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A series of novel benzimidazolium-based non-racemic ionic liquids (ILs) was synthesized from low-cost
chiral terpenoid alcohols and fully characterized by the use of a wide variety of techniques, such as DSC,
ESI-MS, ATR FT-IR, polarimetry as well as *H and **C NMR spectroscopy. The ILs were investigated
as chiral shift agents for the chiral recognition of racemic mixtures of Mosher's acid potassium salt by
19F NMR spectroscopy, leading to high splitting values of the CFs signal. Supramolecular interactions
between salt and H-C2 of chiral benzimidazolium cation are responsible for the chiral recognition, as
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was demonstrated by experimental evidences. Indeed, the enantiomeric excess value of enantioenriched

rsc.li/pccp substrates depends mainly on the strength of the contact ion pairs.
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Introduction

Over the past few years, ionic liquids (ILs) have attracted much
interest due to their exceptional physical and chemical proper-
ties, such as reasonable thermal stability, lack of measurable
vapor pressure, high conductivity, appropriate viscosity, catalytic
activity and ease recovery and recyclability.' In particular, chiral
ILs deserve a special attention due to their unique ability to
act as organocatalysts, coordinating ligands and/or solvents for
enantioselective transformations.>™* These compounds can be
prepared by asymmetric synthesis, but protocols based on the
use of inexpensive and pre-existing chiral substrates derived
from the chiral pool are more attractive to scale-up the synthesis.
Consequently, most reported chiral ILs are obtained from naturally
available chiral moieties, such as amino acids,’ carbohydrates,6
terpenoids and alkaloids.” Chiral ILs exhibit applications in ligand
exchange chromatography,® stereoselective polymerization,’
liquid and gas chromatography,'® capillary electrophoresis,'****
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and as organocatalysts, coordinating ligands and/or solvents
for asymmetric synthesis.>*'* In addition, chiral ILs have
also proven to be very effective as chiral shift agents in NMR
spectroscopy for the discrimination of racemic mixtures.*'>"?
These analytical chiral separations are accomplished by in situ
generation of temporary diastereomeric adducts through hydro-
gen bonds, halogen bonding or ionic, dipole-dipole, ion-dipole,
van der Waals and n—r stacking interactions."* The first applica-
tion of chiral ILs as shift agents in NMR spectroscopy was
described by Wasserscheid et al. in 2002, where an ephedrine
derived IL was used to determine the enantiomeric excess (ee) of
a racemic mixture of Mosher’s acid sodium salt by a simple
integration of NMR signals."® Since then, many examples have been
reported employing chiral ILs as shift reagents,*'>"* displaying
moderate to high enantio-discrimination levels. However, little
is known about the supramolecular interaction between racemic
substrates and the non-racemic IL ion pair.

Therefore, in order to contribute towards the understanding
upon the supramolecular interactions that can be established
between racemic substrates and non-racemic ILs, we have
designed and prepared a new family of chiral ILs and explored
their potential use as chiral recognition agents. Herein we report
the synthesis of a new family of benzimidazolium-based chiral
ILs prepared from commonly available and inexpensive chiral
terpene alcohols such as (+)-menthol, (+)-fenchyl alcohol and
(+)-isopinocampheol (Fig. 1). The obtained enantiomerically
pure ILs were characterized by DSC, ATR FT-IR, ESI-MS, polari-
metry along with "H and >C NMR spectroscopy. In addition,
the new ILs were studied as chiral shift agents for the chiral
recognition of racemic mixtures of Mosher’s acid potassium
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Fig. 1 Natural secondary alcohols 1a: (+)-menthol; 1b: (+)-fenchyl alcohol;
1c: (+)-isopinocampheol.

salt. Experimental studies enabled us to elucidate the nature of
the interaction between the non-racemic ILs and the racemic
Mosher’s acid potassium salt. Finally, the ILs demonstrated
their ability for the determination of the enantiomeric excess of
enantioenriched samples.

Results and discussion

Synthesis and characterization of the new benzimidazolium-
based chiral ILs

The benzimidazolium-based chiral ILs 4-7 were obtained
through a three step synthetic route (Scheme 1 and Sections 2

and 3, ESIt). The reaction of paraformaldehyde with the chiral
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alcohols 1a-c generated the corresponding acetals 2a-c¢, which
were reacted in situ with acetyl chloride to give the alkoxymethyl
halides 3a-c (Scheme 1a).'® Next, the non-racemic ILs 4a—c were
synthesized in good yields (Scheme 1b) by reaction of 3a-c with
1-methylbenzimidazole at room temperature (RT). This step is very
fast since the reaction mixture was immediately transformed in a
semisolid which was further stirred for 30 min to ensure the
complete reaction. Finally, the anion exchange by reaction with
sodium tetrafluoroborate (NaBF,), potassium hexafluorophosphate
(KPF,) and lithium bistrifluoromethanesulfonimidate (LiNTf,)
produced the non-racemic ILs 5-7a—c (Scheme 1c).

The obtained non-racemic ILs 4-7 were completely charac-
terized by Fourier-Transform Infrared (ATR FT-IR) spectro-
scopy, electrospray ionization mass spectrometry (ESI-MS),
and "H and "*C NMR spectroscopy (for further details see ESI{),
whereas their melting point was studied by differential scanning
calorimetry (DSC). Table 1 displays the most important physical
properties of 4-7.

All synthesized ILs are non-racemic, as it is confirmed by their
specific rotation ([o]3;). We observed a trend in the [o]3y’ values of ILs
depending on the chiral building block ((+)-menthol, 1a; (+)-fenchyl
alcohol, 1b; (+)-isopinocampheol, 1c) employed for their synthesis.
In the case of (+)-menthol ILs 4a-7a, there is a large difference
between the specific rotation of CI™ and BF,” based salts and

a) Synthesis of Chiral Alkoxymethyl Halides 3a-c from Chiral Alcohols 1a-c
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Scheme 1 Synthetic route for non-racemic ILs 4—7a—c from chiral alcohols 1la-c.
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Table 1 Physical properties of synthesized non-racemic ILs 4-7°

Non-racemic Physical Yield Mp° [a]¥¢

Entry IL state” (%) (°C) (deg mL g 'dm™)
1 4a White solid 97 127 +136.5
2 5a White solid 99 132 +147.5
3 6a White solid 99 123 494.5
4 7a Light brown oil 99 — +96.5
5 4b White solid 95 124  +39.8
6 5b White solid 98 122 +38.2
7 6b White solid 99 147  +45.0
8 7b Light brown oil 99 — +22.5
9 4c White solid 93 122 +37.8
10 5¢c White solid 98 124  +41.0
11 6¢C White solid 99 124  +55.0
12 7c Light brown oil 98 — +30.0

¢ Uncertainties of measured values: yield, +1%; mp, +0.5 °C; [¢],
+2%. ? Physical state at 20 °C. © Mp: melting point determined by DSC.
?[o]%’: ¢ = 4 mg mL™', MeOH, 20 °C.
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Fig. 2 Graphical representation of specific rotation ([z]20).

those of PFs~ and NTf,  ILs (Fig. 2). However, for 4b-7b and
4c-7c the [0}y values of CI~ based salts were found to be similar to
those of BF,~ and lower than PF,~ based non-racemic ILs, whereas
NTf,” compounds showed the lowest values of [«] (Fig. 2).

Entry  [6b] (equiv.) Ad (Hz)
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On the other hand, DSC revealed a melting point (mp) in the
range of 122-147 °C for 4-6 (Table 1), while all NTf, ILs are
liquid at RT.

Chiral recognition of racemic mixtures of Mosher’s acid
potassium salt by the new benzimidazolium-based chiral ILs

The potential for chiral recognition of synthesized ILs was
evaluated through the study of the diastereomeric interaction
between 4-7 and a racemic mixture of Mosher’s acid potassium
salt. For this purpose, various mixtures of Mosher’s acid
potassium salt and the corresponding chiral IL were analyzed
by "F NMR spectroscopy in order to observe splitting of CF;
signal. Each chiral IL was mixed with the racemic mixture
of salt in a specific deuterated solvent at RT, sonicated for
3-5 seconds if required and then filtered.

Different concentrations of 6b regarding the racemic salt
were tested in order to find the optimal amount of chiral IL
required for maximum splitting of CF; signal of racemic
Mosher’s acid potassium salt. The influence of 6b concen-
tration on the degree of CF; signal splitting is represented
graphically in Fig. 3. Two equiv. of 6b was the best ratio to
obtain the maximum splitting (23.7 Hz, Fig. 3), whereas the
extent of the splitting decreased for higher concentrations of
6b. The influence of IL concentration on the magnitude of
chemical shift difference is well known and has been previously
described by several authors.*®**'7

The nature of the interaction between the chiral ILs and
the racemic Mosher’s acid potassium salt was investigated by
experimental studies. The racemic salt could interact with the
IL through hydrogen bonding with the H-C2 of the enantiopure
imidazolium cation.'® However, an interaction by n-r stacking
between the phenyl groups of both compounds is also likely.*”
Therefore, we prepared the chiral ILs 8 and 9 in order to
investigate the type of interaction between the different species
in solution (Fig. 4).

Benzimidazolium-based chiral IL 4a led to a splitting of
19.6 Hz in toluene (Fig. 5), whereas the use of 8 resulted in a

25
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Fig. 3 °F NMR chemical shift (recorded in toluene-dg) of racemic Mosher's acid potassium salt in the presence of different amounts of 6b.
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Fig. 4 Chiral ILs 8 and 9.

similar discrimination (Fig. 5, 19.9 Hz). Consequently, the
formation of the diastereomeric adduct is not attributable to
the m-n stacking interactions between the phenyl groups of
racemic substrate and chiral IL. Interestingly, no splitting was
observed with 9 (Fig. 5), for which the hydrogen H-C2 was
replaced by a methyl group. This proves that the chiral IL
interact with the Mosher’s acid potassium salt through hydrogen
bonding with the hydrogen atom located in C2 position of the
imidazolium ring. This is one of the rare cases in which clear
experimental evidences of the supramolecular interactions
responsible for chiral recognition are observed.

Next, we studied the role of solvents and nature of chiral ILs
on the extent of splitting of CF; signal, since the strength of ion
pairs are dependent on the polarity of the solvent employed.’
The experiments were conducted using different deuterated
solvents but splitting was only observed in CDCl; and toluene-
dg (Table 2), while no splitting was detected when more
polar solvents such as D,0, MeOD and CD;CN were used.
Consequently, it was realized that the solvent strongly affects
the formation of the diastereomeric adduct and a reduction in
its polarity probably increase the strength of the hydrogen
bonding (and contact ion pair)*® and thus the interaction
between the molecules of IL and Mosher’s acid derivative."®
In most cases, changing the solvent to toluene leads to an

e
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Table 2 Splitting of CFz NMR signals of racemic Mosher's acid potassium
salt in the presence of non-racemic IL?

AS” (Hz)

Entry Non-racemic IL Precursor alcohol X CDCl; Toluene
1 4a (+)-Menthol cl 9.0 19.6
2 5a (+)-Menthol BF, 10.6 19.0
3 6a (+)-Menthol PFs 11.6 11.3
4 7a (+)-Menthol NTf, NS NS

5 4b (+)-Fenchol Cl 7.2 15.0
6 5b (+)-Fenchol BF, 9.7 19.0
7 6b (+)-Fenchol PF, 123  23.7
8 7b (+)-Fenchol NTf, NS NS
9 4c (+)-Isopinocampheol Cl 11.3 11.5
10 5¢ (+)-Isopinocampheol BF,; NS 15.3
11 6¢ (+)-Isopinocampheol PFs NS 8.6
12 7c (+)-Isopinocampheol NTf, NS NS

“ Reagents and conditions: non-racemic IL (2 equiv.), racemic Mosher’s
acid potassmm salt (1 equiv.), deuterated solvent (0.6 mL). NS: no
sphttlng Uncertainty for Ad: +2%.

increase in splitting of the '>’F NMR signal of the racemic
Mosher’s acid potassium salt in comparison with CDCl;
(Table 2). For instance, chiral ILs 4-5a and 5-6b produced a
splitting > 8 units higher in toluene than those obtained in
CDClI; (entries 1 and 2). Similarly, the use of chiral ILs 5¢ and 6¢
resulted in a splitting of 15.3 and 8.6 Hz in toluene, respectively,
whereas no splitting was observed when CDCl; was utilized as
solvent (entries 10 and 11).

The magnitude of the splitting is also affected by the type of
anion forming the chiral IL used, and it appears to be related
with the strength of the contact ion pair. In general, Cl, BF,” and
PFs based salts form relatively strong ion pairs®* and provided a
good discrimination, whereas no splitting was observed for
hydrophobic ILs prepared with NTf,” as counteranion, which
possess a weaker cation-anion interaction (entries 4, 8 and 12).
Regarding the cation, chiral ILs derived from (+)-menthol and
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Fig. 5 °F NMR investigation of the interaction between the non-racemic ILs and the racemic Mosher's acid potassium salt by the use of different

imidazolium-based ILs.
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Fig. 6 °F NMR spectra and determination of % ee values of enantioenriched samples of Mosher's acid potassium salt. (a) R/S = 2:1, (b) R/S = 4:1.

(+)-fenchol led to a similar splitting of the '’F NMR signal
(entries 1-8), while the values observed for ILs prepared from
(+)-isopinocampheol were lower (entries 9-12). In this context,
the maximum splitting of CF; signal was obtained for 6b
(derived from (+)-fenchol), with Aé = 23.7 Hz (entry 7). This
could be due to the higher steric impediment produced by the
proximity of methyl groups of fenchol to the benzimidazolium
ring in comparison with menthol and isopinocampheol.

The high chiral discrimination induced by ILs 4-7 encouraged
us to evaluate their use for the determination of the enantiomeric
excess of enantioenriched samples of Mosher’s acid salt. Two
samples with approximately R/S =2:1 and R/S = 4: 1 were prepared
through the addition of (R)-Mosher’s acid salt to the corres-
ponding racemic salt. The integration of CF; signals observed
in the "F NMR spectra provided the almost exact ratio of each
enantiomer in the samples (Fig. 6). Consequently, the ILs
described herein can be successfully employed to determine
the ee value of chiral samples.

Conclusions

In summary, we have successfully designed and prepared a
new family of twelve benzimidazolium-based non-racemic ILs
through a three step synthetic methodology under solvent-free
conditions. An exhaustive characterization was carried out by
different techniques, which enabled us to confirm the struc-
tures of obtained ILs. The non-racemic ILs were found
to be efficient chiral shift agents for the chiral recognition of
racemic mixtures of Mosher’s acid potassium salt by '°F NMR
spectroscopy. In addition, experimental studies showed that
the formation of the diastereomeric adduct is attributable to
the interaction of the IL with the Mosher’s acid potassium salt

This journal is © the Owner Societies 2018

through hydrogen bonding with the more acidic hydrogen
located in C2 position of the imidazolium ring. The effective-
ness of the chiral recognition is directly related with the
strength of the IL contact ion pair. Finally, the ILs demon-
strated their potential for the determination of the enantio-
meric excess of enantioenriched samples of Mosher’s acid salt.
In conclusion, these new benzimidazolium-based non-racemic
ILs have shown their merit as chiral agents for enantiorecogni-
tion, which may inspire the design of new ILs with applications
in chiral separation techniques.
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