PCCP

CORRECTION

Cite this: *Phys. Chem. Chem. Phys.,* 2018, **20**, 3847

Correction: High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite α -Ag₂S and argentite β -Ag₂S

S. I. Sadovnikov,^a A. I. Gusev,*^a A. V. Chukin^b and A. A. Rempel^a

DOI: 10.1039/c8cp90018c

rsc.li/pccp

Correction for 'High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite α -Ag₂S and argentite β -Ag₂S' by S. I. Sadovnikov *et al.*, *Phys. Chem. Chem. Phys.*, 2016, **18**, 4617–4626.

The authors wish to draw the readers' attention to their previous related study, published in *Physics of the Solid State*,¹ which should have been cited in this *Physical Chemistry Chemical Physics* paper.

The study published in this *Physical Chemistry Chemical Physics* paper contains new experimental X-ray diffraction data, differential thermal and thermogravimetric analysis (DTA-DTG) results and data on the acanthite–argentite phase transformation enthalpy. This *Physical Chemistry Chemical Physics* paper was accepted before the publication of ref. 1 but published after ref. 1. Therefore ref. 1 should have been cited in this *Physical Chemistry Chemical Physics* paper.

The authors regret not giving the correct attribution for Fig. 4, 6, 7, 8 and 9 in the paper, which were reproduced for the readers' information. The figures are reproduced below with the correct copyright permission text.

^a Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, Ekaterinburg 620990, Russia. E-mail: gusev@ihim.uran.ru

^b Ural Federal University named after the First President of Russia B.N. Yeltsin, Ekaterinburg, 620002, Russia

View Article Online View Journal | View Issue

Fig. 4 The effect of temperature *T* on the unit cell parameters *a*, *b*, *c*, β , and volume *V*, and on the volumetric thermal expansion coefficient β_V of coarse- and nanocrystalline acanthite. The approximation of the experimental data by the solid line and the closed symbols (\bullet), (

Fig. 6 Evolution of XRD patterns of coarse-crystalline argentite β -Ag₂S in the temperature range of 446–623 K. The inset shows a systematic displacement of the (200) diffraction reflection of bcc argentite with increase of measuring temperature. Reproduced from ref. 1 with permission from Springer.

Fig. 7 Dependence of the lattice constant a_{arg} of argentite β -Ag₂S on the temperature *T*: (1) data of present work; (2), (3), and (4) data,^{22,24,27} respectively. The approximations of measured lattice constant a_{arg} by the function (10) in the temperature range of 440–660 K is shown by solid lines. Reproduced with some changes from ref. 1 with permission from Springer.

Fig. 8 Temperature dependence of linear thermal expansion coefficient α_{arg} of argentite β -Ag₂S and its approximation by the function (12). Reproduced from ref. 1 with permission from Springer.

Fig. 9 The temperature dependencies of reduced volume $V_{\text{un.cell}}/z$ (a) and isotropic linear thermal expansion coefficient α (b) of silver sulfide in the of range 300–623 K. At ~440 K, there take place jumps of the reduced volume and the thermal expansion coefficient α attributed to the first-order acanthite-argentite phase transformation. Isotropic linear thermal expansion coefficient $\alpha_{\text{ac-nano isotr}}$ of nanocrystalline acanthite α -Ag₂S is larger than $\alpha_{\text{ac-isotr}}$ of coarse-crystalline acanthite. Reproduced with changes from ref. 1 with permission from Springer.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

References

1 A. I. Gusev, S. I. Sadovnikov, A. V. Chukin and A. A. Rempel, Phys. Solid State, 2016, 58, 251-257.