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Electrochemical strategies for C—H
functionalization and C—N bond formation

Conventional methods for carrying out carbon—hydrogen functionalization and carbon-nitrogen bond
formation are typically conducted at elevated temperatures, and rely on expensive catalysts as well as the
use of stoichiometric, and perhaps toxic, oxidants. In this regard, electrochemical synthesis has recently

been recognized as a sustainable and scalable strategy for the construction of challenging carbon—carbon

and carbon—heteroatom bonds. Here, electrosynthesis has proven to be an environmentally benign, highly

effective and versatile platform for achieving a wide range of nonclassical bond disconnections via generation
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of radical intermediates under mild reaction conditions. This review provides an overview on the use of anodic
electrochemical methods for expediting the development of carbon—hydrogen functionalization and carbon—

nitrogen bond formation strategies. Emphasis is placed on methodology development and mechanistic insight

rsc.li/chem-soc-rev

1. Introduction

Synthetic chemists are constantly faced with the challenge of
producing molecules, whether it be small-molecule synthesis or
accessing increasingly complex target structures, in a selective
and efficient manner. The methods and strategies of organic
synthesis are continuously being improved and augmented in
order to expand the chemical toolbox, thereby enabling new
routes to solve ever-increasingly complex problems in chemical
research.’™® Over the years, the use of renewable chemical
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and aims to provide inspiration for future synthetic applications in the field of electrosynthesis.

feedstocks,” biocatalysis® and base-metal catalysis,” in combination
with the development of cascade/tandem processes™ has become
paramount for realizing atom-economic and more sustainable
reaction platforms."* Recently, research in the chemical sciences
has experienced renewed interest in visible light photocatalysis****
and electrochemistry.*™” These versatile synthetic platforms have
the ability to promote challenging bond constructions under mild
reaction conditions.

1.1. Fundamental principles and general considerations of
preparative electrochemistry

Electrolysis is carried out in an electrochemical cell, a reactor that
is comprised of an electroactive species/substrate, electrolyte,
solvent and (at least) two electrodes (an anode and a cathode).
The anode is connected to the positive pole of a power source
(galvanostat or potentiostat) and is oxidative while the cathode is
connected to the negative pole and is reductive. For construction
of the cell, two different options exist: undivided cells and divided
cells (Fig. 1). In undivided cells the anode and cathode are not
separated and are thus placed in the same compartment. This
setup is preferred due to its ease of construction and allows for
both reduction and oxidation to occur within the same compart-
ment, thereby enabling the substrate to be exposed to all species
present in the reaction. When employing this arrangement, it is
crucial to consider the possible reactions that may occur at the
auxiliary electrode.’® However, examples exist where a species
produced at the auxiliary electrode interferes with the electro-
chemical process at the working electrode. This issue can be
ameliorated using a divided cell. In this arrangement, the two
(anodic and cathodic) compartments are physically separated
through the use of a small, porous frit. This allows for the transfer

This journal is © The Royal Society of Chemistry 2018
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Fig. 1 Selected electrolysis setups. (a) Three-necked round-bottom flask equipped with (b) a reticulated vitreous carbon anode and a platinum plate
cathode (Reprinted with permission from ref. 926. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim). (c) Undivided beaker-type glass cell
equipped with an isostatic graphite anode and a platinum cathode (Reproduced from ref. 918 with permission from The Royal Society of Chemistry).
(d) H-Type divided cell equipped with a reticulated vitreous carbon anode and a platinum wire cathode (Reprinted with permission from ref. 398.
Copyright 2018 American Chemical Society). (e) H-Type divided cell equipped with a 4G glass filter, an anode made of carbon strings and a platinum plate
cathode (Reprinted with permission from ref. 958. Copyright 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim).

of charge and enables the two half-reactions of the electrolysis to
occur separately.'®?°

In principle, electrodes can be constructed from any inert
material that enables electron transfer in solution. Examples of
electrodes include carbon-based materials (graphite and glassy
carbon), magnesium, platinum and stainless steel. Another
appealing electrode material is reticulated vitreous carbon
(RVC), a material that combines the properties of carbon with
glass, which has a high surface area, high void volume, and
chemical resistance. At the end of the reaction, the electrodes
can simply be physically removed as long as they are stable to
the applied reaction conditions.”™*> Acceptable solvents that
can be employed in electrochemical processes include, but are
not limited to acetonitrile, dichloromethane, methanol, or
dimethylformamide. Here, the use of nonconventional organic
solvents, such as trifluoroethanol,?® trifluoroacetic acid,>* ionic
liquids®® and supercritical fluids,*® has also received attention.
In order for the reaction solution to become conductive, a
supporting electrolyte has to be added. These are typically
simple salts, such as alkali metal perchlorates and tetraalkyl
ammonium salts, and are mainly used for increasing the
conductivity of organic systems.

The electron transfer events that occur at the anode or
cathode enable one to classify the electrochemical reactions
as either oxidations or reductions, respectively. They occur on
the surface of the electrodes and are therefore heterogeneous
processes. The resulting species that is generated after the
initial electron transfer between an electrode and an organic
substrate is subsequently diffused into solution, which is
followed by a secondary reaction of the initially produced
radical species.”’*" Here, the potential of the electrode
(E)—that is the difference between the potential at the electrode
of interest and the selected reference electrode, such as the
saturated calomel electrode (SCE)—will determine whether a
specific electron transfer process is thermodynamically feasible,
and is given by eqn (1):

AG = —nFE 1)

This journal is © The Royal Society of Chemistry 2018

where AG is the free energy change, F is Faraday’s constant
(96 485 Coulombs mol '), and 7 is the number of electrons
involved in the overall reaction. An advantage of preparative
electrolysis is that an initial electroanalytical evaluation using,
for example, cyclic voltammetry (CV) enables convenient assess-
ment of the reaction system. Such simple analyses provide a
great deal of vital information with relatively limited experi-
mental effort and insight into which functional groups that
may be oxidized or reduced, as well as the magnitude of the free
energy that is needed to promote electron transfer in the
studied electrochemical process.*?

It is important to note that the electrolysis experiments can
be conducted using either a controlled-current or controlled-
potential approach. In a controlled-current experiment, the
current is held constant while the voltage gradually increases
until the potential is reached for the electroactive species. Once
depleted, the potential continues to rise until a second electro-
active species or solvent molecule is oxidized or reduced. It is
thus critical to consider the redox potentials of the substrate as
well as all other species in solution in order to assure that the
initial redox reaction does not involve participation of the
solvent or other additives. However, if the potential needs to
be tightly controlled, a controlled-potential experiment where
the potential is set to a certain value will allow for a selective
redox reaction to occur.®® With this setup, it is important to
have in mind that the decrease in substrate concentration is
accompanied by a decrease in the current, and thus the rate of
the reaction.

1.2. Historical advances in synthetic electrochemistry

Applying electrical current to affect a chemical reaction can be
traced back to the 1830s when Faraday electrolyzed an acetate
solution to produce hydrocarbons.>* However, the Kolbe electrolysis
constitutes one of the earliest carbon-carbon (C-C) bond forming
reactions that was studied in detail.***® Here, carboxylate anions are
oxidized at an anode. The initial electron transfer triggers extrusion
of CO, to generate carbon-centered free radicals, which subsequently
undergo homocoupling to produce the new C-C bond. The reaction
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Fig. 2 Advances in organic electrochemistry.

still serves as a versatile method for C-C bond formation in
contemporary organic synthesis.?”
also received significant interest from the chemical industry.
Classical examples include the chloralkali and the Hall-Héroult
processes, as well as production of organic compounds, such as
adiponitrile and ethylene glycol.**

Additional advances in preparative electrolysis include the
use of indirect electrolysis in which a redox mediator undergoes
electron transfer at an electrode to afford an electrochemically
generated reagent that triggers the reaction of interest (Fig. 2).*>
This approach has a long history®® and one of the earliest
industrial applications concerned the oxidation of glucose to
calcium gluconate using bromide as mediator.** During the last
four decades, commonly employed organic redox mediators for
anodic oxidations are triarylamines®® and nitroxyl radicals.”®*”
Since the active species of the mediator is continuously regenerated

Preparative electrolysis has
38-40

at the electrode it enables the use of substoichiometric quantities.
Advantages of redox-mediated electrolysis (indirect electrolysis) are
that problems such as are that problems associated with hetero-
geneous electron transfer, such as overpotentials,*® can be avoided
and that electrolysis can be conducted at lower potentials than

Electrochemically-mediated catalysis

i_ I'-ﬁ ( [Med]** [sub]
anodic [Med] AZ [Sub]*'

oxidation

the redox potential of the substrate, accelerating the reaction rate
while affording higher selectivities by circumventing potential side
reactions. It should be noted that there exist several similarities
between electrochemically-mediated reactions and visible light
photoredox catalysis (Fig. 3). In this visible light-mediated platform
a photocatalyst absorbs photonic energy. Upon absorption of
visible light, a long-lived redox-active excited state is produced,
which can engage in single-electron transfer (SET) events with, for
example, organic substrates.

In the late 1980s, Yoshida introduced the concept of using
electroauxiliaries.*>*® Typical electroauxiliaries include enol
ethers,”" organostannanes,’ silyl groups,® and thioacetals.”*
The electroauxiliary is functionality appended to a compound
in order to aid the oxidation or reduction of the substrate by
reducing its oxidation or reduction potential. This facilitates
either oxidation or reduction of the starting material in the
presence of the desired nucleophile and reduces the likelyhood
of overoxidation or overreduction of the resultant product by
promoting electron transfer in a more selective and predictable
fashion. Moreover, noticeable contributions during the 21st century
include Waldvogel’s work on selective biaryl cross-coupling

Photoredox catalysis
visible light

b
[PC] —> [sub]

_e’_\_— [PCT* AZ[sub]"'

Fig. 3 Comparison of electrochemically-mediated catalysis and visible light photoredox catalysis. PC = photocatalyst.
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platforms® and Yoshida’s strategy for C-H amination®® of
aromatic compounds using the “cation pool” method.>”*®

1.3. Advantages of applying electrochemical methods in
organic synthesis

The use of electrochemistry is considered a “green” and sustainable
alternative to traditional, toxic redox-based methods. It has the
ability to maximize atom efficiency while replacing stoichiometric
redox reagents, such as NaH, OsO, and Pb(OAc),, with an electrical
current, thereby minimizing production of reagent waste. Moreover,
since the energy of the electrochemical system can be governed
by the applied electrode potential, a majority of the preparative
electrochemical reactions, even the ones with high activation
energies, can be carried out at ambient temperature. Therefore,
the application of electrochemistry in organic synthesis constitutes
an appealing strategy for generating reactive radical intermediates
under mild conditions.>**

Radical cyclization reactions, for example, have typically been
conducted in the presence of stoichiometric quantities of hazardous
and toxic reagents, such as tin hydrides and azobis(isobutyronitrile)
(AIBN). However, employing electrochemistry allows the develop-
ment of reagent-free protocols that operate under mild reaction
conditions, providing an environmentally friendly alternative.*>®*
In addition to the aforementioned advantages of applying electro-
chemistry in organic synthesis, another feature of electrochemistry
is that it can also be used to trigger umpolung reactions.®*> **
Two elegant examples of using such a strategy can be found in
Moeller’s synthesis of alliacol A (4)°>°® and Trauner’s synthesis
of guanacastepene E (7)°”°® in which silyl enol ethers are
coupled with furans via intramolecular electrooxidative coupling
(Scheme 1).

It is evident that organic electrochemistry represents an
enabling technology for the organic chemistry research community
for generating reactive but controllable radical intermediates under
neutral reaction conditions. However, for the technique to become
part of the standard chemical toolbox, the barrier to adoption
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needs to be eliminated. The necessity to construct your own home-
made electrochemical apparatus has certainly contributed to the
general lack of interest in pursuing electrochemistry, for example,
as part of a total synthesis. The barrier to adoption becomes even
higher if there exist alternative methods for accomplishing the
desired transformation. Furthermore, the numerous reaction
variables, such as cell type, experiment type, electrode material
and electrolyte, might be overwhelming, especially for practicing
organic chemists without any prior experience in electro-
chemistry. Organic electrochemistry would benefit from being
presented in a more user-friendly manner. Access to a commer-
cially available standardized device for organic electrochemistry
would certainly mitigate this barrier to adoption and allow the
field to develop more rapidly.*®

1.4. Scope of this review

Over the years, a variety of review articles have been published
that summarize the impressive advances made in the field of
organic electrochemistry.”® Pioneering reviews include those by
Wawzonek”" and Weinberg.”*> Anodic oxidation processes have
been examined by Adams,”® Eberson®””* and Shono,”®> and more
recently by Boydston,”® Chiba,”” Moeller,”*®" and Schiifer.?>**
Reviews detailing both anodic oxidation and cathodic reduction
processes have been summarized by Schifer,*** Wright®*® and
Yoshida.®” Progress in indirect electrolysis has been reviewed by
Nikishin,** Steckhan,*?*? as well as Francke and Little*?? while
the synthetic endeavors of using electrochemistry in complex
settings have been described by Baran.®® In this review an overview
of the electrochemical strategies for carrying out carbon-hydrogen
(C-H) functionalization as well as carbon-nitrogen (C-N) bond
formation is presented with an emphasis on methods develop-
ment and mechanistic insight.*® The review is organized based on
the aforementioned reaction types and are grouped according to
the electrochemical methods employed. While focus is on repre-
sentative examples from the past two decades, early pioneering
work is also highlighted. The aim of this review is to encourage

TsOH (7.6 equiv)

,45h

(-)-guanacastepene E (7)

Scheme 1 Synthesis of alliacol A and guanacastepene E via anodic coupling reactions.

This journal is © The Royal Society of Chemistry 2018
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researchers to explore and to adopt organic electrochemistry, a
technique with considerable potential, to the general synthetic
toolbox.

2. Carbon—hydrogen (C—H)
functionalization under oxidative
electrochemical control

Over the past decade, transition metal-catalyzed C-H functionaliza-
tion has enabled the development of a variety of nontraditional and
innovative bond constructions in contemporary synthetic organic
chemistry. The direct functionalization of C-H bonds represents a
powerful strategy for selective C-C and carbon-heteroatom (C-X)
bond formation, thereby improving atom- and step economy as
well as streamlining chemical synthesis. However, despite intensive
efforts and increased understanding of the mechanistic aspects
of the C-H functionalization reaction manifolds, the inherent
difficulty of activating kinetically inert C-H bonds has limited
the development of catalytic platforms that operate efficiently
under mild reaction conditions.’®®! In this chapter, various
electrochemical concepts to expedite the development of C-H
functionalization platforms are therefore surveyed.

2.1. Shono-type anodic oxidations

Nitrogen-based heterocycles constitute an essential structural
motif and are commonly found in natural products. In 1975,
Shono and coworkers disclosed an electrochemical method for
oxidation of carbamates to N-carbamoyl iminium ions.’> ** The
reaction proceeds through the initial formation of a nitro-
gen-centered radical (vide infra), which is subsequently oxidized
to an iminium ion intermediate that can be trapped with an
alcoholic solvent molecule.® This allows for functionalization of
the a-position adjacent to the nitrogen atom in heterocycles.””
For example, carrying out the anodic oxidation in methanol gives
access to o-methoxylated products 10 (Scheme 2), which are
established precursors to N-acyl iminium ions. If the substrate
contains an alcohol moiety, intramolecular trapping produces
oxazoline derivatives, such as 10¢.”> Upon treatment with Brensted
or Lewis acids, the generated N,0-aminals can be converted back to
the iminium ion species, which allows for trapping with allyl
silanes,""* ™" cyanide,""* " fluoride,""” furans,"*® isocyanides,""’
silyl enol ethers,"*® and trialkyl phosphites."*" Alternatively, function-
alization can be carried out to yield a diversity of scaffolds as shown

Shono oxidation of carbamates

f B 1w
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in Scheme 3.*?

Attempts have also been focused on developing
asymmetric versions of the Shono oxidation using chiral cyclic
dipeptides,'**"*® oxazolines,'”” oxazolidinones'*® and pyrrol-
idones'?°7131 d**? and carbamate-,'**"13¢
phosphorus- chiral auxiliaries to give
poor to high stereoselectivities in the alkylation step (Scheme 4).

Shono-type anodic oxidations have in general been carried
out with substrates and nucleophiles, such as methanol and
cyanide, which possess high oxidation potentials. Although
amines have lower oxidation potentials, which should facilitate
the electrochemical oxidation process, protocols utilizing
amines have been employed less frequently compared to their
amide and carbamate counterparts. Huang and Gong recently
disclosed a method for the electrochemical oxidation of y-lactams.
Direct trapping of the generated electrophilic acyliminium ions
with anilines could be accomplished despite their low oxidation
potential (Scheme 5)."*° Key to achieving high yields of the
substituted y-lactam products was to carry out the oxidation in
a “quasi-divided cell”**"'** with a Pt wire anode and a Pt foil
cathode in which the large difference in surface areas of the
working and counter electrodes provided high current density
at the anode, thereby favoring oxidation of the lactam. The
protocol was applicable to a wide range of anilines containing
electron-withdrawing groups, such as CF;, CO,Et, and OCF;, as
well as electron-donating groups, such as Me and OMe. Halogen-
containing anilines were also effective substrates for the developed
reaction, which provides an opportunity for further synthetic
elaborations."® Fuchigami and Baba have also demonstrated
anodic oxidation of imidates and imines to yield a-methoxylated
or aracetoxylated products (Scheme 6).**

Of the limited protocols that exist that rely on using amines
as substrates,"*'** Gallardo and Vila reported that hindered
secondary alkyl diamines 28 could be produced from anodic
oxidation of hindered secondary alkyl amines 27 (Scheme 7).¢4%
They subsequently demonstrated an electrosynthetic procedure to
afford imidazolium and tetrahydropyrimidinium derivatives 30
from secondary alkyl diamines 29 (Scheme 8).*® The Matsumura
group has also shown that the introduction of a nucleophile to the
a-position of an r-prolinol derivative (31) upon Shono-type oxida-
tion is viable (Scheme 9)."*° Furthermore, Hurvois and coworkers
prepared an o-amino nitrile through anodic oxidation in a
synthesis of (+)-myrtine.">' Shono-type oxidation of aliphatic amines
can also be extended to the synthesis of sulfonyl amidines."*?
Different tertiary amines (36) were initially evaluated and were

as well as ketopinic aci
137138 and sulfur-based'*®

Representative examples
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Scheme 2 Shono oxidation of carbamates.
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Scheme 4 Selected strategies for stereoselective functionalization of Shono oxidation products.

shown to efficiently afford the sulfonyl amidine derivatives 38
upon reaction with sulfonyl azides 37 (Scheme 10). Employing
Et;N as the amine these transformations presumably include

This journal is © The Royal Society of Chemistry 2018

anodic oxidation of the aliphatic amine to produce an iminium
intermediate (39), which tautomerizes into the corresponding
enamine (40). Subsequent 1,3-dipolar cycloaddition between the
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Scheme 9 Electrochemical oxidation of an L-prolinol derivative.

generated enamine and tosyl azide furnishes cycloadduct 41.
Finally, extrusion of CH,N, delivers the desired amidine product
38. The synthesis of amidine derivatives was also accomplished
using secondary and primary aliphatic amines.

Okimoto and coworkers have also demonstrated that Shono-
type oxidation of various amine-containing motifs carrying
pendant nucleophiles can be employed to access a diverse set
of heterocyclic compounds through intramolecular C-C or C-X
bond formation processes (Scheme 11).'***° Using a combi-
nation of NaOMe and KI as supporting electrolyte in MeOH
proved to be the optimal for affecting electrochemical oxidation
and subsequent intramolecular cyclization of tetrahydro(iso)-
quinolines 42 and 44 housing pendant alcohol or amine groups.

Synthesis of sulfonyl amidines

SN

For the tetrahydroisoquinoline-derived substrates 44a and 44b,
selective oxidation at the benzylic position afforded 45a and
45b."” The electrochemical oxidation/cyclization strategy could also
be applied on 3-dialkylamino-1-phenylpropanols 46 to give the
1,3-oxazinane derivatives 47 in moderate to high yields."®
Furthermore, the authors also investigated the electrooxidation
of dimethyl aminomalonates 48. Here, the use of NaCN as the
supporting electrolyte resulted in the highest yields for the
cyclized products 49.>7%°

The Luo laboratory recently reported a visible light-mediated
protocol for the enantioselective coupling of tetrahydroiso-
quinolines and simple alkyl ketones to furnish syn-Mannich-type
adducts with good to excellent diastereo- and enantioselectivities.
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Scheme 10 Electrochemical synthesis of sulfonyl amidines from aliphatic amines and sulfony!l azides.
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Scheme 11 Electrooxidative cyclizations of amine-containing motifs.

However, the process required the use of substoichiometric
amounts of 3-nitrobenzoic acid as sacrificial oxidant."®" In order
to improve the utility and eliminate the use of a chemical oxidant,
Luo and coworkers developed a protocol based on enamine
catalysis and electrochemical C-H oxidation. The authors
identified the chiral primary amine 52a as the optimal catalyst
and trifluoroethanol (CF;CH,OH) as the ideal additive. The
established oxidant-free coupling reaction tolerated an array of
N-aryl substituted tetrahydroisoquinolines and various simple
ketones to provide the asymmetric oxidative coupling
products 53 in good yields with good to excellent diastereo-
and enantioselectivities (Scheme 12).'®> N-Aryl substituted
tetrahydroisoquinolines are also susceptible to anodic nitro-
Mannich C-C bond formation using nitromethane as the
nucleophile.’® Furthermore, Shono-type oxidation of tetrahydro-
isoquinolines has also been used for the oxidative functionalization
of benzylic C-H bonds, mediated by a dual bromide ion/2,2,6,6-
tetramethylpiperidinyl-N-oxyl (TEMPO) redox catalyst system, to
produce dihydro-isoquinolinones.'®*'
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Kashiwagi and Anzai explored the electrochemical oxidation of
N-alkyl-N-methylanilines (54) in aqueous media using a nitroxyl-
based mediator. N-Alkylformanilides (56) were the major products
and were obtained in 71-90% yield. The mechanism presumably
proceeds through an iminium ion intermediate (58) which is
hydrolyzed to produce hemiaminal 59. This species undergoes a
second oxidation event, mediated by the electrochemically gener-
ated oxoammonium species 55, to furnish the corresponding
formanilide 56 (Scheme 13)."%°

A potential strategy to expand the scope of the nucleophiles
is to employ the “cation pool” method.”” The “cation pool”
method involves generation and accumulation of cations, such
as N-acyliminium ions, through electrolysis at low temperatures.
The nucleophile is subsequently introduced to the reaction
mixture under non-oxidative conditions, which allows for easily
oxidized nucleophiles to be used. Early work from Yoshida and
coworkers involving the generation of “cation pools” from
carbamates by low-temperature electrolysis enabled the use of
a collection of carbon nucleophiles, including allyl silanes, enol

This journal is © The Royal Society of Chemistry 2018
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Scheme 13 Electrochemical oxidation of N-alkyl-N-methylanilines using a nitroxyl mediator.

silyl ethers, enol acetates as well as aromatic and 1,3-dicarbonyl
compounds (Scheme 14)."®” Other compatible nucleophiles
consist of allyl stannanes, benzyl silanes, Grignard reagents and
organoaluminum compounds.'®*7® These oxidative C-C bond
forming reactions can also be carried out in a flow system, thus
enabling continuous sequential combinatorial synthesis."”*™""
The Yoshida group has also highlighted that electrochemical
reduction of N-acyliminium ions, generated by the “cation pool”
method, affords a-amidyl radicals. These radicals can be harnessed
to produce homocoupled products or be intercepted with electron-
deficient olefins in Giese-type'’*'”” reactions (Scheme 15)."7%'7°
The latter transformation serves as a formal addition of C-H bonds

This journal is © The Royal Society of Chemistry 2018

to alkenes and offers new redox-based opportunities to manipulate
free radical species.

Additional strategies that allow for direct trapping of electro-
chemically generated N-acyliminium ions include the use of parallel
laminar flow in micro-flow reactors,'8'8" “site isolation”***'%* and
acoustic emulsification.'®*"®® The Atobe group has illustrated that
the direct allylation of carbamates can be accomplished through the
use of micro-flow reactors in which the flow is stable and laminar,
thereby enabling a stable liquid-liquid interface and mass transfer
between the two streams occurs only through diffusion. This concept
affords selective anodic oxidation of substrates without affecting
the oxidation of nucleophile and provides effective trapping of
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Scheme 14 Carbon-carbon bond formation of carbamates using the “cation pool” method.
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Scheme 15 Electrochemical reduction of “cation pool” generated acyliminium ions.

potentially unstable cationic intermediates.’®”'®" Atobe and co-
workers have also established the feasibility of using acoustic
emulsification in Shono oxidations. Here, chemoselective anodic
oxidation of the substrate is realized by selecting an electrolytic
medium in which the nucleophile is insoluble in. Upon ultrasonica-
tion, the nucleophile is dispersed as submicrometer range droplets,
which react with the electrogenerated carbocations when the two
species are in close proximity.'*®'®” The Tajima laboratory has
demonstrated the direct oxidative cyanation based on the concept
of “site isolation”. Using a polystyrene-supported quaternary
ammonium cyanide (PS-Me;N'CN™) as the heterogeneous
cyanating reagent enabled the direct cyanation of anodically
produced N-acyliminium ions, generated via Shono oxidation
of carbamates. This highlights that the site isolation between an
anode and, for example, the cyanating reagent (PS-Me;N'CN™)
dramatically suppresses the undesired oxidation of CN™ and
allows for anodic cyanation of organic compounds, even ones that

5796 | Chem. Soc. Rev., 2018, 47, 5786-5865

have higher oxidation potentials compared to CN.'®? Further-
more, utilizing recyclable solid-supported bases for in situ
generation of electrolytes enables the development of systems
where protic organic solvents serve as both the solvent and the
supporting electrolyte."®*"*°® This allows for easy separation of
the solid-supported base through filtration and provides, for
example, the methoxylated Shono-type product, which can be
subjected to the subsequent C-C bond forming reaction without
having to replace the solvent."””"'*® A complementary strategy for
expanding the scope of Shono-type oxidations consists of using
electroauxiliaries.>® This concept relies on the inherent properties of
the electroauxiliaries to lower the oxidation potential of the
substrate, thereby facilitating and providing enhanced control
of the anodic oxidation of the substrate. The electroauxiliaries
employed in Shono-type oxidations have typically been silyl-
based,"*?"* although 2,4,6-trimethoxyphenyl®** and sulfur-
based®'*?"” electroauxiliaries have also been employed.

This journal is © The Royal Society of Chemistry 2018
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Scheme 16 Electrochemical modification and diversification of cyclic lactams.

Considering the versatility of Shono-type oxidation reactions,
it is perhaps unsurprising that these reactions have found
numerous synthetic applications. The groups of Moeller and
Aubé developed a practical two-step protocol for the late-stage
functionalization of lactams by combining an intramolecular
Schmidt reaction of keto azides followed by electrochemical
anodic oxidation. The applicability of the Shono oxidation was
exemplified across a range of ring systems. Finally, the versatility
of the produced methoxyhemiaminals (70) was illustrated by
synthesizing an array of functionalized lactam products (71)
through the addition of various nucleophilic partners to the
subsequent in situ generated N-acyliminium ions (Scheme 16).>'3
Azanucleosides and related analogues have been found to exhibit
anticancer and antiviral activity. Furthermore, incorporation of
azanucleoside motifs into oligonucleotide sequences results in
increased tolerance towards degradation by nucleases.>' In this
regard, the Matsumura group has exploited the Shono oxidation
for preparation of azasugars,”*° and Chiba and coworkers recently
applied the Shono oxidation in the development of a synthetic
method for accessing azanucleosides. Initial studies revealed that
various nucleophiles and nucleobases could be introduced at
the o-position upon the anodic modification of N-carbamate
protected prolinol derivatives.”*'**> Subsequent work showcased
that N-acryloyl proline derivatives 72 could also be converted into
the corresponding azanucleosides 74 by use of the Shono reac-
tion. Moreover, the presence of the N-acryloyl group allowed for
substrate postsynthetic modification through thiol conjugate
addition or olefin cross-metathesis with a fluorescent dye
(Scheme 17).*** Electrochemical oxidation has also proven to be
a viable strategy towards the synthesis of y-amino acids*** and
preparing peptidomimetics.”*>>*® Schmalz and coworkers utilized
the Shono oxidation in the context of accessing a tricyclic dipeptide
mimetic (80) starting from r-proline (77). The anodic oxidation of
L-proline tert-butyl ester 78 afforded gram scale quantities of the
desired methoxylated product 79 in virtually quantitative yield
(Scheme 18). Building block 79 was subsequently converted into

This journal is © The Royal Society of Chemistry 2018

diproline mimetic 80 through peptide coupling, ring-closing
metathesis and protecting group adjustment.>*®

The Shono oxidation has been exploited as a general synthetic
method for accessing B-substituted indoles (Scheme 19). The
products derived from the Shono oxidation served as masked
aminoaldehydes, which upon treatment with arylhydrazines and
ZnCl, afforded the corresponding B-substituted indoles through
a Fischer indole synthesis pathway.**” Ley and coworkers identified
flow electrochemistry as an enabling technology for the Shono
oxidation of various N-protected cyclic amines. Here, the Shono
oxidation furnished the corresponding cyclic a-methoxyamines in
excellent yields. Applying a Pictet-Spengler reaction between the
electrosynthesized o-methoxyamines and substituted tryptamines
afforded the biologically active indole alkaloid nazlinine (88c)
and numerous related unnatural congeners (Scheme 20).>*®
Other alkaloids that have been prepared include (—)-crispine
A** and (4)-pumiliotoxin C.>*° Here, anodic cyanation furnished
the desired a-amino nitriles, which upon further manipulations
furnished the target alkaloids. The Santos laboratory has also
demonstrated the utility of the Shono oxidation in total syntheses
of ropivacaine®®" (93, Scheme 21), (—)-quinolactacin B>***> (96,
Scheme 22) as well as (+)-lennoxamine>* (99, Scheme 23). Finally,
the Kam group reported that electrochemical oxidation could
be applied to aspidofractinine-type alkaloids for construction of
kopsidines A and B (Scheme 24), thus highlighting the potential of
carrying out late-stage functionalization of complex molecules.”**
Additional synthetic applications of Shono-type oxidations include
the synthesis of an angiotensin-converting enzyme inhibitor,”*>
preparation of methoxylated analogues of the anticancer drugs
ifosfamide and cyclophosphamide,**® as well as dealkylation,>*”>*°
deallylation and debenzylation®®" of amines and amides.

2.2. Anodic halogenation

Incorporation of fluorine into organic compounds has found
broad applications in medicinal,****** agrochemical®**>**° and
material sciences.>®” Over the past decade, significant advances
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Scheme 19 Synthesis of B-substituted indoles via the Shono oxidation.

in chemo- and stereoselective fluorination of molecules with
high functional and structural complexity have been made. In
general, three different strategies exist for synthesis of organo-
nucleophilic

fluorine compounds: electrophilic,>*®

radical®®® fluorination.?%1>¢>
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lighted that sel

259

and liquid, albeit in

Seminal studies by Rozhkov and coworkers in 1970 high-

ective electrochemical fluorination of arenes

could be achieved in MeCN using Et,NF-3HF as the ionic

low yields. These reactions were proposed to

proceed via arene radical cations, generated at the anode, that

This journal is © The Royal Society of Chemistry 2018


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7cs00619e

Open Access Article. Published on 18 June 2018. Downloaded on 1/12/2026 5:51:11 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review Article

Synthesis of nazlinine derivatives

o Joe

View Article Online

Chem Soc Rev

'n constant current, 44 mA )n NH, CSA (3 equiv)
(" o A IR 6 T
| 1
PG MeOH PG ” H20, uW .
Et4NBF4', n 2.3 F/mol 0.5 equiv 130 °C, 30 min
85 undivided cell 86 87 88
Representative examples
NH, NH,

NH Br

N\__{ NH2 A\
7 N

88a, 80% (over 2 steps) 88b, 41% (over 2 steps)

nazlinine

88c, 59% (over 2 steps) 88d, 57% (over 2 steps)

Scheme 20 Synthesis of nazlinine and unnatural congeners via a two-step method.

Qvnth

Y is of ropiv

1) 6M HCI/CHCl3, reflux, 48 h

[
1 ‘n > o
Pt TMSCN, TMSOTF HZNJ@ g Me
constant current, 100 mA B—cyclodextrin M 92 N
+ 2 N e N
N N _— ¥ N~ °CN |L
ok Et,NOTS, CH,Cl, sl ~0°c,5mn A EDC/HOBY, t, 12h, CH,Cl,  "Pr Op
(0] OR* o o OR* o OR* n) . .
0°C, 3.0 F/mol 3) "PrBr, K,CO3 ropivacaine
89 undivided cell 20 91, 65%. 91% ee reflux, 12 h, MeCN 93, 75%
Scheme 21 Synthesis of ropivacaine employing the “cation pool” strategy. R* = 8-phenylmenthyl.
Synthesis of quinolactacin B
I
(o] o
Pt f ‘nw o o
@jc N—Boc constant current, 0.1 mA N—Boc ZnBr (10 equiv) | NH
R ———
N
' KOH, CH;Cly/H,0 he Pr , 12 h, CHCl Me Pr
-40 0C, 8 h, undivided cell (—)-quinolactacin B
87a 94 2y {GRCN:; PMSO 95, 65% 96, 94%

Scheme 22 Application of a late-stage Shono oxidation in the synthesis of (—)-quinolactacin B.

Synthesis of lennoxamine

. e
o = oo

97 98

T

constant current, 0.1 mA

KOH, CH.Cl,/H0
—78 °C, undivided cell
2) TPAP, NMO

(+)-lennoxamine
99, 63%

Scheme 23 Application of a late-stage Shono oxidation in the synthesis of (+)-lennoxamine.

This journal is © The Royal Society of Chemistry 2018

Chem. Soc. Rev., 2018, 47, 5786-5865 | 5799


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7cs00619e

Open Access Article. Published on 18 June 2018. Downloaded on 1/12/2026 5:51:11 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chem Soc Rev

Synthesis of kopsidines

SHE

OH constant potential, 0.83 V

T~CO,Me  2,6-lutidine, MeCN/CH,Clp (7:3)
OH Et;NCIOy, tt, 2.1 F/mol

divided cell OMe
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subsequently were trapped by fluoride to produce the carbon-
fluorine (C-F) bond.*****> More recently, attempts to achieve
selective fluorination of simple aromatic compounds include
the work by Matsuda and coworkers. However, the yields of the
fluorobenzenes were typically low.?*°>%® Unlike unsubstituted
arenes, such as benzene and naphthalene, electrochemical
fluorination of toluene and related derivatives remains a challenge,
as mixtures of products are formed originating from aromatic
substitution, side chain substitution and addition reactions.?”*>">
Heteroaromatics®’®>** and nitrogen-containing heterocycles
have also been reported to react in a similar manner. Anodic
oxidation of phenols using Et;N-5HF as the electrolyte was examined
by the groups of Hara and Yoneda, and selectively afforded
the corresponding 4,4-difluorocyclohexadienone derivatives in good
yields (Scheme 25).>*°! Furthermore, trifftuoromethanesulfinate
(CF3S0, ) has recently been exploited as a source for electrochemical
generation of trifluoromethyl radicals (CF;*) in the presence of
electron-rich aromatics®” and heterocycles.”” In this regard, the
Baran and Blackmond groups demonstrated that electrochemical
oxidation of zinc trifluoromethanesulfinate {Zn(SO,CF;),} in DMSO
in the presence of heterocycles, such as pyrazoles, pyrroles and
benzothiazoles, afforded the corresponding trifluoromethylated
products (Scheme 26). Moreover, the authors successfully high-
lighted that the developed electrochemical protocol was able to
provide the functionalized heterocyclic products more effectively
than conventional peroxide radical-initiated protocols for a
majority of the screened substrates.>*®

Electrochemical fluorination of arylsulfides constitutes
another transformation that has been extensively studied by
several research groups. Early work during the 1990s from the
Fuchigami®***>%* (Scheme 27) and Laurent®**?%* (Scheme 28)
laboratories demonstrated that the introduction of an electron-
withdrawing group at the a-position to sulfur had a dramatic
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influence on the reactions. These a-fluorination transforma-
tions were believed to proceed through a Pummerer-type
mechanism where the electron-withdrawing group facilitates
deprotonation of the o-carbon to produce intermediate 110,
thereby promoting fluorination.’®> The same effect could also be
achieved using aromatics containing strongly electron-withdrawing
groups, such as p-CN, p-NO, and p-SO,Ph, as demonstrated by
Simonet and coworkers.****”” These seminal studies constitute the
first examples of selective electrochemical fluorination of chalcogen
compounds. Since then, a variety of distinct sulfide-based motifs,
such as 2H-benzo[b][1,4}-thiazin-3(4H)-one (114j),>® benzothiazole
(1140),’>" 2 3-dihydrothiochroman-4-one (114k),*** 1,3-dithio-
lan-4-one (114¢),”*® lactam (114a),>*® 1,3,4-oxadiazole (114l),*""'*
1,3-oxathiolan-5-one (114b),*" pyrimidin-4(3H)-one (114h)*'®
phosphonate (114d),*'?'® pyridine (114e),*>'°?'® pyrimidine
(114g)'9*11319320 quinazolin-4(3H)-one (114i),>* quinoline (114f),>'°
1,3,4-thiadiazole (114m),*"'*'* and 1,2,4-triazole (114n)*'* have
been shown to be amenable to regioselective monofluorination
(Scheme 29). Because of their good conductivity, non-flammability,
non-volatility and thermal stability, ionic liquids, such as Et;N-nHF,
have found widespread use as solvents in electrochemical fluorina-
tion reactions.>*'*® Recently, Fuchigami and coworkers demon-
strated miscellaneous approaches to improve the electrochemical
fluorination. One approach makes use of ultrasonication to pro-
mote the mass transport of the substrate due to the high viscosity
associated with the ionic liquids. This was shown to increase the
current efficiencies, selectivities and yields in the anodic fluorina-
tion of a variety of organosulfur compounds.**” The authors
have also developed an electrochemical system based on the
cation-exchange reaction between alkali-metal fluorides and solid-
supported acids. In the presence of 2,6-lutidine, the exchange
reaction results in the in situ generation of 2,6-lutidine-HF, which
functions as the fluorinating agent and supporting electrolyte, thus

Representative examples
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Scheme 25 Synthesis of difluorocyclohexadienones through electrochemical oxidation of phenols.
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Scheme 26 Electrochemical trifluoromethylation of heterocycles.
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Scheme 28 Electrochemical fluorination of organosulfur compounds.

obviating the need to handle hazardous HF.**® The Fuchigami
group has also shown that indirect anodic fluorination can be
realized using a hypervalent iodoarene difluoride (ArIF,) mediator,
which can be anodically produced from the corresponding
iodoarene species and a HF-based ionic liquid (Et;N-3HF).
Here, indirect reaction with the hypervalent iodoarene mediator
proceeded efficiently to furnish the desired monofluorinated
product, thus limiting anode passivation (the formation of a
nonconducting polymer film on the electrode surface that
suppresses faradaic current), a drawback that is often encoun-
tered when carrying out direct electrochemical fluorination.?>°
Attempts to develop diastereoselective fluorination protocols
have also been reported using chiral auxiliaries derived from
camphorsulfonic acid,>*® (R)-(—)-3-chloro-1,2-propanediol,®**
rcysteine®*> and menthol,>*® providing the monofluorinated
products in modest to good diastereoselectivities.

Recently, electrochemical fluorination of adamantane deri-
vatives has been studied by Hara and coworkers. By controlling
the oxidation potential, the authors were able to guide the
fluorination process to selectively yield the mono-, di-, tri- or
tetrafluorinated adamantane derivatives (Scheme 30).%3%%3°

This journal is © The Royal Society of Chemistry 2018

Moreover, regioselective electrochemical monofluorination
has also been reported for a collection of oxygen-containing
heterocycles, including carbonates,**%***” chroman-4-ones,***3%°
esters,*” ethers*****” and lactones.*****” Additionally, electro-
chemical protocols for accomplishing fluorodesulfurization,**'>4°
difluorination,***** fluoro-selenylation,*** iodofluorination®** and
thiofluorination®* of electron-deficient olefins as well as partial
fluorination of conjugated dienes®> have been devised.*>®

In contrast to the electrochemical fluorination strategies, the
anodic oxidation protocols involving chlorides, bromides and
iodides typically proceed via generation of the corresponding
electrophilic molecular counterpart (X,) due to the relatively low
oxidation potentials of these halogen ions.*”” % Due to the limited
solubility of alkali metal halide salts in organic solvents, a biphasic
system consisting of an aqueous phase and a halogenated organic
solvent is commonly employed to affect chlorination of
aromatics®®*** and heterocycles®”® as well as bromination of
37! The electrodes are placed in the upper layer
of the aqueous phase, thus enabling selective oxidation of the
halide. The electrochemically produced X, or hypohalite sub-
sequently reacts with the organic substrate at the aqueous/organic

toluene derivatives.
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Scheme 29 Electrochemical regioselective fluorination of organosulfur compounds.
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Scheme 30 Selective electrochemical fluorination of adamantane derivatives.

interface to ultimately produce the desired halogenated product.
However, this can to some extent be circumvented using poly-
(ethylene glycol) as an additive, which enhances the solubility of
the inorganic salts in aprotic organic solvents.””> By employing a
biphasic system, bromination of various arenes®”* (Scheme 31)
as well as benzylic mono-*"* (Scheme 32) and dibromination®”>
(Scheme 33) of alkyl aromatics has been achieved. In addition to
these examples, electrochemical chlorination of 1,3-dicarbonyl
compounds using Cu catalysis,’’® azulene derivatives,>””*"®
olefins,*”?%* phenols®®® and pyrazolecarboxylic acids,®®*® as well

(cc)

Bromination of arenes

o

118

I
THE )
constant current, 30 mA ‘g _Br

—_—
NaBr, CHCI3/HBr (aq)
0°C, 2.0-6.0 F/mol
undivided cell 119

Scheme 31 Electrochemical bromination of arenes.
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119a, 80%

387 and olefins*®® ! have been

as bromination of heterocycles
reported.

By employing a similar electrochemical strategy as used for
the chlorination of pyrazolecarboxylic acids,*®*® Petrosyan and
coworkers developed an electrochemical protocol for iodina-
tion of pyrazole and derivatives thereof. The iodination was
carried out in a biphasic system consisting of water and chloro-
form using KI as the iodine source. As expected, the presence of
electron-donating groups was found to facilitate the electro-
chemical iodination.***?%® The Yoshida group has elegantly

Representative examples
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Scheme 32 Benzylic monobromination of alkyl aromatics.
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Scheme 33 Benzylic dibromination of alkyl aromatics.
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Scheme 34 Electrochemical iodination of aromatic compounds.

demonstrated iodination of aromatic compounds using
electroaccumulated I" (Scheme 34). Initially, a “cation pool”
approach was employed in which an MeCN solution containing
iodine (I,) was electrolyzed for generation of the electrophilic
iodination agent, which was proposed to involve (MeCN),I".
Subsequently, the anodic solution was added to a solution
containing the arene. Alternatively, running the reactions in
flow was shown to both increase the selectivity for the mono-
versus the diiodinated compound and the yields compared to a
batch reactor. Furthermore, the flow rate had a dramatic
influence on the product selectivity where lower flow rates
dramatically decreased the selectivity of the monoiodo com-
pound due to less efficient mixing.****°* In addition, Hilt and
coworkers recently revealed that electrochemical synthesis of
aryl iodides can be achieved through anodic iododesilylation.**®
Anodic oxidation of arenes containing alkyl side chains provides
aryl radical cations, which can subsequently be further oxidized
to afford benzylic cations upon release of a proton, thus pre-
senting a strategy for carrying out benzylic functionalization.>®”
Recently, the Stahl group disclosed an alternative approach to
benzylic C-H functionalization (Scheme 35).****%° The developed

This journal is © The Royal Society of Chemistry 2018
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concept consisted of employing N-hydroxyphthalimide (NHPI) as a
mediator.’***> Here, NHPI undergoes proton-coupled electron
transfer at the anode to give phthalimido-N-oxyl (PINO), which
subsequently mediates hydrogen atom transfer (HAT) from weak
C-H bonds."® Using toluene derivatives and in the presence of a
base, such as 2,6-lutidine, Stahl and coworkers were able to
generate benzylic radicals at relatively modest oxidation potentials.
I, was shown to be an effective radical trapping agent, thereby
providing the corresponding benzyl iodide. The authors had to use
a divided cell configuration in order to avoid reduction of the trap
at the cathode. The developed benzylic C-H iodination method
tolerated several functional groups, including esters, ethers, halides
and ketones. In situ nucleophilic substitution using pyridine/
pyridinium as the electrolyte proved to lead to efficient displace-
ment of iodide by pyridine, leading to the corresponding benzyl-
pyridinium product under electrochemical control. Iodide is
produced in the nucleophilic displacement step, which can be
reoxidized to iodine at the anode, allowing these reactions to be
performed with substoichiometric amounts of iodine (20 mol%).
Finally, using the in situ functionalization protocol enabled the
authors to prepare three vital pharmaceutical building blocks,
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Scheme 35 Electrochemical iodination of toluene derivatives using NHPI as mediator.
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Scheme 36 Electrochemical iodination of terminal acetylenes.
highlighting the concept of using toluene derivatives as alkylating cyclohexanones” and piperidin-4-ones.*’® Bromide-mediated
agents.**® Moreover, Nishiguchi and coworkers exploited the electro- ~ a-oxidation has also been used for accessing spiro-dihydrofuran
chemical oxidation of terminal acetylenes using a divided cell in the  derivatives from dimedone and aldehydes (Scheme 38).*'" Further-
presence of Nal as the supporting electrolyte. The electrochemical ~more, both intermolecular*'® and intramolecular*****® protocols

method efficiently provided the desired 1-iodoacetylenes in good to
excellent yields (Scheme 36)."*

2.3. Electrochemical C-H bond oxygenation

a-Oxygenation of carbonyl compounds can be accomplished
using alkali metal halide salts. These halide salts can undergo
anodic oxidation, generating o-halo compounds or carbon-centered
a-radicals. Seminal work by Shono and coworkers demonstrated
that iodide-mediated o-oxidation of aldehydes and ketones
delivered the corresponding o-hydroxylated acetals or ketals.**®
More recently, Elinson and coworkers have also studied the
sodium halide/sodium hydroxide system for indirect electro-
chemical a-oxidation of carbonyl compounds.****®” Based on
these results, the authors employed the mediatory system Nal/
NaOH for converting alkyl aryl ketones into the corresponding
a-hydroxy ketals (Scheme 37). These reactions were proposed to
proceed via o-iodoketone 133.%°® The iodide-mediated oxidation
system was subsequently employed for o-hydroxylation of

5804 | Chem. Soc. Rev., 2018, 47, 5786-5865

for C-C bond formation based on halide-mediated anodic oxida-
tion of carbonyl compounds and related derivatives have also been
disclosed.

The Wang group has shown that iodide-mediated anodic
oxidation of aryl methyl ketones can be exploited for synthesis
of a-ketoesters (Scheme 39),**°"**" g-ketoamides (Scheme 40)**?
and isatins (Scheme 41).**® Here, a radical-based pathway in
which an iodine radical (I*) is proposed to undergo a HAT event
with the aryl methyl ketone to deliver hydrogen iodide and an
a-carbon-centered radical (140). The intermediate radical can
subsequently be trapped with dioxygen to afford peroxyl radical
141, which is readily converted to the corresponding ketoaldehyde
compound. Finally, nucleophilic addition to this intermediate and
a further oxidation event yields the desired product. a-Oxygenation
of aliphatic aldehydes has been accomplished through a dual
electrochemical/organocatalytic strategy (Scheme 42).*** In this
transformation, the generated o-iminyl radical cation is inter-
cepted with TEMPO to afford the a-oxygenated product 148 upon

This journal is © The Royal Society of Chemistry 2018
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Scheme 37 Indirect electrochemical a-hydroxylation of alkyl aryl ketones.
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Scheme 38 Electrochemical synthesis of spiro-dinydrofuran derivatives.
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Scheme 40 Preparation of a-ketoamides through anodic oxidation.
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Scheme 42 Dual electrochemical/organocatalyzed a-oxygenation of aldehydes.

hydrolysis of the resultant iminium ion. In addition, various chiral
sec-amines were evaluated in order to develop an enantioselective
protocol. However, only moderate enantioselectivities were obtained
using the Hayashi-Jorgensen catalyst.**>**® The merger of electro-
chemistry with other organocatalytic activation modes was utilized
by Boydston and coworkers for conversion of aldehydes to esters
(Scheme 43). The method interfaced N-heterocyclic carbene-based
organocatalysis with anodic oxidation for achieving efficient two-
electron oxidation of the in situ generated Breslow intermediate (151)
to produce an electrophilic 2-acylazolium species (152).**”**° Sub-
sequently, the authors disclosed a method for the direct conversion
of aldehydes to thioesters via integration of organocatalysis and
electrosynthesis.**® Based on this dual catalytic activation mode,

Brown and coworkers successfully demonstrated that the oxidative
esterification of aldehydes**' as well as amidation of aldehydes™*
could be conducted in an undivided electrochemical flow cell.
Recently, the Ackermann laboratory exploited the powerful nature
of dual catalytic methods for achieving C(sp*)-H oxygenation of
aromatic and alkene moieties.**® Here, the combination of
cobalt catalysis and electrochemical oxidation enabled C-H
alkoxylation under mild reaction conditions at ambient tem-
perature (Scheme 44). Employing electrical current as an oxidant
obviated the need of stoichiometric amounts of Ag(i) salts
through the use of an earth-abundant cobalt redox manifold.
Furthermore, the developed protocol exhibited high levels of
chemo-, regio- and diastereoselectivity. Electrooxidative C-H
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Scheme 43 Organocatalyzed anodic oxidation of aldehydes.
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Scheme 44 Electrochemical cobalt-catalyzed C(sp?)—H alkoxylation.
Synthesis of 4H-1,3-benzoxazines Representative examples
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Scheme 45 Synthesis of 4H-1,3-benzoxazines through electrochemical C—-H oxygenation.

activation with weakly coordinating benzoic acids has also been
accomplished using rhodium-*** or ruthenium catalysis.**>
Electrochemical aromatic C(sp®)-H oxygenation has also
been utilized for carrying out oxidative annulations. Xu and
coworkers disclosed an electrochemical method featuring the
direct electrolysis of N-benzylamides for preparing a range of
substituted 4H-1,3-benzoxazines (Scheme 45). The electrolysis
was proposed to facilitate anodic oxidation of the electron-rich
aromatic nucleus, triggering regioselective cyclization to afford
a cyclohexadienyl radical. Finally, rearomatization is realized
upon abstraction of an electron and a proton, furnishing the
desired benzoxazine 159.**° The Zeng group demonstrated that
carboxylic acids can be anodically oxidized to generate the

Synthesis of lactones

I
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@ OH constant current, 30 mA

@I 3
n R BusNBF4, MeCN/MeOH (7:1) R
rt, 3.4-6.7 F/mol
undivided cell 161
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Scheme 46 Electrochemical lactonization of C—H bonds.
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corresponding carboxylate radical. The generated radical could
subsequently undergo intramolecular addition to electron-rich
aromatic rings to produce the C-O coupled lactone product
(Scheme 46).**”*° In addition to these examples, electro-
chemical oxygenation of furan derivatives**'*>* has also been
reported and has, for example, been utilized for oxygenation of
hispanolone®* as well as preparation of dideoxynucleoside
analogues.**®

Development of strategies for oxygenation of C(sp’)-H
bonds constitutes a compelling approach for delivering alcohol
and carbonyl derivatives. Historically, chemists have confided to
using stoichiometric, and often toxic, oxidants for carrying out
these transformations, resulting in the formation of considerable

Representative examples

161a, 70%

161b, 63% 161c, 63%
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Scheme 47 Electrosynthesis of ketones through anodic oxidation of benzylic methylenes.

amounts of waste. However, the demand for more sustainable
and atom economical methodologies has gained significant
attention among the scientific community.*>® Electrochemical
activation of toluene derivatives through initial oxidation of the
aromatic core is an appealing platform for realizing C(sp®)-H
oxygenation of benzylic carbons. The aryl radical cation that is
generated under these reaction manifolds can subsequently
undergo deprotonation and a further oxidation to furnish a
benzylic cation which can be trapped with various oxygen-
based nucleophiles. Such an approach was implemented by
the Wang group in which the benzylic cation was intercepted
with water to furnish the benzylic alcohol, which underwent
additional oxidation to give the corresponding ketone
(Scheme 47).*” Diarylcarbenium ions can successfully be gener-
ated and accumulated by low-temperature electrochemical oxi-
dation using the “cation pool” method.**®**% In the presence of
DMSO, alkoxysulfonium ions serve as the key intermediates.
Treatment with a base, such as Et;N, or hydrolysis selectively
affords the corresponding ketone®” (Scheme 48) or alcohol*®®
(Scheme 49). The fact that the initial electrochemical oxidation
and the product-forming steps are separated implies that the
products are not exposed to the electrolysis conditions, thereby
limiting overoxidation. An electrochemical protocol for anodic
acyloxylation based on the acid-base reactions between acetic
acid or trifluoroacetic acid and a solid-supported base has also
been reported (Scheme 50).*°>*7° It was found that the silica gel
supported base was stable under the electrochemical conditions,
permitting easy recovery and reuse of the solid-supported base.
Indirect electrolysis using various mediators, such as TEMPO/
Br,'® 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ)*""*7>
and NHPI (Scheme 51),*”* can also be harnessed for facilitating
oxygenation of benzylic methylenes. In addition, Little and
coworkers demonstrated that the use of triarylimidazoles*”**”

Benzylic oxidation of diarylmethanes

o H P

constant current, 8 mA DMSO

as redox mediators allowed for selective benzylic oxygenation of
unsymmetrical benzyl ethers (Scheme 52).*75748°

The oxidation of unactivated C-H bonds typically requires high
redox potentials, thus limiting the functional group compatibility
and necessitates the use of inert solvents. Allylic oxidations are
generally based on the use of toxic reagents, such as chromium and
selenium, or scarce transition metal catalysts, such as Pd and Rh,
which causes complications in industrial settings. The Baran group
has addressed the issue of oxidizing unactivated C-H bonds through
indirect electrolysis. After careful evaluation of potential mediators, a
NHPI derivative (Cl,NHPI) was demonstrated to be the optimal
mediator for the allylic oxidation of a range of natural product
inspired compounds, including sesquiterpene- and steroid-based
substrates (Scheme 53)."*'*% The described protocol exhibited
broad substrate scope, operational simplicity and high chemo-
selectivity, and could even be conducted on a 100 g scale. The
reaction is believed to involve hydrogen atom abstraction from the
olefinic substrate to the electrochemically generated N-oxyl radical
species, resulting in regeneration of CI,NHPI (178) and an allylic
radical (179). Interception of the allylic radical with electrochemically
produced ‘BuOO*® furnishes allylic peroxide 180, providing enone
181 upon elimination of ‘BuOH. Furthermore, direct electrochemical
oxidation of cholesterol at the allylic position has been demonstrated
by Sobkowiak and coworkers.*****® Baran and coworkers sub-
sequently reported a method for selective functionalization of
unactivated methylene and methine moieties utilizing quinuclidine
(183) as redox mediator (Scheme 54). Here, an assortment of
functional groups were demonstrated to be compatible with the
developed chemoselective process.*****!

2.4. Palladium-catalyzed anodic C-H functionalization strategies

Palladium-catalyzed cross-coupling reactions have revolutio-
nized C-C bond forming processes. Over the years, a variety

o
Me \N F O
o EtsN o < > _@

A Yy ———  —— 5 D —— 0" e ——
BusNBF,, CHyCl, R | BUNBFy CHCl, [\ A, . 35°C,1h Ar” A o
-78°C,2.5-4.0 Fimol AT AT _78°C 5 min
163 divided Gel 164 165 166 166a,91%  166b, 84%

Scheme 48 Electrochemical oxygenation using alkoxysulfonium ions.
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Scheme 49 Electrochemical hydroxylation using alkoxysulfonium ions.
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Scheme 50 Electrochemical (trifluoro)acetoxylation of C(sp?)—H and C(sp®)—H bonds. Base = morpholine.

Indirect benzylic oxidation
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Electrochemical oxidation of benzyl ethers
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174
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rt, divided cell
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Scheme 52 Benzylic oxygenation using a triarylimidazole mediator.

of catalytic platforms, such as carbon-heteroatom coupling,
a-arylation and decarboxylative coupling, based on Pd have
been designed.*® It is therefore not surprising that the syner-
gistic merger of electrochemistry and Pd catalysis has been the
subject of keen interest by the synthetic community.”%4937497
Pioneering studies by Tsuji and Minato demonstrated a variant
of the Wacker oxidation of terminal olefins by combining
Pd-catalysis and electrochemical oxidation. In this system,
benzoquinone is regenerated at the anode, which subsequently
triggers the turnover-limiting reoxidation of Pd® to pd".*9%4%°

This journal is © The Royal Society of Chemistry 2018

@ e —’Me

Indirect electrochemical oxygenation using NHPI as mediator.

Representative examples
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Mediator Representative examples

Br
o

176a: R = Br, 55% (87% brsm)
175 176b: R = Me, 45% (86% brsm)

More recently, related approaches have also been employed for
carrying out Heck-type reactions (Scheme 55),°°°°" Glaser-Hay
coupling®® as well as homocoupling of arylboronic acids and
derivatives thereof,”® and oxidation of alcohols under anaerobic
conditions.** Dual catalytic platforms based on Pd/TEMPO have
been reported for electrooxidative synthesis of biaryls from aryl-
boronic acids,**% cross-coupling between terminal alkynes and
arylboronic acids®®® as well as Wacker-type reactions®® and
cyclizations.>*® Furthermore, Moeller and coworkers have demon-
strated that triarylamines are also effective mediators and have

508
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Scheme 53 Indirect electrochemical allylic C—H oxidation.
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Scheme 54 Indirect electrochemical oxidation of unactivated C—H bonds.

Electrochemical Heck reaction
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Scheme 55 Electrochemical Heck reaction using benzoquinone as mediator.

utilized this concept for site-selective functionalization of semi-

conducting chips.>'!7>

A variety of approaches have been reported for the C-H
functionalization of arylpyridine derivatives via dual activation
by transition-metal catalysis and electrochemical oxidation.

5810 | Chem. Soc. Rev., 2018, 47, 5786-5865

In this regard, the Kakiuchi group has demonstrated that
C(sp?*)-H halogenation of aromatics using hydrogen halides
can be accomplished (Schemes 56 and 57). It was proposed that
anodic oxidation of the halide ion produces a halonium ion,
which subsequently reacts with the generated palladacycle to

This journal is © The Royal Society of Chemistry 2018
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Scheme 56 Regioselective halogenation of arenes through dual Pd catalysis and electrochemical oxidation.

Chlorination of benzamide derivatives
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Scheme 57 Electrochemical C(sp?)—H chlorination of benzamide derivatives.

provide the halogenated product while regenerating the Pd"
catalyst.”"”~>?° Expanding on this concept, the Kakiuchi group
disclosed a method for regioselective homocoupling of aryl-
pyridines in the presence of I, employing electrooxidative Pd
catalysis.>*' Additionally, protocols for perfluoroacetoxylation,>*>
perfluoroalkylation®>**** and phosphorylation®***?® of arylpyr-
idines have been established by the Budnikova group. A proce-
dure for sequential electrochemical C-H iodination followed by
a Suzuki-Miyaura coupling has also been developed by Kakiuchi
and coworkers. Here, I, was employed as the iodine source for
the electrochemical C-H iodination. Upon completion of the
iodination reaction, the electric current was simply switched off
whereupon the arylboronic acid was introduced to the reaction
mixture to furnish the corresponding cross-coupled product
(Scheme 58).>*” Along similar lines, Suga and coworkers reported
a dual Pd-mediated electrooxidative homocoupling of p-bromo-
phenylacetylene with a subsequent Suzuki-Miyaura coupling.
Discrimination between the two reaction sites, the terminal
alkyne and the Br group, was realized by the mere on/off
application of electricity.’*® Furthermore, the Sanford group
recently disclosed a Pd-catalyzed electrochemical method for
acetoxylation of C(sp®)-H and C(sp®)-H bonds (Scheme 59). It
was noted that differences in the relative rates of competing
oxidation reactions could prevail under chemical versus electro-
chemical oxidation conditions, thereby resulting in the formation

This journal is © The Royal Society of Chemistry 2018

of complementary products. Additionally, the differences in reac-
tion conditions for the chemical and electrochemical reactions,
such as solvents as well as the addition of a supporting electrolyte,
can translate to fundamental changes in catalyst performance
and/or reaction outcomes, and will be imperative when designing
new electrochemical platforms.>*

Merging Pd catalysis and electrochemical oxidation has
also proven to be a successful concept for carrying out C-H
functionalization on oxime-based motifs. In this regard, Mei
and coworkers have examined the Pd-catalyzed oxime-directed
C(sp®)-H acetoxylation employing an anodic oxidation strategy
(Scheme 60). In this transformation, it was proposed that the
rate-determining oxime-assisted C-H activation generates the
desired palladacycle. This Pd" species is subsequently oxidized
at the anode to produce the corresponding Pd" intermediate,
which can undergo reductive elimination to deliver the acetoxyla-
tion product, thus regenerating Pd" to close the catalytic
cycle.”®® Shortly thereafter, the authors reported a dual
Pd/electrochemical strategy to achieve C(sp*)-H methylation
and acylation (Scheme 61). Here, reductive elimination was
suggested to occur from a high-valent Pd intermediate, presum-
ably Pd™ or Pd".>*! Finally, functionalization of unactivated
C(sp®)-H bonds has also been reported using oximes as directing
groups. Along similar lines, C-H activation furnishes a Pd"
palladacycle, which subsequently is oxidized at the anode to

Chem. Soc. Rev., 2018, 47, 5786-5865 | 5811
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One-pot sequential C(sp?)-H iodination/arylation
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Scheme 58 One-pot C—H iodination/arylation of arylpyridines.
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Scheme 59 Pd-catalyzed electrochemical method for acetoxylation of C(sp*)—H and C(sp?)—H bonds.
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Scheme 60 Pd-catalyzed C(sp?)—H acetoxylation via anodic oxidation.

give a high-valent Pd species, presumably a Pd" intermediate. carrying out C(sp®)-H acetoxylation (Scheme 62), the dual
Generation of the high-valent Pd center promotes the otherwise Pd/electrochemical strategy could also be conducted with a
challenging C-O reductive elimination event to deliver the variety of oxyanion coupling partners, such as methoxide, tosylate
oxygenated product while regenerating Pd". In addition to and trifluoroacetate.>®* The catalytic protocols described here

5812 | Chem. Soc. Rev., 2018, 47, 5786-5865 This journal is © The Royal Society of Chemistry 2018
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Scheme 62 Dual Pd/electrochemical C(sp®)—H functionalization.

proceed under mild reaction conditions and in the absence
of exogenous ligands, representing sustainable alternatives to
conventional platforms for C-H functionalization that rely on
stoichiometric chemical oxidants.

2.5. Electrochemical oxidative cross-couplings

Transition metal-catalyzed cross-coupling reactions serve as an
integral part of contemporary synthetic chemistry for the rapid
and selective construction of complex architectures from simple
building blocks. However, these catalytic bond forming platforms
require the use of prefunctionalized substrates, which adds addi-
tional preceding synthetic steps. This inevitably culminates in the
generation of undesired stoichiometric amounts of waste. In
recent years, constructing C-C bonds through the direct coupling
of two C-H coupling fragments has emerged as a highly appealing
concept. This effective and straightforward strategy not only
circumvents the need for using prefunctionalized reagents but
also considerably enhances the atom- and step-economy. In
principle, dihydrogen (H,) is the sole (by)product resulting from
forging the two C-H bonds; however, typically a sacrificial oxidant
is required to accept the H,, hence the name oxidative cross-
coupling or cross-dehydrogenative coupling (CDC). Oxidative
cross-coupling is undoubtedly an attractive catalytic platform,
yet conceptually and practically challenging due to, for example,

This journal is © The Royal Society of Chemistry 2018

the low reactivity of the C-H bonds in combination with over-
coming the limitations in site-selective functionalization.>**™>
Moreover, the development of radical-mediated oxidative coupling
strategies has also gained significant attention from the scientific
community.>*”

Despite the relatively simple motif, the synthesis of biphenols
through oxidative cross-coupling of unprotected phenols has
proven to be challenging and often relies on protocols involving
expensive catalyst systems or reagents. In addition to producing the
desired cross-coupled biphenolic product,®® the reaction is also
accompanied by products derived from oxidative dimerization,
higher molecular weight polymers as well as compounds housing
C-O coupling motifs.***>** Seminal work on the intermolecular
anodic oxidative coupling of phenols demonstrated that corypalline
(210) could be electrochemically oxidized to the corresponding
dimer (211, Scheme 63).>**>*® However, attempts to carry out the
related intramolecular C-C coupling on laudanosine (212) resulted
in oxidative dearomatization of one of the phenolic moieties and
furnished O-methylflavinantine (213, Scheme 64).>'*>% Similar
reactivity has also been observed for the related alkaloids amurine,
oxocrinine, oxomaritidine and pallidine.>>*>>¢

Pioneering studies by the Waldvogel group demonstrated
that the direct anodic oxidation of 2,4-dimethylphenol (214a)
produced the ortho,ortho-coupled biphenol 215a, albeit in

Chem. Soc. Rev., 2018, 47, 5786-5865 | 5813
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Scheme 63 Anodic intermolecular oxidative coupling of corypalline.
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Scheme 64 Anodic intramolecular coupling of laudanosine.

rather poor yield (Scheme 65).>*” The authors subsequently
devised a template-directed method for the anodic coupling of
substituted phenols to the corresponding 2,2’-biphenols using
tetraphenoxy borate derivatives (Scheme 66). Although the developed
protocol was limited to electron-rich substrates, the electrochemical
synthesis could be conducted on a kilogram scale.’*** In addition
to generating the desired biphenol product, several additional

coupling motifs can also be produced.***>% To circumvent the lack
of selectivity, Waldvogel and coworkers realized that boron-doped
diamond (BDD) electrodes® gave almost exclusive selectivity for the
ortho-coupling product (Scheme 67).°°°” It was rationalized that
the observed selectivity originated from the high chemical and
electrochemical stability of the BDD electrodes in combination with
the high overpotential for oxygen evolution in aqueous media and

Electrochemical oxidation of 2,4-dimethylphenol
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BU4NBF4, CHgC'g
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Scheme 65 Electrochemical oxidation of 2,4-dimethylphenol.
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Scheme 66 Template-directed anodic coupling of phenols.
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Scheme 67 Product diversity from the electrochemical oxidation of 2,4-dimethylphenol.
Synthesis of biphenols Representative examples
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Scheme 68 Electrochemical synthesis of biphenols using a BDD anode.

efficient formation of reactive alkoxy or hydroxyl radicals at the
anode that can serve as mediators.>*®>"® Interestingly, by simply
switching to fluorinated solvents/mediators, such as hexafluoroiso-
propanol (HFIP), allowed for the creation of a powerful electrolyte
system and significantly expanded the scope and efficiency for the
anodic coupling of simple phenols®”* (Scheme 68) as well as guaiacol
derivatives®”>®”* on BDD electrodes. Protocols for synthesis of
nonsymmetric biphenols (Scheme 69),>>°”7 and anodic cross-
coupling of phenols with naphthols®”® (Scheme 70) as well as aniline
derivatives®”® (Scheme 71) have also been addressed.>**>*!
Metal-free electrochemical methodologies that facilitate
anodic cross-coupling between phenols and electron-rich arenes
have also been developed. The Waldvogel group discovered that

Synthesis of nonsymmetric biphenols

wof o

(0]
OH
Cl
[ Cl
OH OH
(o}
(o}

N

OH

Me

215¢, 74% 215d, 30% 215e, 41%

this reaction could be accomplished employing a BDD anode in
the presence of HFIP. It was established that HFIP had a crucial
role in the reaction as no conversion was observed in the absence
of HFIP but were able to rule out the possibility of HFIP acting as
a redox mediator.>*%* Since the phenol and arene components
have similar oxidation potentials, the high level of chemo-
selectivity was rationalized by oxyl-HFIP hydrogen bonding
interactions, which stabilize the produced spin centers.>**>%
The hydrogen-bond stabilized spin center undergoes HAT with
the phenol (214), which produces the more easily oxidized
phenoxyl radical 227. Radical 227 is subsequently trapped by
the electron-rich arene (118), which gives intermediate 228 upon
deprotonation. This is followed by a second HAT event, resulting

It
BDDi_ _n BDD

OH OH
@ constant current, 2.8 mA oK constant current, 2.8 mA @
+
- Et;MeNSO4Me, HFIP/MeOH RJ BusMeNSO,Me, HFIP/MeOH -
HO 50 °C, 2.0 F/mol 50 °C, 2.0 F/mol TIPSO
215 undivided cell 214 219 undivided cell 220
Representative examples
MeO  OH 'Bu MeO  OH ipr Me,  OH OMe 'Bu  OH o\, 'Bu  OH
loSa R oSy PEReSes .
Me HO Me Me HO MeO TIPSO MeO TIPSO MeO TIPSO
215f, 46% 215g, 39% 220a, 80% 220b, 82% 220c, 92%

Scheme 69 Synthesis of nonsymmetric biphenols through anodic cross-coupling.
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Cross-coupling of phenols and naphthols
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Scheme 70 Anodic cross-coupling of phenols and naphthols.

Cross-coupling of aniline derivatives
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Representative examples
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Scheme 71 Anodic cross-coupling of aniline derivatives. PG = protecting group.

in rearomatization and furnishes the cross-coupled biaryl 226
(Scheme 72).3°°%? This strategy was subsequently extended to enable
the development of anodic cross-coupling protocols for synthesis
of meta-terphenyl-2,2"-diols (Scheme 73),>***” 2,5-bis(2-hydroxy-
phenyl)thiophenes®® (Scheme 74) and dibenzofurans.”®*

Since the high oxidation potential of electron-deficient arenes,
such as nitroarenes, limits direct anodic oxidation of these species,
anodic cross-coupling reactions between electron-deficient arenes
and nucleophiles engage in a nucleophilic aromatic substitution
(SnAr) type pathway. This two-step process can follow two
mechanistically discrete pathways (Scheme 75). The first step
involves nucleophilic addition to the electron-deficient arene unit,
resulting in either a 6™ or o® adduct (Meisenheimer complex).

Cross-coupling of phenols and arenes

ool T

OH OH

. constant current, 2.8 mA
& @

Et;MeNSO4Me, HFIP/MeOH
50 °C, 2.0 F/mol
undivided cell

214 118 226
Representative examples
; ; ; oMe
226a, 69% 226b, 42% 226c, 62%

&

222a, 71% 222b, 80%
Representative examples
NHAc Me NHAc Me
MeO—C} QOMe MeO OH
MeO  BzHN MeO AcHN  cl
2252, 74% 225b, 56%
For the o™ intermediate (233), the second step follows a two-

electron mechanism in which formal loss of a hydride occurs and
is referred to as nucleophilic aromatic substitution of hydrogen
(NASH, S\"). However, rearomatization of the ¢ adduct (235),
generated from attack of the ijpso carbon, involves an initial single-
electron oxidation, which triggers radical elimination of the
heteroatom (X*) and is hence called nucleophilic aromatic sub-
stitution of a heteroatom (NASX, Sx~).>°*% A range of nucleo-

philes, including acetate,>®* alkoxides,>®**® alkyl lithium or
Grignard reagents,**® amides,>” amines,>*****” enolates,’**>**
fluoride,>®® cyanide,”****° organophosphorus compounds,®*

tetraalkylborate salts®®' and thiolates,®>> have been utilized to

affect nucleophilic aromatic substitution through electrochemical

Proposed mechanism

BDD

226

Scheme 72 Direct anodic cross-coupling of phenols and electron-rich arenes.
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Synthesis of nonsymmetric terphenyl derivatives
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Scheme 73 Synthesis of nonsymmetric meta-terphenyl-2,2”-diols. PG = protecting group.

Anodic coupling of phenols with thiophenes
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Scheme 74 Electrochemical synthesis of 2,5-bis(2-hydroxyphenyl)thiophenes.
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Scheme 75 Nucleophilic aromatic substitution via electrochemical oxidation.

oxidation of the intermediate o adducts. This concept was
recently applied on azaaromatic scaffolds for the synthesis of
asymmetrical bi(hetero)aryl motifs (Scheme 76).°9%°%

Although oxidative coupling between electron-deficient and
electron-rich arenes, two moieties with distinctly different
n-electronic properties, generally provides high chemoselectivity
of the cross-coupled products over homocoupling as a result of
the “electronic differential principle”, anodic cross-coupling of
unactivated electron-rich arenes has been achieved. Recently, the
Yoshida group highlighted that employing the “cation pool”
method allowed the merging of two unactivated aromatic

This journal is © The Royal Society of Chemistry 2018

compounds in a straightforward fashion. Here, initial anodic
oxidation at —78 °C of the less electron-rich arene component
(naphthalene) resulted in accumulation of the corresponding
radical cation species. Subsequent introduction of the other
aromatic moiety under non-oxidative conditions at —90 °C
avoided nonselective oxidation of the starting material and
overoxidation of the biaryl product (Scheme 77). Notably, the
high regioselectivity of the developed cross-coupling method can
be estimated based on the spin density of the radical cation and
the highest occupied molecular orbital (HOMO) coefficients of
the nucleophilic aromatic partner.®®*®®> The use of parallel
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Functionalization of azaaromatics
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Scheme 76 Electrochemical functionalization of azaaromatics through nucleophilic aromatic substitution.

Cross-coupling using the "cation pool”
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Scheme 77 Cross-coupling of aromatic compounds using the “cation pool” method.

laminar flow also serves as a convenient method for preparing
nonsymmetrical biaryl scaffolds as demonstrated by Atobe
and coworkers.®® An electrochemical method for constructing
carbon-sulfur (C-S) bonds was recently reported by the Lei
group. The electrochemical reactions were conducted in an
undivided cell and allowed a wide range of electron-rich arenes
and heteroarenes, such as indole, pyrrole and thiophene, to be
coupled with various substituted thiophenols. Mechanistic stu-
dies indicated that performing the reaction in the presence of the
persistent radical TEMPO did not produce any of the desired C-S
coupling product. Furthermore, the involvement of disulfides,
generated from dimerization of the thiophenols, was also observed.

Coupling of (hetero)arenes and thiophenols

Ml

constant current, 12 mA

—
LiCIO4, MeCN, rt, 3 h
undivided cell
118 241 242
Representative examples

242a, 98% 242b, 58%

Therefore, two mechanistically distinct pathways could explain
the noted reaction outcome. Thus, product formation can occur
either through direct radical-radical coupling between the
arene cation radical intermediate (245) and the thiyl radical
(243). Alternatively, C-S bond formation can proceed via arene
radical addition to the produced disulfide (244) as depicted in
Scheme 78.°07:%%8

2.6. Oxidative annulations involving (hetero)arenes

Electrochemical approaches for intramolecular C-H thiolations
have been reported by the Lei®® and Xu®' groups.®'! Lei and
coworkers’ protocol utilized aryl isothiocyanates, which were

Proposed mechanism

||

@ @

6|

_—

243 or 244

Pt

Scheme 78 Direct anodic cross-dehydrogenative coupling of (hetero)arenes and thiophenols.
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Synthesis of benzothiazoles from thiocyanates
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Scheme 79 Electrochemical synthesis of benzothiazoles from aryl isothiocyanates and amines.

Synthesis of benzothiazoles
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Scheme 80 Electrochemical synthesis of benzothiazoles using TEMPO as redox mediator.

treated with amines to produce the corresponding thioamides.
The in situ generated thioamides were subsequently electrolyzed
at 70 °C in an undivided cell to furnish the desired benzothia-
zoles (Scheme 79).°°° On the contrary, Xu and coworkers strategy
employed TEMPO as a mild redox-mediator to enable selective
C-H thiolation of a variety of N-(hetero)arylthioamides with
diverse electronic properties (Scheme 80).°'%%'? Both C-H thiola-
tion strategies are believed to proceed via thioamidyl radicals
with concomitant formation of H, at the cathode. Expanding on
the C-H thiolation strategy, the Xu group has recently demon-
strated that 3-fluorooxindoles could be accessed through cross-
dehydrogenative coupling.®"*®'* Here, ferrocene (Cp,Fe) was
selected as a redox mediator due to earlier literature precedents
highlighting its capability of promoting oxidative radical cycliza-
tions.®”>*'® The reactions were carried out in an undivided
cell and tolerated a multitude of functional groups, including
alcohols, alkynes, aminoesters, halogens, silylethers as well as
redox-sensitive carbazole, N-phenyl carbamate and pyrrole
groups (Scheme 81). However, products containing electron-
withdrawing groups, such as CF;, OCF; and CO,Me, were prone
to base-induced decomposition and therefore had to be per-
formed at —30 °C for optimal yields. The mechanism is pre-
sumed to involve formation of H, at the cathode from MeOH,
which results in production of MeO . The electrochemically

This journal is © The Royal Society of Chemistry 2018

generated base facilitates deprotonation of the substrate (255)
to furnish the corresponding enolate (257), which is subsequently
oxidized by the anodically generated Cp,Fe" to produce a-carbon
radical intermediate 258. Finally, radical cyclization and rearoma-
tization afford oxindole 256.°'*°1%62°

Harran and coworkers recently showcased electrochemistry
as a powerful strategy in organic synthesis, enabling a scalable
preparation of DZ-2384 (262), a diazonamide-based drug can-
didate for treatment of cancer.®®" Initial attempts were aimed
at using PhI(OAc), for mediating the dehydrogenative macro-
cyclization between the phenol and indole components. However,
this approach afforded comparable amounts of a spirocyclo-
hexadienone, which severely limited the yield of the desired
macrocyclized product and complicated its purification.® To
circumvent formation of this byproduct, an alternative method
was pursued. In this regard, the use of an electrochemical method
was explored as it would employ substrates derived from common
amino acids. In the refined route towards DZ-2384 (262), the anodic
oxidation could be performed in the final step at ambient
temperature in aqueous DMF in an undivided cell open to air
(Scheme 82), highlighting the practicality of the developed
electrochemical macrocyclization approach.®*' A related macro-
cyclization approach was also explored in the synthesis of
azonazine.®>® Subsequently, the Lei group reported a related

Chem. Soc. Rev., 2018, 47, 5786-5865 | 5819


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c7cs00619e

Open Access Article. Published on 18 June 2018. Downloaded on 1/12/2026 5:51:11 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chem Soc Rev

Electrochemical iodination

QX" ol fs

CO,Me
constant current, 7.5 mA 5:
szFe (10 mol%)
LiCp (30 mol%), "BusNPFg
THF/MeOH, 0 °C, 2.5 F/mol

255 256
undivided cell
Representative examples
CO,Me cO,Me R _co,Me
@ @ O
o
256a, 78% 256b, 79% 256¢, 76%
R _co,me
Me g E
o E CO,Me CO,Me
N - N
0 | lo}
NS
Me N Meo” N7 TN
Me Me
256d, 79% 256e, 72% 256f, 60%?

View Article Online

Review Article

Proposed mechanism

MeO™

6|

N o
é \\ MeOH
255 \ chone
CpyFe % 3 @ &
Cp,Fe*

257
. N0
’V;COZMe 258 li
o P ||
'f H F co,Me
. kA G
5 o N 259
-H € R

MeOZC\/}‘;

h HBoc

Ft;ione

B Me

O A VoD
A

256h, 91% (from mestranol)

2569, 75%

2n

256g,h

Scheme 81 Synthesis of 3-fluorooxindoles though electrochemical cross-dehydrogenative coupling using ferrocene (Cp,Fe) as redox mediator.

? Reaction was performed at —30 °C.

Electrochemically-mediated macrocyclization
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Scheme 82 Preparation of a diazonamide-based drug development candidate by employing a dehydrogenative macrocyclization approach.

dehydrogenative [3+2] annulation between phenol and indole
derivatives for accessing benzofuroindolines using an undivided
cell (Scheme 83). Here, various N-acetylindoles bearing different
C-3 substituents were compatible with the electrochemical
annulation and afforded the corresponding benzofuro[3,2-b]-
indolines (264) in high to excellent yields. However, applying
2-substituted N-acetylindoles resulted in a switch in selectivity
and instead produced the corresponding benzofuro[2,3-b]indo-
line core (265). CV experiments of p-methoxyphenol and various
N-acetylindoles revealed that the oxidation potentials were quite
similar, suggesting that anodic oxidation of both coupling compo-
nents might occur under the electrolytic conditions. Radical cou-
pling between the indolyl cation radical (266) and phenoxyl radical
(227) furnishes cation 267. Finally, intramolecular cyclization and

5820 | Chem. Soc. Rev., 2018, 47, 5786-5865

deprotonation gives the target benzofuroindoline with concomitant
formation of H, at the cathode. However, a mechanism involving
nucleophilic attack of the phenol moiety onto the indolyl cation
radical cannot be excluded.®*

Anodic oxidation of phenols can result in generation of
phenoxonium ions upon removal of two electrons and a proton,
which can react with simple nucleophiles, such as MeOH or
H,0, to afford 4-substituted cyclohexa-2,5-dienones.®**%3°
Chiba and coworkers highlighted that the anodically generated
phenoxonium ions could engage in intermolecular [3+2]
cycloaddition with unactivated alkenes to afford dihydrobenzo-
furan derivatives (Scheme 84).%**~%*> The reaction has also been
conducted using a temperature-controlled multiphase solution
consisting of cyclohexane and LiClO4/MeNO,,**® which was

This journal is © The Royal Society of Chemistry 2018
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Synthesis of benzofuroindolines
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Synthesis of dihydrobenzofuran derivatives Representative examples
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Scheme 84 Synthesis of dihydrobenzofuran derivatives via anodic intermolecular cycloaddition of phenols and unactivated alkenes.

shown to significantly enhance the interaction between the
hydrophobic aliphatic alkenes and the polar unstable cation
intermediates, thereby accelerating the desired [3+2] cycloaddition
while avoiding overoxidation of the products.®”” Some of these
dihydrobenzofuran derivatives display fluorescent properties,®**3°
a feature which has been exploited for fluorescent labeling of
amino acid derivatives®*® as well as homonucleosides.®*" In
addition, the electrochemically produced cyclohexadienone
derivatives have also been reported to engage in [4+2]°4*7%8
and [5+2]%497%%> cycloadditions.®> Alternatively, incorporation
of a pending nucleophile into the phenol unit allows the design
of various types of intramolecular reaction manifolds for con-
struction of spirodienone derivatives.®>*"°®" This feature has
been leveraged in the synthesis of aeroplysinin (Scheme 85),°°*°%
discorhabdin C (Scheme 86),°°°°*° gymnastatin A (Scheme 87)%°

This journal is © The Royal Society of Chemistry 2018

as well as heliannuol E (Scheme 88)®'%"% and derivatives
thereof.®”*

Catechols and related derivatives constitute another class of
compounds that can undergo two-electron anodic oxidation to
afford, for example, 1,2-benzoquinones.®””"*%! Considering their
relatively low oxidation potentials, it is perhaps unsurprising
that an assortment of nucleophiles are compatible with these
processes without being subjected to oxidation. Here, amines,*®*°*
azide,****** enolates and other carbon nucleophiles,***”** nitrate,
sulfinates”**"*” as well as thiols”**7** have been shown to engage in
Michael additions with the anodically generated (imino)quinones.
A variety of transformations for delivering annulated scaffolds have
also been developed (Scheme 89). In the pursuit of this goal, a range
of different benzofurans (291 and 293) have been accessed using
1,3-diketones,”** 7> o-cyanoketones’®’ or chloranilic acid”® as

712
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Synthesis of aeroplysinin
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Scheme 85 Utilization of anodically generated phenoxonium ions in the synthesis of aeroplysinin.
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MeO NO, N H LiCIO4, MeCN }s
OMe H 0 rt, 6.0 F/mol H
275 276 undivided cell 277 discorhabdin C (278), 24%
Scheme 86 Synthesis of discorhabdin C using a phenoxonium ion-based strategy.
Synthesis of gymnastatin A
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Scheme 87 Electrochemically-mediated spiro hemiacetal formation in the synthesis of gymnastatin A.

Synthesis of heliannuol E

OAc I OAc
CO.Me ) OH c i— _Ij Pt //
£ kS OH

constant current Br

_ Me
BnO BusNCIOy4, acetone lo}
Me rt, 2.0 F/mol Me Me heliannuol E
283 284 undivided cell 285, 61% 286

Scheme 88 Electrochemical production of a spirodienone in the synthesis of heliannuol E.

the nucleophile. Additional scaffolds that have been synthesized are
benzo[e][1,2,4]triazino[3,4-b][1,3,4]thiadiazine (300),”>® benzoxazine
(302),”°%7%! benzoxazole (304),”°>”%® coumestan (292),”**”% dihydro-
benzo[e][1,2,4]triazine-3(2H)-thione (301),”*® indole (294-296),"%77%°
phenazine (298),””%’”" phenoxazine (303)"”> tetrahydro-1H-
benzo[b][1,4]diazepine (297)””° and thia-1,4a-diaza-fluorenone

5822 | Chem. Soc. Rev., 2018, 47, 5786-5865

(299)”7* derivatives. Furthermore, the electrochemically gener-
ated benzoquinone derivatives can also engage in [4+2] cyclo-
addition in the presence of cyclopentadiene,””>’”® produce
trimerization products’”””””° or engage in transfer hydrogenation
catalysis.”®*7® A dual electro- and organocatalysis strategy
was outlined by Jergensen and coworkers, which enabled the

This journal is © The Royal Society of Chemistry 2018
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enantioselective intermolecular a-arylation of aldehydes.”*7%*

Here, the combination of anodic oxidation and asymmetric
enamine catalysis provided access to meta-alkylated anilines in
good yields and excellent enantiomeric excess (Scheme 90).”%®
Several research groups have targeted the development of
oxidative annulation protocols involving alkenes, and enol
ethers or derivatives thereof. Based on earlier work that showed
that enaminones’® can be anodically dimerized to yield
3,4-diketopyrroles,”®®”®” Schifer and Eilenberg reported that

(cc)

N-benzyl- and B-phenethyl enaminones undergo intramolecular
arylation to produce isoquinolines and benzazepines upon
anodic oxidation using an undivided cell (Scheme 91).”7%® Lei
and coworkers explored a related strategy for synthesis of
indoles 313. The protocol relied on intramolecular dehydro-
genative annulation of N-aryl enamines 312 and utilized iodide
as a redox mediator.”® Mechanistic insight revealed that carrying
out the annulation reaction in the absence of electricity but using
N-iodosuccinimide (NIS) as an oxidant resulted in a high yield of

Dual electro- and organocatalysis Catalyst Representative examples
I

OH Cf_hPt 0 HQ’—o HO, 5 HQ,_O

[| constantcurrent, 25 mA - R"/\ Ph ip,J:,: higx |J

+ \ " Ph \ y \,

R cat. 307 (10 mol%) I H  oTtms
N : N
i nNaacslon’rn'\gf?/;lﬁvziSeS;:// e NHTs 309a, 75% NHTs 309b, 83% NHTs
305 306 ’ 308 309 307 96% ee 92% ee

Scheme 90 «a-Arylation of aldehydes through the merger of electrochemical oxidation and organocatalysis.

This journal is © The Royal Society of Chemistry 2018
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Scheme 91 Anodic intramolecular arylation of enaminones.
Electrocatalytic synthesis of indoles
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Scheme 92 Electrocatalytic synthesis of indoles using iodide as a redox mediator.

the desired indole. Furthermore, radical inhibition experiments
with TEMPO did not produce any product. Based on these results
and previous observations,”*® a mechanism involving a hyper-
iodide intermediate (I') generated via anodic oxidation was
proposed. The in situ produced I' subsequently reacts with the
N-aryl enamine to furnish an N-iodo intermediate (314), which
upon N-I bond homolysis provides radical intermediate 315.
Finally, intramolecular radical addition, oxidation and deproto-
nation afford the target product (Scheme 92).73%791,7%2
Pioneering studies by the Moeller group have demonstrated
that alkenes, such as enol ethers, and electron-rich (hetero)-
arenes can be oxidatively coupled under electrochemical conditions.
In these transformations, an alkene that is normally nucleophilic is
initially oxidized at the anode to form a radical cation intermediate
that is subsequently trapped by a second nucleophile to deliver
anti-Markovnikov addition products (vide infra). Here, electron
transfer confers umpolung reactivity of a functional group, thus
enabling alternative retrosynthetic disconnections of complex struc-
tures through previously challenging bond disconnections.®*®' The
Moeller’**7** and Wright”*® groups have exploited the intramolecular
anodic coupling of enol ethers or vinyl sulfides and electron-
rich aromatic systems to deliver the fused, bicyclic or tricyclic
ring skeletons in moderate to high yields (Schemes 93 and 94).

5824 | Chem. Soc. Rev., 2018, 47, 5786-5865

A related approach was also utilized by the Wright group for the
synthesis of the hamigeran skeleton (Scheme 95).”%” Hetero-
aromatic rings are also compatible coupling partners in these intra-
molecular anodic olefin coupling reactions. Here, different tethers can
be employed to afford, for example, six- (Scheme 96)"%*7%%7°%7% or
seven-membered®™ (Scheme 97) annulated furan systems, which
can be readily transformed into various carbo- and oxacyclic
motifs.3*" %7 These electrochemical annulations are presumed to
involve initial oxidation of the silyl enol ether moiety rather than the
furyl group.®’®® Additional heterocycles that have been utilized
consist of imidazoles,®" pyrroles’* as well as thiophenes.***"%'°
The applicability of the anodic olefin coupling reaction between
silyl enol ethers and furans has also been exploited in syntheses of
natural products. Moeller and coworkers employed the methodol-
ogy as the key step in their synthesis of alliacol A°>*° (Scheme 98)
while an anodic coupling strategy enabled the construction of
the central seven-membered ring in Trauner’s synthesis of guana-
castepene E (Scheme 99).°”°® Furthermore, the arteannuin ring
skeleton has been assembled through the use of a pair of anodic
coupling reactions (Scheme 100). Here, both coupling reactions
exploited the furan moiety as the coupling partner in which the first
cyclization made use of a chiral N,0-ketene acetal initiating group
to provide the desired bicyclic product in high yield and the second

This journal is © The Royal Society of Chemistry 2018
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Intramolecular anodic olefin coupling Representative examples

e 1

MeO MeO MeO
@ constant current, 11.4 mA
| PivO'
2,6-lutidine (5 equiv) MeO
XMe | ici0,, CH,Clp/MeOH (4:1) MeO™ "XMe Me0” “OMe
317 #, 2.0 F/mol, undivided cell 318 318a, 31% 318b, 72% 318¢, 24%
Scheme 93 Intramolecular anodic olefin coupling.
Anodic annulation of a silyl enol ether
I
Me C i_ _Ij C Me
‘ constant current, 0.362 mA
TMSO O 2,6-lutidine (2 equiv) bo)
OMe | iCIO,4, MeCN/PrOH (4:1) OMe
319 t, 2.0 F/mol 320, 47%, para/ortho: 4:1
undivided cell
Scheme 94 Anodic annulation of a silyl enol ether and an electron-rich arene.
Synthesis of the hamigeran skeleton
It
OMe c f _lj Stesl OMe OH O
MeO = MeO Br. o
O Me constant current, 10 mA Me Me
Me ‘ Me ) Me
2,6-lutidine (4 equiv) H ) H™ )
TMSO LICIO,, MepN 0 Me\( hamigeran A Meﬁ hamigeran B
321 1t, 2.2 F/mol, undivided cell 322, 58% Me 323 Me 324
Scheme 95 Synthesis of the hamigeran skeleton through anodic coupling with an electron-rich arene.
Preparation of six-membered annulated furans Representative examples
It
MgBr  cul R c i_ _Ij Steel
g THF 0°C, 5 min " constant current, 45.0 mA
z - ;
then, TMSCI, ™SO y) 2,6-lutidine (4 equiv)
Et;N, TMEDA o LiClO4, MeCN/ProH (4:1)
-78°C—rt,5h rt, 2.8 F/mol, undivided cell
327 328 328a, 78% 328b, 76%

328c, 69% 328d, 61% 328e, 58%, 4:1 dr 328f, 69% 3289, 65% 328h, 67%

Scheme 96 Electrochemical coupling of silyl enol ethers and furans for synthesis of six-membered annulated furans. Yields are reported for two steps
based on the starting enone as the limiting agent.
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Preparation of seven-membered annulated furans
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Scheme 97 Anodic coupling for synthesis of seven-membered annulated furans. Yields are reported for two steps based on the starting enone as the

limiting agent.

Synthesis of alliacol A

2,6-lutidine (5 equiv)
CH,Cl/MeOH (4:1)
1 LiCIOy4, rt, 2.2 F/mol
undivided cell

TsOH (7.6 equiv)
B —

rn,45h

(-)-alliacol A (4)

Scheme 98 Application of the anodic olefin coupling in the synthesis of (—)-alliacol A.

Synthesis of guanacastepene E

]
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2,6-lutidine (6.1 equiv) ,
CH,Clo/MeOH (4:1) BTy B Pr
332 5 LiCIOy, rt, 2.6 F/mol 333
undivided cell

Me
s e SPr KoCOj3 (1.1 equiv)
-—
“OAc MeOH

0°C — rt, 45 min
(-)-guanacastepene E (7), 28%

(-)-heptemerone B (334)

TBDPSO"”

Scheme 99 Utilization of the anodic olefin coupling in the synthesis of (—)-guanacastepene E.

anodic coupling afforded the tricyclic core while generating the
required quaternary stereocenter.®'*

Enol ether radical cations are also prone to undergo inter-
molecular [2+2] and [4+2] cycloaddition with another alkene or
diene. Upon intermolecular C-C bond formation, the inclusion
of an electron-rich arene ring in either the enol ether or alkene
moiety facilitates intramolecular electron transfer from the aryl ring
to form the final cycloadduct.*>*** The arene radical cation sub-
sequently generates a second equivalent of the enol ether radical
cation through intermolecular electron transfer.*** A characteristic
feature of these “redox-tag”®** mediated cycloaddition reactions is

5826 | Chem. Soc. Rev., 2018, 47, 5786-5865

that only small amounts of electricity are needed to initiate the
radical chain process.®**

3. Electrochemical approaches to
carbon-nitrogen (C-N) bond
formation

Nitrogen-containing compounds constitute essential motifs

and are present in natural products, pharmaceutical agents,
agrochemicals and material science. Chemists have actively

This journal is © The Royal Society of Chemistry 2018
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Synthesis of the art uin ring
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LiClOy, rt, 2.0-2.2 F/mol
undivided cell 339

Scheme 100 Sequential anodic couplings for synthesis of the arteannuin ring skeleton.

targeted the development of facile and selective C-N bond
formation platforms. However, despite the recent advances in
C-N cross-coupling reactions, these approaches normally require
elevated temperatures, prefunctionalized starting materials, such as
aryl halides or pseudohalides, stoichiometric oxidants or the use of
expensive catalysts. In this context, methods for direct C-H amina-
tion have emerged as efficient, step- and atom-economical alterna-
tives, and have expanded the repertoire of reaction manifolds.*****”
In the following sections, the development of electrochemical
methodologies for construction of C-N bonds and nitrogen-
containing motifs is examined.

3.1. Amination of alkenes and alkynes

Considerable efforts have been devoted to the development of
methods that facilitate the addition of, for example, N-H
(hydroamination) and arene C-H bonds (hydroarylation) across
alkenes and alkynes. Here, atom-economical and regioselective
platforms for direct functionalization of double or triple bonds
allow access to a range of functionalized products, thereby offering
considerable opportunities for strategic chemical synthesis.?** %
In addition to the intramolecular anodic olefin coupling
reactions discussed in the previous section, other carbon-*9%%* as
well as oxygen-based®****”> nucleophiles have also been utilized in
radical cation-initiated cyclization protocols for constructing C-C
and C-O bonds, respectively. Furthermore, Moeller and coworkers
have designed systems for direct functionalization of alkenes using
nitrogen functionalities as trapping groups. It was demonstrated
that the nature of the substituents on the generated radical cation
intermediate had a profound influence on its ability to react with
various trapping groups.*”® Thus, more polarized radical cations
tend to favor C-C bond forming reactions, while less polarized
radical cations are beneficial when using heteroatomic trapping
groups. Employing more basic reaction conditions also had a
dramatic influence on the cyclization reactions. Here, the use of a
strong base, such as LiOMe, was considered to increase the nucleo-
philicity of the nitrogen trapping group by facilitating formation of
the sulfonamide anion (Scheme 101). Although five-membered ring

This journal is © The Royal Society of Chemistry 2018

systems were accessible in a relatively straightforward fashion,
coupling reactions leading to six-membered rings presented
problems due to competing elimination of a proton from the
carbon-center next to the radical cation intermediate.®””*"®
Ensuing mechanistic studies aimed at examining the relative
reactivity of olefin-based radical cations toward various intra-
molecular nucleophiles. To address this, an electron-rich olefin
tethered to two different nucleophiles/trapping groups, an alcohol
and a sulfonamide, was exploited. Trapping of the formed radical
cation with the alcohol moiety was shown to be facile and
reversible, affording the kinetically favored product. In contrast,
sulfonamide cyclization was demonstrated to furnish the thermo-
dynamically favored product and can be enhanced with nonpolar
reaction conditions, elevated temperatures, and low current. In
these reactions, the normally nucleophilic olefin functionality is
initially oxidized to a radical cation intermediate. This inter-
mediate is subsequently trapped by the sulfonamide anion to
form the desired C-N bond. However, a mechanistic portrayal
involving initial anodic oxidation of the sulfonamide anion to
produce a nitrogen-centered radical that is subsequently reduced
through intramolecular electron transfer from the olefin unit to
afford an olefinic radical cation cannot be ruled out for certain
substrates.?””?®8" The Moeller group has also employed photo-
voltaic cells in which sunlight is harnessed as the power source
for driving anodic olefin cyclization reactions.®®* Following on
from these reports, the Moeller group disclosed a potentially
more practical approach that took advantage of unprotected
amines as the trapping group (Scheme 102). Although the
method employed a dithioketene acetal group as the electron-
rich olefin, the oxidation potential of the secondary amine moiety
in the product is lower than that of either functional group in the
starting material, suggesting that overoxidation of the product
should be of concern. However, this reasoning does not take into
consideration that rapid cyclization reactions can lower the
oxidation potential of the substrate. Hence, in the developed
protocol the intramolecular cyclization is so rapid that it causes
a 460 mV drop in the oxidation potential of substrate 348.

Chem. Soc. Rev., 2018, 47, 5786-5865 | 5827
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Intramolecular olefin functionalization with amines
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348 rt, 2.0-2.4 F/mol, undivided cell 349

Scheme 102 Anodic coupling of amines and dithioketene acetals.

This effect is so dramatic that the substrate potential is now
significantly lower than that of the product, highlighting that a
simple analysis of oxidation potentials for isolated functional
groups can be deceiving when attempting to predict the success of
an oxidative cyclization reaction.®®® Yoshida and coworkers have
demonstrated that anodic cyclization and chemical oxidation
manifolds can be successfully integrated in a one-pot, sequential
manner (Scheme 103). Here, anodic oxidation of the olefinic bond
is followed by intramolecular cyclization by the tethered nucleo-
philic moiety to ultimately afford a carbocation 354 upon a sub-
sequent one-electron oxidation. In the presence of DMSO as an
external nucleophile, efficient trapping of intermediate 354 occurs
to provide the corresponding alkoxysulfonium ion 355. This inter-
mediate is sufficiently stable at low temperatures and subsequent
treatment with Et;N gives a sulfur ylide (356) that can undergo an
intramolecular proton transfer event, resulting in elimination of
dimethylsulfide and the exocyclic ketone 351.°7%%*

Recently, the Lin laboratory presented an electrochemical
protocol for the diazidation of alkenes. The reported operationally

5828 | Chem. Soc. Rev., 2018, 47, 5786-5865
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Intramolecular anodic olefin coupling reactions with sulfonamides.
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simple and environmentally friendly method converted alkenes
and NaNj; to 1,2-diazides (Scheme 104). The merger of electro-
chemical oxidation and an earth-abundant manganese catalyst
enabled the transformation to proceed under mild reaction condi-
tions. The system exhibited a broad substrate scope and high
functional group compatibility. For example, substituents typically
susceptible to nucleophilic displacement by N5, such as epoxides,
esters, alkyl halides, were tolerated by the metal-catalyzed electro-
chemical diazidation strategy. Furthermore, the authors showed
that several 1,2-diazides, including those that contain reductively
labile groups, could be chemoselectively converted to the corres-
ponding 1,2-diamines. This can be performed consecutively and
circumvents elaborate isolation of any intermediates, providing a
general and operationally simple alternative for synthesis of vicinal
diamine. Finally, mechanistic insight through radical clock experi-
ments confirmed the intermediacy of radical adduct 358.5%375%8
Based on this platform, the Lin group subsequently reported a
manganese-catalyzed electrochemical protocol for dichlorina-
tion®®° as well as chlorotrifluoromethylation®° of alkenes.***
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Scheme 104 Metal-catalyzed electrochemical diazidation of alkenes.

Alkyne annulations are typically limited to high reaction tempera-
tures and/or the use of stoichiometric amounts of toxic metals as
sacrificial oxidants. Recently, the Ackermann®® and Lei*** groups
independently reported methods for cobalt-catalyzed electro-
chemical C-H/N-H annulation of alkynes, such as ethyne, as well
as ethylene (Schemes 105 and 106). The cobalt-catalyzed electro-
chemical strategies allowed for efficient C-H functionalization of
ortho-, meta- and para-substituted amides, and aryl halides while
obviating undesired coupling reactions. Subsequently, the two
groups independently disclosed methods for electrochemical
cobalt-catalyzed C-H amination of arenes with alkylamines.***%%
Furthermore, a ruthenium-catalyzed electrochemical dehydro-
genative annulation reaction of aniline derivatives and
alkynes for the synthesis of indoles was recently described.®*®
Here, the electric current was proposed to promote reoxidation

This journal is © The Royal Society of Chemistry 2018
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of the active ruthenium-based catalyst and facilitate H,
evolution.

3.2. Electrochemical generation of nitrogen-centered radicals

The term nitrogen-centered radical refers to species where the
generated radical is localized on a nitrogen atom. In contrast to
carbon-centered radicals, nitrogen-centered radicals have historically
been relatively underutilized from a synthetic viewpoint. This was
mainly due to a lack of mild and reliable methods for generating
nitrogen-centered radicals, which constrained their applicability in
academic and industrial settings.**”~**° However, strategies based on
nitrogen-centered radicals have recently been shown to expedite C-N
bond construction and have therefore received considerable atten-
tion from the scientific community. Nitrogen-centered radicals have,
for example, been demonstrated to add to alkenes, alkynes, dienes
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Scheme 105 Cobalt-catalyzed electrochemical C—H/N-H annulation of

Electrochemical aziridination
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Scheme 106 Cobalt-catalyzed electrochemical C-H/N-H annulation of

and engage in C-H functionalization, making them versatile inter-
mediates in contemporary organic synthesis,"*”*""~%%

Early work from the Yudin group demonstrated that electro-
chemical aziridination of olefins could be achieved in the presence
of N-aminophthalimide (366), a reaction that typically is hampered
by the use of stoichiometric amounts of toxic Pb"Y oxidants. In
this reaction, nitrene-transfer from N-aminophthalimide to
olefins occurs under mild conditions on platinum electrodes
(Scheme 107). Using the developed approach, both electron-
rich and electron-poor olefins were effectively converted to
aziridines in good to excellent yields. Although some olefins
displayed similar oxidation potentials as the nitrene-transfer
reagent, the crucial factor that accounts for the high levels of
chemoselectivity in the transformations is the overpotential. It
was noted that the nature of the electrode material was found
to be critical for the reaction to proceed. For example, replacing
the platinum electrodes with carbon-based ones resulted in
termination of the nitrene-transfer reactions. Thus, under
particular conditions various substrates possess different over-
potentials depending on, for example, the electrode material.
This highlights that reactive species can be selectively gener-
ated by maximizing the difference in overpotentials between
the substrate and the reagent, thereby avoiding detrimental
background reactions.’**®'! Likewise, under similar reaction
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360c, 64%

365

362
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Representative examples
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#Z  Nx P Y
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365a, 90% 365b, 65%

ethylene or ethyne.

conditions a variety of sulfoxides could be chemoselectively
converted into the corresponding sulfoximines.’**

The Moeller group developed a protocol for synthesis of
v- and &-lactams using O-benzyl hydroxamates or N-phenyl
amides.”'® Here, the anodically generated nitrogen-centered
amidyl radicals 371 underwent cyclization reactions with
electron-rich olefins to form carbon-centered radicals 372 that
are subsequently oxidized to furnish carbocations 373. These
carbocations can then be trapped with nucleophiles, such as
MeOH, to provide the target lactams 369 (Scheme 108). In
general, ketene dithioacetal motifs were found to be the most
effective coupling partners for the developed cyclization strategy.
While the O-benzyl hydroxamate derivatives efficiently under-
went 6-exo-trig radical cyclization to produce the six-membered
ring products, the related N-phenyl amides produced a complex
mixture of products. Furthermore, attempts to induce 7-exo-trig
radical cyclizations were unsuccessful and instead resulted in
dimerization to afford the corresponding hydrazide. Thus, the
success of these amidyl radical cyclization reactions is influenced
by the energetics of the cyclization relative to the competing
pathways, such as radical-radical dimerization and hydrogen
atom abstraction. Further advances in this field were made by
Xu and coworkers and enabled the intramolecular oxidative
amination of tri- and tetrasubstituted alkenes (Scheme 109).”**
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Scheme 107 Electrochemical aziridination of olefins.

Generation and cyclization of amidyl radicals
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Scheme 108 Electrochemical generation of amidyl radicals for synthesis of y- and §-lactams.

Amination of tri- and tetrasubstituted alkenes
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Scheme 109 Oxidative amination of tri- and tetrasubstituted alkenes.
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Electrochemical hydroamination
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Scheme 110 Electrochemical hydroamination of alkenes via ferrocene-mediated generation of amidyl radicals.

A wide range of amide, carbamate and urea derivatives carrying
various trisubstituted or sterically demanding tetrasubstituted
alkenyl moieties were all viable substrates. The protocol was
compatible with a variety of (hetero)aryl-, alkyl- and alkynyl-
substituted olefins and a range of functional groups were toler-
ated, including alcohols, alkynes, aryl bromides, esters, pyridines,
silyl ethers, thiazoles and thiophenes. Upon radical cyclization,
proton elimination occurred regioselectively at the distal carbon
center, providing the cyclized products 375 in good to high
diastereoselectivity. Alternatively, the generated carbon-centered
radical can also engage in hydrogen atom abstraction to provide
hydroamination products®*® via ferrocene-mediated generation of
amidyl radicals (Scheme 110) or be trapped with N-oxyl radicals,
such as TEMPO, to give oxyamination products (Scheme 111).”*° The
latter reaction has also been conducted using an electrochemical

Electrochemical o. inati

T

n of alk

v RO
R2 constant current, 10 mA
NH YZ R* R3
o X R TEMPO (2 equiv), Na,CO3 (1 equiv) O /r/v
BuyNBF,4, CH3CN/H,0 (19:1) "R
379 60 °C, 1.3-4.2 F/mol, undivided cell

Representative examples

384a, 95%, >20:1 dr 384b, 81%, >20:1 dr

384c, 89%, >20:1 dr

flow microreactor (Scheme 112), making the process less costly and
enabling easier purification.””” Here, TEMPO has a dual function,
being the mediator as well as the oxygen source.

The Waldvogel and Moeller groups have exploited the electro-
chemical generation of amidyl radicals from anilides, enabling
the direct synthesis of benzoxazoles (Scheme 113).°'® Although
methanol has been commonly applied in electrochemical transfor-
mations involving amidyl radicals, this proved to be incompatible,
leading to degradation of anilides 387. This observation suggested
that the intramolecular cyclization process was slow. Of the
screened solvents, only HFIP was found to efficiently stabilize
the electrochemically generated radical intermediates, affording
the desired benzoxazoles 389 in good to high yields. The authors
also demonstrated that the aromatic moiety connected to the
produced amidyl radicals was of substantial radical nature as the

Proposed mechanism
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Scheme 111 Electrochemical oxyamination of alkenes via TEMPO-mediated generation of amidyl radicals.
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Synthesis of isoindolinone derivatives in flow
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Scheme 112 Synthesis of isoindolinones using an electrochemical flow microreactor.

Synthesis of benzoxazoles via amidyl radicals
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Scheme 113 Electrochemical synthesis of benzoxazoles from anilides.

para-position of the N-substituted arene ring had to be sub-
stituted in order to prevent coupling reactions at this position.
The Xu group has recently made significant contributions
through the design of distinct reaction manifolds that capitalize on
nitrogen-centered radicals. Various mediator-based radical cycliza-
tion manifolds using (hetero)arylamines containing tethered alkynes
have been developed. In this context, functionalized (aza)indoles 391
were accessed through an oxidative alkyne annulation reaction
(Scheme 114).°**°%° The broad functional group tolerance of
the electrochemical protocol was illustrated by the preparation
of (aza)indoles housing assorted substituents, such as acetals,
alcohols, aldehydes, N-aryl carbamates, dipeptides, halides,

s’ thesis of (aza)indol

Representative examples

OMe OoTf Cl

)
=

Ph

389b, 60%

o
=N
'Bu>—

389c, 61%

o
=N
Ph>f_

389 389a, 86%

ketones, (ortho)esters and sulfonamides. The reaction is
believed to be initiated with the anodic oxidation of [Cp,Fe] to
[Cp,Fe]'. Subsequent SET between [Cp,Fe]" and the deprotonated
urea derivative results in regeneration of [Cp,Fe] and
furnishes a nitrogen-centered radical. This radical is suggested
to engage in 6-exo-dig cyclization, which is followed by a
second cyclization with the aryl moiety. Finally, rearomatiza-
tion of the generated arene radical through oxidation and loss
of a proton provides (aza)indoles 391. A related mediator-based
radical cyclization cascade approach was applied to the pre-
paration of imidazo-fused N-heteroaromatic compounds (395),
including imidazo[1,2-a]pyridines, imidazo[1,2-b]pyridazines and

Representative examples
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Scheme 114 Synthesis of (aza)indoles using ferrocene as mediator.
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Synthesis of imidazo-fused N-heteroaromatics
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Scheme 115 Synthesis of imidazo-fused N-heteroaromatic compounds through a radical cyclization cascade.

imidazo[1,2-a]pyrazines (Scheme 115).°"*> However, here
tetraarylhydrazine 393 was found to be the optimal redox
catalyst. Nitrogen-centered radicals have also been harnessed for
synthesis of nitrogen-doped polycyclic aromatic hydrocarbons
(Scheme 116).2>°*® In the presence of ferrocene, the urea-
tethered diynes 396 underwent efficient radical cyclization to
afford a variety of electron-rich polycyclic aromatic hydrocarbons
(398). The use of a mild redox catalyst to facilitate the cascade
cyclization instead of carrying out direct electrolysis was crucial to
avoid overoxidation of the products as the diynes 396 are oxidized
at a higher potential than that of products 398. Strategies relying
on direct electrolysis for generation of nitrogen-centered radicals
have also been achieved. Based on this concept, amidinyl and
iminyl radicals have been exploited for preparing polycyclic
imidazole derivatives®****” (Scheme 117) and assorted pyridine-
fused aromatic motifs®*® (Scheme 118), respectively. In addition to

Synthesis of polycyclic N-heteroaromatics

Y @ el fn
X

constant current, 7.5 mA
Me 396

CpyFe (5 mol%), Na,CO3 (1 equiv)
BuyNBF 4, MeOH/THF (1:1)
65 °C, 2.8 F/mol, undivided cell

Representative examples
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Me Me

using nitrogen-centered radicals in C-N bond coupling manifolds,
nitrogen-nitrogen (N-N) bond formation has also been accom-
plished. These intermediates have, for example, been explored for
N-N dimerization®” in the synthesis of dixiamycin B,”%%
phthalazin-1,4-diones®** and pyrazolidin-3,5-diones.”****

3.3. Pyridine and related nitrogen-containing heterocycles as
nitrogen sources

Seminal work by Lund during the 1950s highlighted that aromatic
hydrocarbons could be oxidized at a Pt electrode in acetonitrile
solutions containing pyridine and NaClO, to afford the corres-
ponding pyridinium perchlorate species.”*® Although related electro-
chemical amination reactions were studied by other research
groups,”®°* it took more than five decades until Yoshida and
coworkers disclosed an efficient and practical method for C-H
amination of aromatic compounds based on electrochemical

2

Me 397

—

Me 398

J

398e, 74%

398d, 64% !

Me Me

Scheme 116 Electrochemical synthesis of nitrogen-doped polycyclic aromatic hydrocarbons through radical cyclization of diynes.
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Scheme 117 Electrochemical generation of amidinyl radicals for synthesis of tetracyclic benzimidazoles and pyridoimidazoles.

Synthesis of N-heteroaromatics
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Scheme 118 Synthesis of pyridine-fused polycyclic aromatic motifs via iminyl radicals.

oxidation of aromatic compounds in the presence of pyridine
(Scheme 119).>%°*4°*> Conducting the electrochemical oxidation
in an H-type divided cell at ambient temperature furnished
N-arylpyridinium ions (406), so called Zincke intermediates,**®
which upon treatment with an alkylamine resulted in primary
amines 407.°° Here, the high oxidation potential of pyridine
enables selective oxidation of the aromatic compound in the
presence of pyridine. Furthermore, the high nucleophilicity of
pyridine allows for efficient trapping of the generated arene
radical cation and the introduction of multiple amino groups is
avoided due to the strong electron-withdrawing effect of the
pyridinium moiety in 406, thereby suppressing overoxidation.
However, one drawback was that only electron-rich and activated
substrates, such as anisole derivatives, were viable substrates.
Subsequently, the Waldvogel group demonstrated that the use of

This journal is © The Royal Society of Chemistry 2018

BDD anodes allowed for amination of less activated substrates®*°

as well as diamination.”*® Furthermore, a protocol for the anodic
C-H amination of phenoxy acetates was shown to provide
efficient access to 1,4-benzoxazin-3-ones (Scheme 120).”*" Alterna-
tively, rendering the C-H amination intramolecular through the
use of arenes containing a tethered 2-pyrimidyl moiety provided
access to 2-aminobenzoxazoles and 2-aminobenzothiazoles
(Scheme 121).%%>%>3

Work on expanding the scope of the nitrogen nucleophiles
revealed that N-protected imidazole derivatives were suitable
trapping agents. The choice of an appropriate protecting group
was crucial to the success of the developed C-H amination
method. After an initial examination of various protecting groups,
the use of N-methylsulfonyl (Ms) protected imidazole afforded the
C-N coupled product in the highest yield. The developed protocol
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Synthesis of aromatic primary amines via N-arylpyridinium ions
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Scheme 119 Electrochemical synthesis of aromatic primary amines via N-arylpyridinium ions.
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Scheme 120 Synthesis of 1,4-benzoxazin-3-ones via anodic C—H amination.

C-H amination enabled synthesis of benzoxazoles and benzothiazoles
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Scheme 121 Preparation of 2-aminobenzoxazoles and 2-aminobenzothiazoles via electrochemical intramolecular C—H amination.

was applicable not only to aromatic but also to benzylic C-H resulting in cleavage of the sulfonyl protecting group to produce the
amination. Here, the initial N-aryl or N-benzylimidazolium cations corresponding N-aryl or N-benzylimidazoles (Scheme 122). Similar
can be subjected to non-oxidative removal of the protecting group, to N-arylpyridinium ions 406, the intermediate imidazolium ions
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Electrochemical C-N coupling of imidazoles
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Scheme 122 Direct C-N coupling of imidazoles with aromatic and benzylic compounds.

Electrochemical coupling of aromatics with nitrogen-based heterocycles
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Scheme 123 C-N bond coupling of aromatic compounds and nitrogen-containing heterocycles.

416 and 417 are electrochemically inactive, thus preventing over-
oxidation and allow these intermediates to be converted to the
corresponding imidazole products 418 and 419.°>*°°® Sub-
sequently, the Yoshida group reported a mechanistically similar
reaction for the coupling of aromatics and masked primary alkyl
amines bearing additional oxygen or nitrogen functionalities
(Scheme 123). The masked primary amines 420 were prepared
by treatment of the amines with nitriles or derivatives thereof
to afford the target five- or six-membered heterocycle. Under
electrochemical conditions, these heterocycles undergo coupling
with arene radical cations to give cationic intermediates 421,
which can be chemically converted to the desired cross-coupling
products 422 under non-oxidative conditions.’®” The same group
also developed an electrochemical approach for C-H amination

This journal is © The Royal Society of Chemistry 2018

of toluene derivatives employing N-tosyldiphenylsulfilimine 423
as the amination reagent (Scheme 124). This enabled the pre-
paration of N-tosylbenzylaminosulfonium ions 424, which upon
treatment with an iodide source, such as Bu,NI, under non-
electrolytic conditions results in N-S bond cleavage to yield the
corresponding N-tosylbenzylamines 425.°>® Alternatively, the
generated benzylaminosulfonium ions 424 can react with added
aromatic nucleophiles to give the corresponding cross-coupling
products 426 (Scheme 125).°*° In these transformations, the high
oxidation potential of N-tosyldiphenylsulfilimine 423 allows a wide
range of toluene derivatives to be oxidized and functionalized.
Finally, Lei and coworkers have developed an electrochemical
strategy for amination of C(sp®)-H bonds. Here, C(sp*)-H bonds
adjacent to heteroatoms, such as nitrogen, oxygen and sulfur, could
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Benzylic C-H amination of toluene derivatives
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Scheme 124 C-H amination via electrochemically generated benzylaminosulfonium ions.

Functionalization of benzylic cation pools
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R '
Ph constant current, 4.0 mA

H ¥ TS\N’/é\ =
Ph BusNB(CFs)s, CHaCly

10 equiv rt, 2.1 F/mol
423 divided cell
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Representative examples
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426a, 88% 426b, 74%

425d, 90% 425e, 76%
R
Nu-H (5 equiv)
> “Nu
t-50 °C, CH,Cl,, 6-68 h
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426¢, 75% 426d, 67%

Scheme 125 Benzylic cross-coupling via electrochemically generated benzylaminosulfonium ions.

be functionalized with various amines to give the corresponding C-N
coupled products 429 in moderate to good yields (Scheme 126).7°%%%"

3.4. Halide-mediated approaches to C-N bond coupling

Hypervalent iodine compounds have been extensively employed
in organic synthesis as selective metal-free oxidants and environ-
mentally friendly reagents. Synthetic applications of these versatile
reagents include, for example, aminations, C-C bond-forming
reaction manifolds, halogenations, oxidations, rearrangements,
and various dual catalytic activation modes.**®* In this context,
hypervalent iodine species electrochemically generated from the
corresponding iodoarenes have been applied for the synthesis
of various heterocyclic frameworks, such as carbazoles®”®
(Scheme 127), pyrroloindoles,””* quinolinone derivatives®”>
(Scheme 128) and spirocycles (Scheme 129).°7°7* The utility of

5838 | Chem. Soc. Rev., 2018, 47, 5786-5865

electrochemically generated hypervalent iodine reagents has
also been demonstrated in the synthesis of glycozoline®”® and
tetrahydropyrroloiminoquinone alkaloids.””>°”® The supporting
electrolyte has also been merged with the iodine mediator
through tethering of the redox-active iodophenyl moiety to an
alkylammonium moiety. The ionically tagged iodophenyl motif
was applied to several oxidative C-N bond coupling scenarios
and allowed for straightforward recovery and reuse of the ionic
mediator.”””°’® A related approach was also employed for the
synthesis of benzoxazoles.”’® Additionally, various oxidative
amination strategies for preparing 2-substituted benzoxazoles
using iodide as a redox mediator have also been reported.”*°~%?

An electrochemical protocol for o-amination of ketones was
recently reported using iodide as a redox catalyst (Scheme 130).°%
Here, NH,I was found to be the optimal redox catalyst for facilitating

This journal is © The Royal Society of Chemistry 2018
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Electrochemical C(sp®)-H amination of azoles
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rT X H BusNBF,, MeCN I){,"‘
>10equiv  80°C,45-75Fmol R
427 428 undivided cell 429
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Scheme 126 Electrochemical C(sp*)—H amination of azoles with heterocycles.

Synthesis of carbazoles using electrochemically generated hypervalent iodine

et o

47

constant current ?CHZCFs
O -
LiCIO,, TFE (I) CH,CF
rt, 2.5 F/mol, undivided cell
430 431

Representative examples

nt,48 h
electric current OFF

433a: R=H, 73%

433 433b: R = OMe, 83%

Scheme 127 Synthesis of carbazoles using an electrochemically generated hypervalent iodine oxidant.

Synthesis of quinolinone derivatives Representative examples
(o}
I RO ,OM
C Pt —_—
R' e
constant current ?CHZCFS m
O o | — Yvu o
LiCIO,, TFE dcH,cF, ft, 30 min R OMe
rt, 2.5 F/mol, undivided cell electric current OFF 435a: R' = OAc, 83%
430 431 435 435b: R' = Cl, 68%

Scheme 128 Preparation of quinolinone derivatives through oxidative cyclization and concomitant rearrangement of the functional group.

Synthesis of azaspiro[4.5]decane-type motifs

47

Representative examples

constant current ?CHZCFS 436 OMe R o)
O o] N
LiCIO,, TFE SeH,CF, t, 30 min o OMe
rt, 2.5 F/mol, undivided cell electric current OFF 437a: R = Br, 89%
430 431 437 437b: R = Cl, 94%

Scheme 129 Hypervalent iodine-mediated synthesis of azaspiro[4.5]decane-type motifs.

the coupling of ketones and secondary amines at ambient tempera-
ture. The reactions were conveniently carried out in a simple
undivided beaker-type cell and were believed to proceed via initial
o-iodination of the ketones (132) with the anodically generated I,,
followed by nucleophilic substitution of the amines (143), thus
avoiding isolation of the key a-iodo ketone intermediate 133. It
was noted that the addition of radical scavangers, such as TEMPO,

This journal is © The Royal Society of Chemistry 2018

terminated the a-amination process and did not yield any product.
Related halide-mediated procedures for cleavage of p-O-4 lignin
model compounds,”® ¢ thiocyanation®® as well as synthesis
of 3-amino-2-thiocyanato-o,B-unsaturated carbonyl derivatives®®®
and B-keto sulfones®®® have also been developed.’®®
Halide-mediated protocols for C-N bond coupling with
alkenes have also been targeted. Zeng, Little and coworkers

Chem. Soc. Rev., 2018, 47, 5786-5865 | 5839
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lodide-mediated electrochemical o.-amination of ketones
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Scheme 130 Electrochemical a-amination of ketones using NH4l as redox catalyst.

demonstrated an efficient approach for aziridination of alkenes
Bu,NI as a redox catalyst and N-aminophthalimide (366) as the
source of electrophilic nitrogen (¢f. Scheme 107). The process
was carried out at a constant current in an undivided cell and
was proposed to follow a radical mechanism where hydrogen
atom abstraction from N-aminophthalimide by I* generates a
nitrogen-centered radical that is subsequently trapped by the
alkene.””’ Based on earlier precendent,”®> the Zeng group
presented an indirect electrochemical method for synthesis of
vicinal iodoazides (Scheme 131). In the developed protocol, IN;
is electrochemically generated in situ, thus avoiding the use of

Electrochemical azidoiodination of alkenes

S HIE

RH% constant current, 30 mA ®|,

R2 Nal (2 equiv), NaN3 (2 equiv) R R2
LiCIO,, MeOH

rt, divided cell

439 440

441 441a, 65%

external oxidants or corrosive I,. Furthermore, the reaction
proceeds via a cyclic iodonium intermediate to afford regioselective
azidoiodination products in a Markovnikov-type fashion.”®® Finally,
an electrochemical strategy for oxyamination of styrenes for acces-
sing indoline derivatives was recently achieved (Scheme 132).°**
The electrochemical reactions were conducted under constant
current conditions in a simple undivided cell using Bu,NI as a
redox catalyst. This paired electrolysis process avoids the use of
external bases and oxidants, representing an appealing and
environmentally benign route for synthesis of these heterocyclic
compounds. Mechanistic insight suggested that the reaction

Representative examples

" " RS N3 N3 N3
| — s o o o)
1 1 I | |

R R2 Me’ (o]

441b, 70%? 441c¢, 47%

Scheme 131 Electrochemical regioselective azidoiodination of alkenes via in situ generation of INs. @ Carried out in MeOH/H,O (5:1).

Electrochemical oxyamination of styrenes

[
c i— —Il.] c |®
constant current, 24 mA
NHSOLAr

BuyNI (50 mol%)
LiCIO,4, ROH
rt, 6.0 F/mol, undivided cell

442 443

O

Representative examples

OR OMe OMe
| N N
SOLAF SO,Ph S0,(p-MeCgHy)
444 444a, 70% 444b, 50%

Scheme 132 Electrochemical oxyamination of styrenes for synthesis of indolines.
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commences with the anodic oxidation of iodide to generate I,,
which subsequently reacts with alkene 442 to afford the corres-
ponding iodonium intermediate 443. Finally, intramolecular
cyclization with the pendant sulfonamide followed by nucleo-
philic substitution by alkoxide yields the indoline product 444.
The examples discussed here highlight that halide ions are
versatile mediators capable of promoting a collection of different
transformations.

4. Conclusions and outlook

During the last few decades, the imperative to develop and
adopt more sustainable and atom economical methodologies
for synthetic purposes has not been overlooked by the scientific
community. In this regard, electrochemistry serves as an

Ni-catalyzed electrochemical decarboxylative C-C coupling

I
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o :
(o] ! constant current, 20 mA
B G
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NiBry:dme (30 mol%), EtzN (6 equiv)
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divided cell

Ni-catalyzed electrochemical amination
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Scheme 133 Ni-catalyzed electrochemical coupling platforms.

(cc)

Divergent paired electrolysis of dienes
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FiC constant current
\g/ (\)

Et3N/CF3C02H MeCN
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appealing platform since only electrons serve as reagents,””’
thereby minimizing production of reagent waste while allowing
the reactions to be carried out at milder conditions.’®*%
Organic electrochemistry can be classified into two categories,
direct and indirect electrolysis. Here, the initial electron transfer
between the electrode and a substrate to produce a radical inter-
mediate does not generally pose a problem. Instead, it is crucial to
control the reactive intermediates that are subsequently generated
throughout the process. Although related activated species can be
accessed using traditional organic reagents, there is a dramatic
difference in the nature of these species.”®® While the activated
species are uniformly distributed throughout the solution in con-
ventional organic reactions, these species are only produced at the
surface of the electrode in electrochemical reactions. This differ-
ence in distribution of the reactive species will thus affect the
chemical behavior as well as reactivity and selectivity.

Representative examples

NH,
R O Q \/:\E OBu
MeO,C PinB
446 446a, 59% 446b, 39%
Representative examples
Hex H\
AT I
/ \ X
/\ NC N
447a, 68% 447b, 79% 447c, 76%
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constant current
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A o
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449 anodic acetoxylation 448 cathodic carboxylation 450
Convergent paired electrolysis
I | | i
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H 'ir L N ° { H =z ‘\Ar /\/ i Ar)
Me LIiCIO, DMF rt, 2.5 F/mol W /\)\Arm LiCIOy4, DMF rt, 2.5 F/mol
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451 Shono oxidation 452 455 454 cathodic Barbier reaction 453 136

Scheme 134 Divergent and convergent paired electrolysis.
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For an unexperienced electrochemist it might seem that
there are a wide range of experimental variables that need to be
optimized, such as cell type, electrode composition and
electrolyte.”®® However, this should be seen as an opportunity
for accessing unique selectivity and expediting unconventional
reaction pathways for challenging bond construction, thus
enabling novel and strategic bond disconnections in synthetic
endeavors. Since organic chemists are rather unfamiliar with
the concept of using electric current to facilitate chemical
reactions, the purpose of the present review is to highlight
the potential of applying organic electrochemistry to organic
synthesis. Here, an overview of the development of electro-
synthetic reaction manifolds for C-H bond functionalization
and C-N bond formation is provided. The electrochemical
strategies and methods discussed in this review clearly show-
case the diversity of transformations that can be facilitated
through organic electrosynthesis. Furthermore, the refinement
and expansion of reaction engineering methods and wider
commercial availability of electrochemical reactors provide a
multifaceted and powerful toolbox for efficient generation of
reactive intermediates from an ensemble of organic substrates.
These include, among others, the development of dual catalytic
platforms (Scheme 133),'°°°'%°7 paired electrolysis'®® %"
(Scheme 134) and electrochemical flow cells,"**™*® which
have contributed to advancing the field of electrosynthesis.
Based on these unique features and the current renaissance in
synthetic electrochemistry, it is anticipated that this field
will soon be considered as a reliable and versatile platform by
the broader scientific community for nontraditional bond
construction in organic chemistry.
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