, Yb, Tm. Er, Y, Ho, Dy)

Unit cell parameters

Ionic radius of Ln** Unit cell
Formula (6 coordinate)*” (@) (¢ volume
Ba;Lu,05CO; 0.861 A 4.3223(1) A 11.8311(4) A 221.03(1) A°
Ba;Yb,05CO; 0.868 A 4.3258(2) A 11.9036(5) A 222.75(2) A®
Ba;Tm,05C0; 0.880 A 4.3439(1) A 11.8795(4) A 224.16(2) A’
Ba;Er,05CO; 0.890 A 4.3671(3) A 11.8623(7) A 226.24(4) A®
Ba;Y,05CO; 0.900 A 4.3809(3) A 11.8514(7) A 227.46(4) A>
Ba;H0,05CO; 0.901 A 4.3813(2) A 11.8871(4) A 228.19(2) A®
Ba;Dy,05CO; 0.912 A 4.3900(3) A 11.9244(8) A 229.81(4) A®
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Fig. 5 (a) Variation in cell volume with Ln*" ionic radius. (b) Variation in a cell length with Ln** ionic radius. (c) Variation in c cell length with Ln**

ionic radius showing no systematic variation.
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The refined unit cell parameters are given in Table 3, with
observed, calculated and difference profile fits shown in ESL¥
As expected, there is a linear increase in unit cell volume with
increasing rare earth size (Table 3, Fig. 5a). However, the vari-
ation in the individual cell parameters follow a less systematic
trend. While the a parameter shows a similar general increase
with rare earth size (Fig. 5b), ¢ follows a non-systematic vari-
ation (Fig. 5c). More detailed neutron diffraction structure
determination would be required to explain this, which may
be related to changes in local carbonate orientations. For
example, it is possible that there might be some carbonate
groups rotated 90° so that two oxygens are in the equatorial
positions.

Conclusions

In this work, we illustrate the formation of perovskite oxide
carbonate phases in the BaCOj;:Ln,0O; phase diagram for a
ratio of 3:1. These Ba;Ln,0sCO; phases are shown to be new
layered perovskites, with double Ln-O layers separated by car-
bonate layers, the first example of a material with such a struc-
ture. The results highlight the need to consider the potential
incorporation of carbonate in perovskite materials prepared at
temperatures <1000 °C. Thus it raises questions whether
many perovskite systems prepared at low temperature (e.g. via
sol-gel routes) may contain carbonate, affecting properties
rather than simply previously considered morphological
effects.
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