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A predictive model for the diffusion of a highly
non-ideal ternary system
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Diffusion plays a central part in many unit operations. The Maxwell–Stefan model is the dominant model for

both gaseous and liquid diffusion. However, it was developed from the kinetic theory of gases, raising the ques-

tion of whether it can be extended to non-ideal liquid systems. The dynamic fluctuation model is an alternative

model based on the Cussler theory and predicts a smaller thermodynamic influence relative to the linear

influence of the Maxwell–Stefan model due to dynamic concentration fluctuations. Since the dynamic fluctua-

tion model, which uses the scaling factor a, had improved performance relative to the Maxwell–Stefan model

for a wide range of binary systems, it is postulated that this improved performance should also be observed for

a ternary system. In this work, the dynamic molecular fluctuation model was extended to a highly non-ideal

ternary system, using the same scaling factor a, through matrix manipulation. Using self-diffusion data

measured by NMR, mutual diffusion predictions of the developed model and the Maxwell–Stefan model were

compared to experimental mutual diffusion data of the partially miscible system ethanol/toluene/n-decane. It is

demonstrated that the dynamic fluctuation model gives improved predictions relative to the Maxwell–Stefan

approach, consistent with previous observations on binary systems, showing that the reduced thermodynamic

influence of the dynamic fluctuation model is an improvement. In addition, we show that the use of local mole

fractions, to account for molecular association, in both the dynamic fluctuation and Maxwell–Stefan models,

results in improved diffusion predictions for the ternary system. The results confirm that the dynamic fluctuation

model improves predictions of mutual diffusion in liquid mixtures, suggesting a non-linear correction to the

thermodynamic correction factor. The results also suggest that that the key assumptions in the Maxwell–Stefan

model and its derivation, rooted in the kinetic theory of gases, are not entirely accurate for highly non-ideal

liquid systems. The optimum a for the ternary system studied here is approximately 0.45, similarly to the

optimum a of 0.40 to 0.80 for a range of binary systems previously studied, suggesting that the use of the a

scaling factor, which is grounded in scaling laws theory, is of general validity.

1. Introduction

Diffusion is an important natural phenomenon in chemical
processes. Nearly all industrial separations are influenced by
liquid component diffusion, and in certain cases, diffusion may
be the rate limiting process. Therefore, the ability to accurately
estimate the diffusion coefficients is necessary for optimum
unit design.

The theories governing liquid diffusion are incomplete and
limited experimental diffusion data are available. This problem is
exacerbated for multicomponent liquid diffusion.1–4 Considering
the industrial relevance of liquid diffusion, an accurate diffu-
sion model that requires easy to measure parameters must
be developed.

The Maxwell–Stefan (MS) model is the dominant diffusion
model for gaseous systems and it is also applied to liquid
systems due to its simple, linear dependence on the chemical
potential gradient. This model was developed using the kinetic
theory of gases5,6 and it has been extended unaltered to highly
non-ideal liquid systems without rigorous experimental valida-
tion. Due to both a lack of experimental data, and the MS
diffusion coefficients being impossible to measure directly,
exhaustive molecular dynamic simulations have been pursued
by some researchers.7,8 These exhaustive calculations are
impractical for general engineering purposes.
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An alternative diffusion model is the dynamic fluctuation
model, based on the Cussler theory of diffusion.9–12 This model
accounts for dynamic concentration fluctuations, which results
in a smaller thermodynamic influence on diffusion relative to
the MS model.

The dynamic fluctuation model has been proven to be
a significant improvement over the MS model for binary
systems.9–11 The purpose of this paper is to extend this dynamic
fluctuation model to a ternary system and compare it to the MS
model. A partially miscible ternary system is used to evaluate
the two models, as this highly non-ideal system facilitates
model discrimination.

2. Theory

The understanding of diffusion is dominated by two theories,
the Maxwell–Stefan model and Fick’s law. The key principles
and requirements for the two theories are outlined in the
sections that follow, with a particular focus on the potential
inadequacies of the Maxwell–Stefan model for highly non-ideal
systems.

2.1 Maxwell–Stefan model

The Maxwell–Stefan (MS) model is developed from the kinetic
theory of gases, by assuming that the force acting on an
individual particle is in equilibrium with the resistance to fluid
motion due to collisions with other species. Fig. 1 shows the MS
model of diffusion for species 1 through species 2.

There is extensive experimental evidence showing that the
MS model is accurate for multicomponent, dilute gases.5,13

For a gas, the pressure gradient can be related to the chemical
potential gradient, rm. The MS model with a rm driving
force is:14

� xi

RT
rT ;Pmi ¼

Xn
j¼1; jai

xjJi � xiJj

Ct� ij
(1)

where xi (or xj) and Ji (or Jj) are the mole fraction and molar flux,
respectively, of component i (or j), Ðij is the MS diffusion
coefficient between components i and j, T is the system
temperature, R is the universal gas constant and Ct is the total

molar concentration. Considering the fluid resistance analogy,
Ðij can be viewed as an inverse drag coefficient. Eqn (1) shows
how rmi is the driving force for diffusion, as required by
thermodynamics.5 It is important to stress that thermo-
dynamics only requires rmi = 0 at equilibrium and that species
move from a higher to a lower chemical potential; it does not
place a requirement on the form of the chemical potential
driving force for diffusion. The linear driving force in eqn (1) is
a convenient result and not a thermodynamic requirement.

For an n component system, rmi is related to the activity
coefficient, gi, by:

xi

RT
rTmi ¼

Xn�1
j¼1

dij þ xi
@ ln gi
@xj

� �
rxj ¼

Xn�1
j¼1

Gijrxj (2)

where dij is the Kronecker delta and Gij are the elements of the
matrix G, the latter being the thermodynamic correction factor
for the system.5,6 For an n component system the MS model can
be expressed in terms of the n � 1 component molar flows as:

J = �Ct[B]�1[G][rx] (3)

Bii ¼
xi

� in
þ
Xn
k¼1
kai

xk

� ik
; BijðiajÞ ¼ �xi

1

� ij
� 1

� in

� �
(4)

where rx is a column vector of the mole fraction gradients for
the n � 1 components.

2.2 Fick’s law

Fick’s law proposes a linear dependence between the diffusion
flux and the concentration gradient based upon experimental
observations; it is not a theoretical development like the MS
model. The generalised Fick’s law for an n component system is
written as:5

J = �Ct[D][rx] (5)

where [D] is an n � 1 � n � 1 matrix of mutual diffusion
coefficients. In an n component system there are only n � 1
independent fluxes and so [D] implicitly contains information
on the final component. Thus, the multicomponent diffusion
coefficients are not directly related to the binary diffusivity
coefficients, making it difficult to develop a diffusion model
based on the binary coefficients alone.

2.3 Estimating ideal mobility coefficients

Since both Fick’s law and the MS model describe the same
physical process, they are related. Comparing eqn (3) and (5),
the [D] predicted by MS model is:

[D] = [B]�1[G] (6)

This shows that the mutual diffusivities obtained from the
MS model are composed of two distinct parts, namely hydro-
dynamic ([B]�1) and thermodynamic ([G]) influences. [D] can be
obtained experimentally, as it is related to the concentration
gradient. Therefore the MS model’s accuracy can be determined
by comparing its predicted [D] to that experimentally measured.
However, Ðij is not accessible by experiments and unlike gases,

Fig. 1 Collisions between species 1 and 2 result in fluid motion resistance.
This resistance force is in mechanical equilibrium with the pressure
gradient. The MS model of fluid resistance can be extended to multi-
component systems.
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there is no universal kinetic theory for liquids that allows Ðij to
be predicted.5 Hence eqn (6) has been assumed to be correct and
Ðij have been calculated using [G] and the measured [D].

Due to both experimental and simulation difficulties,
numerous semi-empirical relationships for predicting Ðij have
been developed. However, all these models are based on the
assumption that the MS model is correct for liquid systems,
which need not be the case. The two foremost means to
estimate Ðij are the Darken and Vignes models.

The Vignes equation is a logarithmic interpolation that only
requires the infinite dilution values,15 whilst the Darken model
is a linear interpolation.16,17

In previous work using pulsed gradient stimulated echo
nuclear magnetic resonance (PGSTE-NMR) of the nearly ideal
ternary system of methanol/butan-1-ol/propan-1-ol,18 we have
shown that the multicomponent Darken model of Liu et al.8 is
more accurate than that of Krishna and van Baten.7 However, the
average error for the system was 26%. This large error is
primarily a result of large errors at low compositions, where
the system was modelled as ideal, and erroneous mutual diffu-
sion data, the latter being prone to high errors due to the
challenges associated with mutual diffusion in ternary systems.
The multicomponent Darken mobility model is:8

� ij ¼
Di
�Dj
�

Dmix
(7)

1

Dmix
¼
Xn
i¼1

xi

Di
� (8)

where Dmix is the effective diffusivity of the mixture.
The Vignes model is an empirical model.19 Since the objec-

tive of this paper is to compare the MS model and the dynamic
fluctuation model for a ternary system, and due to there being a
physical basis for the Darken model, eqn (7) will be used to
estimate the ideal mobility. It is stressed that this work does
not set out to assess the accuracy and the validity of the Darken
model relative to the Vignes model.

2.4 Dynamic concentration fluctuation model

For binary mixtures, the MS model predicts a linear relation-
ship between D and G:

D ¼ � 12 1þ x1
d ln g1
dx1

� �
¼ � 12G (9)

However, this is not experimentally observed for hexane/
nitrobenzene as the consulate point is approached and for
numerous other non-ideal binary systems.9–12

Previous work on binary systems has demonstrated that a
model based on critical point scaling laws20 successfully pre-
dicts mutual diffusion in non-ideal binary mixtures, which is
given by:

Dij ¼ D̂ij 1þ xi
d ln gi
dxi

� �a
(10)

were D̂ij is the ideal mobility between species i–j and a is a
parameter from dynamic scaling theory.21 The parameter a is a

system independent constant and is taken to be around two-
thirds.5,22,23 The parameter a accounts for dynamic concen-
tration fluctuations within the system. These occur because the
driving force for the removal of these fluctuations is rmi, which
tends to zero at the critical point. Hence, the processes remov-
ing such fluctuations become slow and the fluctuations become
important in determining the physical properties of the mix-
ture. At any point in a mixture with significant concentration
fluctuations a diffusing species may experience a concentration
either a little higher or a little lower than the mean concen-
tration; the result will be that locally the thermodynamic
correction factor is higher than that which would be expected
from the mean concentration.24 This provides a theoretical
explanation as to why a o 1, hence the non-linear dependence.

Further work showed that the dynamic fluctuation model,
with a = 0.64, was accurate in predicting the diffusivities of 14
non-ideal binary liquid mixtures, systems which exhibited both
positive and negative deviations from Raoult’s law and were far
away from the consulate point.10,11 This provides further evi-
dence that the MS model inaccurately accounts for the rmi

driving force.
An explanation for the MS model’s failure to accurately

describe diffusion in highly non-ideal liquid mixtures is that
the intermolecular forces become significant in such systems.
These forces may result in clusters forming, with clusters and
individual particles transported in the diffusion process,12

rather than the single spherical particles undergoing random
elastic collisions proposed by the kinetic theory of gases, as is
modelled in the MS model.5 Therefore, the extension of the MS
model from dilute gases to highly non-ideal liquid systems does
not have a strong theoretical foundation. The difference
between the MS model and the underlying diffusion of highly
non-ideal systems is shown in Fig. 2.

The success of the binary dynamic fluctuation model sug-
gests that for a highly non-ideal ternary system a scaling power
adjustment is required on G. [B]’s dependence on Ðij, eqn (4)
and (7), is expected to remain unchanged, as the dynamic
fluctuation model only adjusts G due to concentration fluctua-
tions; hence, the hydrodynamic influence is unaffected. How-
ever, for the dynamic fluctuation model Ð is replaced by D̂, the
ideal mobility, with the only difference between these two
coefficients being their physical interpretation in that D̂ is an
ideal mobility term whilst Ð is an inverse drag coefficient.

Modelling the mutual diffusion of a ternary system faces an
additional complexity, as the entire system is a matrix and
raising the matrix G to a fractional power cannot be done
elementwise. Raising a matrix to a fractional power requires
diagonalisation; a derivation is provided in the Appendix for
the interested reader. Using matrix diagonalisation, the ternary
dynamic fluctuation model becomes:

[D] = [B]�1[G]a = [B]�1VLaV�1 (11)

2.5 Local composition dynamic fluctuation model

An implicit assumption in the Darken model, eqn (7), is that D̂
can be determined from the measured self-diffusivities, D*,
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of single molecules. If, however, species’ motion is highly
correlated due to strong association, this assumption is physi-
cally inconsistent. This is because the measured motion of a
labelled molecule is accompanied by the motion of one or more
unlabelled molecules. This problem can be overcome by using
the local composition in the Darken model rather than the bulk
composition.23

The local composition form of the dynamic fluctuation
model accurately predicts the mutual diffusion coefficients
of both associating and non-associating species for binary
systems.23 The applicability of the model to a wide variety of
thermodynamic systems suggests that the dynamic fluctua-
tion model has a strong predictive capacity. Indeed, such a
model has also been recently tested and assessed by Guevara-
Carrion et al.25 in a recently published work on mutual
diffusion in binary mixtures, who concluded that this model
was the most accurate predictive tool for mutual diffusion in
binary systems.

Based on the success of using local mole fractions
to account for association in binary systems,23 the local
mole fraction model is extended to ternary systems. For the
general multicomponent system, the NRTL (Non Random
Two Liquid) model relates the local mole fraction of molecule
j and k in the immediate neighbourhood of molecule i.26

To account for molecular association, the mole fraction of
a component in its own immediate vicinity, xii, replaces its
bulk mole fraction xi in the Darken mobility model, eqn (7),
to yield:

D̂ij;local ¼
Di
�Dj
�

Dmix;local
;

1

Dmix;local
¼
Xn
i¼1

xii

Di
� (12)

This impact on the ideal mobility only changes the hydro-
dynamic influence. The hydrodynamic influence for local
composition, B*, is:

Bii
� ¼ xi

D̂in;local

þ
Xn
k¼1
kai

xk

� ik;local
; Bij iajð Þ

� ¼ �xi
1

D̂ij;local

� 1

D̂in;local

 !

(13)

The dynamic concentration fluctuation model using local
compositions to account for molecular association is thus:

[D] = [B*]�1[G]a = [B*]�1VLaV�1 (14)

3. Experimental

Approaching the two-phase region of a partially miscible
system will result in maximally non-ideal diffusion, and is
hence the best means to identify the appropriate form of the
thermodynamic correction factor. To test the ternary diffusion
models across a wide-range of non-idealities, the coexistence
curve was approached from the most ideal binary subsystem,
toluene/n-decane.27 This pathway results in the ideality of the
system continuously decreasing. Eight sample points were
evaluated, as seen in Fig. 3.

3.1 Thermodynamic data

The ternary system ethanol (1)/toluene (2)/n-decane (3) is a
partially miscible system at 25 1C, and has phase equilibrium
data available.28 The thermodynamically consistent NRTL para-
meters for the system are presented in Table 1.29 These values
were used to determine G, the thermodynamic correction
factor, in the diffusion model.

3.2 Self-diffusion measurements

To undertake the ideal mobility analysis, D* measurements
are required. The pulsed gradient stimulated echo nuclear

Fig. 3 Ternary phase diagram of ethanol (1)/toluene (2)/n-decane (3) at
25 1C28,29 with the sampling points. The relative toluene/n-decane com-
position was kept constant with a molar ratio equal to one.

Fig. 2 (a) The dipole moment of species 1 results in clusters forming, with these clusters transported in the diffusion process. The dipole moment also
results in repulsion from cluster 1*, which affects the diffusion path. (b) The MS approach models the same particles in (a) as spherical particles
undergoing random motion, neglecting molecular interactions.
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magnetic resonance (PGSTE-NMR) method allows D* to be
measured as a function of a species’ NMR signal decay.30 The
details of the method have been reported elsewhere.9,24,31

All NMR experiments were performed at a temperature of
298 K on a Bruker DMX 300 operating at a 1H frequency of
300.13 MHz. The NMR diffusion experiments were carried out
using a diffusion probe capable of producing magnetic field
gradient pulses up to 11.76 T m�1 in the z-direction. The
duration of the 901 pulse of the 1H nuclei was 4.8 ms. A Bruker
Variable Temperature unit, BVT 3000, was used to set the
required temperature.

Self-diffusion measurements of the ethanol (1)/toluene
(2)/n-decane (3) mixtures were conducted using the PGSTE
pulse sequence.32 Measurements were performed by holding
the gradient pulse duration (d) constant and varying the gra-
dient strength (g). The observation time (D) was set to 50 ms.
All NMR spectra were referenced to bulk liquid TMS.

3.3 Mutual diffusion measurements

Mutual diffusion measurements were performed in a lab-scale
equipment, constituted by a peristaltic pump, by which a
solution of ethanol (1)/toluene (2)/n-decane (3) is flowing at a
fixed flow-rate in a 20 m length capillary bore, characterised by
an internal radius of r = 3.945 � 10�4 m. The pipe is set in a
thermostatic bath working at 25 1C. The outlet flow is sent to a
RI Detector (Knauer RI Detector K-2301) with a sensitivity of
3 � 10�8 RIU and a noise of �1.5 � 10�8 RIU. The collected
data were interpreted by applying the analytical solution of the
laminar flow model reported in eqn (15) and (16).

SðtÞ ¼ Smax

ffiffiffiffiffi
tR

t

r
W1 exp �

12D1ðt� tRÞ2
R2t

� ��

þð1�W1Þ exp �
12D2ðt� tRÞ2

R2t

� ��
þ B0 þ B1t

(15)

W1 ¼
ðaþ ba1ÞD1

0:5

ðaþ ba1ÞD1
0:5 þ ð1� a� ba1ÞD2

0:5
(16)

D1 and D2 represent the eigenvalues of the function, while
W1 is the weight of the first peak function. a1 is the fraction of
the initial refractive index contributed by solute 1, defined as in
eqn (17).

a1 ¼
R1DC1

R1DC1 þ R2DC2
¼ DC1

DC1 þ
R2

R1
DC2

(17)

where Ri (i = 1 or 2) is the derivative of the molar refractivity
of solute i at constant concentration of the second solute.

The eigenvalues are weighted through a linear correlation; a
and b are the related parameters. D1, D2, a and b, were obtained
by parameter estimation analysis on the collected experimental
data. In particular, the objective function written as in eqn (18)
was minimised by using the ‘‘particleswarm’’ algorithm imple-
mented in MATLAB libraries.33

f ðxÞ ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSexp � ScalcÞ2

N

s
(18)

The mutual diffusion coefficients were finally calculated as
in eqn (19)–(22).

D11 ¼ D1 þ
að1� a� bÞ

b
ðD1 �D2Þ (19)

D12 ¼
R2

R1

a

b
ð1� aÞðD1 �D2Þ (20)

D21 ¼
R1

R2

ðaþ bÞð1� a� bÞ
b

ðD2 �D1Þ (21)

D22 ¼ D2 þ
að1� a� bÞ

b
ðD2 �D1Þ (22)

4. Results and discussion
4.1 Self-diffusion measurements

The self-diffusion measurements from the PGSTE-NMR experi-
ments for the three components are shown below in Fig. 4. The
values are reported for different ethanol mole fractions whilst
the toluene/n-decane molar ratio is kept equal to one.

The toluene and n-decane D* values only vary slightly over
the composition range. However, Dethanol* at ethanol mole
fractions less than 0.05 is substantially higher than that at
ethanol mole fractions greater than 0.10. This suggests that
ethanol undergoes strong molecular association at ethanol
mole fractions above about 0.10. Above this mole fraction,
Dethanol* decreases approximately linearly with increasing mole
fraction.

Table 1 Regressed NRTL parameters at 95% confidence level for ethanol
(1)/toluene (2)/n-decane (3) at 25 1C, with e12 = 0.4729

i–j tij tji eij

1–2 2.091 � 0.008 1.808 � 0.014 0.470 � —
1–3 2.955 � 0.004 2.253 � 0.014 0.415 � 0.0002
2–3 0.567 � 0.006 2.051 � 0.001 0.517 � 0.002

Fig. 4 Ethanol (1), toluene (2), and n-decane (3) self-diffusion measure-
ments at 25 1C using PGSTE-NMR at the ethanol concentrations investi-
gated. The toluene/n-decane molar ratio is kept equal to one.
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The self-diffusion measurements are not at precisely the
same mole fractions as the mutual diffusion mole fractions due
to experimental difficulties involved in the measurements.
To overcome this, a linear interpolation was used for D* of all
the components. For ethanol, the linear interpolation was
conducted in two separate sections, namely for xethanol o 0.10
and xethanol 4 0.10.

4.2 Ternary mutual diffusion results

A comparison of the experimental mutual diffusion data and
the results from the Maxwell–Stefan model and dynamic fluc-
tuation model, eqn (11), with a = 0.64 is provided in Fig. 5. Both
models are a poor approximation for D22 and D21 at all the
experimental points investigated. However, the most notable
difference between the models is for D22.

Considering the small variation in D* for toluene and
n-decane over the composition range of interest and Dethanol*
being almost linearly related to the ethanol mole fraction
system for xethanol 4 0.10, Fig. 4, there is only limited source
of uncertainty from the hydrodynamic term in both the MS,
eqn (6), and dynamic fluctuation models, eqn (11). Therefore,
the source of the discrepancy in the predicted D22 and D21 from
both models must lie either in the accuracy of the thermo-
dynamic data or in the form of the models.

It is reasonable to expect the difference between the experi-
mental data and the two models to be smallest at the lowest
xethanol as this corresponds to a more thermodynamically ideal
system. However, the ternary thermodynamic model was
obtained from regressing the LLE (Liquid Liquid Equilibrium)
coexistence curve. Therefore, as one moves further away from
the coexistence curve, the ternary thermodynamic parameters

become an extrapolation, although this influence is offset by
the system becoming more ideal. Furthermore, in general
the regressed ternary system parameters are unable to
accurately model the binary subsystems VLE (Vapour Liquid
Equilibrium).34 However, as one proceeds to the coexistence
curve with increasing xethanol, as shown in Fig. 3, the ternary
thermodynamic parameters are a more accurate representa-
tion of the system, in particular, at xethanol = 0.309 when the
system is close to the coexistence curve.

Nevertheless, eqn (11) is an improvement over the tradi-
tional MS model for the entire composition range when
considering D22 in Fig. 5. The absolute error of the models
compared to the experimental data is provided in Table 2.
The table clearly shows that the dynamic fluctuation
model, eqn (11) with a = 0.64, is an improvement over the
conventional MS model, eqn (6), except for D21 for which the
absolute improvement of the MS formulation is marginal.
Consequently, it is reasonable to claim that the dynamic fluctua-
tion model with a = 0.64 is an improvement over the conventional
MS model.

The results when using the local mole fraction for both the
MS and dynamic concentration fluctuation models are shown

Fig. 5 Comparison of the mutual diffusion data for ethanol (1)/toluene (2)/n-decane (3) at 25 1C using the dynamic fluctuation model, eqn (11) with
a = 0.64, and the traditional Maxwell–Stefan model against experimental data.

Table 2 The average absolute error for the mutual diffusivity diagonal and
cross-diagonal elements using the dynamic fluctuation model, eqn (11) with
a = 0.64, and the Maxwell–Stefan model for ethanol (1)/toluene (2)/n-decane
(3) at 25 1C [10�9 m2 s�1]

Model D11 D12 D21 D22

Eqn (11) 0.512 0.269 0.442 0.710
MS 0.659 0.279 0.431 1.038
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in Fig. 6. As expected from its success in the binary systems, the
local composition model provides improved performance.

Comparing Tables 2 and 3 one sees that the use of the local
mole fraction model gives a noticeable improvement in the
accuracy of both models. The reason for this is that strong
molecular self-association of a polar species is expected when
it is mixed with a non-polar one. This requires modification
of the average molecular mobility; for example; if a species
is dimerised, the self-diffusivity of the dimerised species
should be doubled in the form of doubling the tracer diffu-
sivity of the dimerised species.10 In this system, ethanol is
expected to undergo molecular association, and this is con-
sistent with the step change in Dethanol* at xethanol B 0.10,
Fig. 4. The use of a local mole fraction provides an a priori tool
to account for the influence of cluster formation on the
molecular mobility.23

Fig. 7 shows the change in both the absolute diagonal and
total error between the experimental mutual diffusion data
and that of the dynamic concentration fluctuation model for
varying values of a. Clearly, as one decreases the value a from 1
through to B0.40, both the total and the diagonal error
decrease. However, decreasing a from 0.50 to 0.40 sees a

negligible change in the model prediction, as the error terms
remain roughly constant. An a below 0.40 implies a reduction
of the diffusion prediction accuracy. Therefore, the optimum a
is in the range of 0.40 to 0.60. This result is similar to that of
binary systems, which also have an optimum a of 0.40 to
0.80.10,11 This suggests that the scaling factor a is thus con-
sistent with the theoretical scaling laws theory scaling factor
of B0.64.

Fig. 8 shows the result of the application of the dynamic
concentration fluctuation model using local mole fraction with
the optimal a of 0.45. There is a distinct improvement in the
accuracy of the model, with this being most prominent for D22.
Table 4 shows that the local mole fraction model is approxi-
mately an order of magnitude more accurate than the tradi-
tional MS model.

Fig. 6 Comparison of the mutual diffusion data for ethanol (1)/toluene (2)/n-decane (3) at 25 1C using the local mole fraction in both the dynamic
fluctuation model, eqn (14) with a = 0.64, and the traditional Maxwell–Stefan model against experimental data.

Table 3 The average absolute error for the mutual diffusivity diagonal and
cross-diagonal elements using the dynamic fluctuation model, eqn (14)
with a = 0.64, and the Maxwell–Stefan model with local mole fractions for
ethanol (1)/toluene (2)/n-decane (3) at 25 1C in 10�9 m2 s�1

Model D11 D12 D21 D22

Eqn (14) 0.324 0.291 0.443 0.309
MS 0.557 0.306 0.378 0.761

Fig. 7 Comparison of absolute error between experimental data and the
of the dynamic concentration fluctuation model with varying values of a.
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5. Conclusion and recommendations

The dynamic fluctuation model, which uses the scaling factor a
to reduce the non-ideal thermodynamic impact based on scal-
ing theory, was extended to ternary systems. The developed
model and the most common model currently in use, the
Maxwell–Stefan model, were compared to experimental mutual
diffusion data for the partially miscible system ethanol/toluene/
n-decane. The analysis showed that the Maxwell–Stefan
formulation inaccurately accounts for the thermodynamic
influence on diffusion, the same conclusion as that for binary
systems.9–11 The inaccuracy of the Maxwell–Stefan model for
both binary and ternary systems suggests that the key assump-
tions in its derivation, which are rooted in the kinetic theory of
gases, are invalid for highly non-ideal liquid systems.

Considering the shortcomings of the Maxwell–Stefan for-
mulation, molecular dynamic simulations are not an entirely
appropriate means for further diffusion model validation. The
developed model improves prediction of mutual diffusion;
in particular, using such model with local mole fractions,
to account for self-association of ethanol, substantially
improved the match between predicted and measured

diffusion coefficients. Thus, the model which best predicted
experimental results was one incorporating local compositions
into the hydrodynamic term, as well as a modulation of the
thermodynamic correction factor due to dynamic concen-
tration fluctuations, eqn (14). An interesting result is that
optimum a for the ternary system investigated is approximately
0.45. This is similar to the optimum a of 0.40 to 0.80 for a range
of binary systems previously investigated.10,11 This suggests
that the a scaling factor is uniform.

We note that further work is required to test the accuracy of
the ternary dynamic fluctuation model, and determine whether
or not the scaling factor a is uniform, as was the case for binary
systems.10,11 To reduce the uncertainties in thermodynamic
modelling and thus improve model discrimination, ternary VLE
data must be obtained for the chosen sample points at the
temperature of interest. Ternary VLE data is preferred over LLE
data, as VLE data can be obtained for partially miscible systems
at sample points outside the two-phase coexistence region.
Thus, more VLE data would allow the thermodynamics to be
accurately modelled within the region of interest; it would no
longer be an extrapolation from the two-phase coexistence
region, as is the case with using thermodynamic parameters
regressed from LLE data obtaining a high discrepancy between
the experimental data and the model extrapolation.

It is important to note that ternary systems are complex to
analyse, both in terms of experimental measurements of
mutual diffusion and determination of accurate thermo-
dynamic data and this is perhaps the reason why few systems
have so far been investigated. However, as shown in this work,
the use of the dynamic concentration fluctuation diffusion
model with local compositions for binary systems23 and its

Fig. 8 Comparison of the mutual diffusion data for ethanol (1)/toluene (2)/n-decane (3) at 25 1C using local mole fraction in both the dynamic
fluctuation model, eqn (14) with a = 0.45, and the traditional Maxwell–Stefan model against experimental data.

Table 4 The average absolute error for the mutual diffusivity diagonal and
cross-diagonal elements using the dynamic fluctuation model, eqn (14)
with the optimum a = 0.45, and the Maxwell–Stefan model with local mole
fractions for ethanol (1)/toluene (2)/n-decane (3) at 25 1C in 10�9 m2 s�1

Model D11 D12 D21 D22

Eqn (14) 0.233 0.283 0.459 0.089
MS 0.557 0.306 0.378 0.761
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extension to the ternary system in this work warrant further
investigation on other ternary systems.
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A. Appendix
Fractional power of matrix derivation

Let us assume that the square matrix A can be diagonalised via
eigenvalue decomposition and written as:

A = VLV�1 (A.1)

where L is a diagonal matrix featuring eigenvalues of A along its
diagonal, and V is the eigenfunction matrix of A. Then:

A2 = AA = VLV�1VLV�1 = VL2V�1 (A.2)

and, in general,

Aa = VLaV�1 (A.3)

Since L is a diagonal matrix, it follows that:

Lk ¼

lk1 0 � � � 0

0 lk2 � � � 0

..

.
0 . .

. ..
.

0 0 � � � lkn

2
666666664

3
777777775

(A.4)

For a general real-valued square matrix, the eigenvalues can
be negative or complex. In either of these cases, fractional
powers of the matrix might feature complex entries. In the case
of the diffusion matrix G raised to a:

Ga = VLaV�1 (A.5)

However, all entries are real since diffusion matrices are sym-
metric positive semidefinite matrices and possess real, non-
negative eigenvalues. Thus, fractional powers of diffusion
matrices make physical sense.

The ternary dynamic fluctuation model becomes:

[D] = [B]�1[G]a = [B]�1VLaV�1 (A.6)

The ternary dynamic fluctuation model just requires the
eigen decomposition of the thermodynamic matrix, G.

Ternary local mole fraction model derivation

For the general multicomponent system, the NRTL (Non Ran-
dom Two Liquid) model relates the local mole fraction of
molecule j and k in the immediate neighbourhood of molecule
i.26 To account for molecular association, the mole fraction of a

component in its own immediate vicinity, xii, replaces its bulk
mole fraction xi in the Darken mobility model, eqn (7), to yield:

xji

xki
¼ xj

xk

exp
�eijgji
RT

� �
exp

�eikgki
RT

� � (A.7)

where eij and eik are NRTL non-randomness parameters, and
gji and gki the energies of interactions.

For each bulk composition for a ternary system, there are
three local mole fraction relationships, eqn (A.7), and one local
mole fraction balance, eqn (A.8). This provides a set of four
equations that must be implicitly solved to yield the local mole
fractions for each ternary composition.

Xn
j¼1

xji ¼ 1 (A.8)

Nomenclature

a Eigenvalues weight parameter (—)
b Eigenvalues weight parameter (—)
B0 Baseline correction constant (mV)
B1 Baseline correction constant (mV)
B Hydrodynamic diffusion influence (m2 s�1)
B* Local composition hydrodynamic diffusion influence

(m2 s�1)
Ci Concentration of component i (mol m�3)
Ct Total molar concentration (mol m�3)
Dii Main diffusion coefficient of component i (m2 s�1)
Dij Cross diffusion coefficient of component i under the j

concentration gradient (m2 s�1)
Dj Eigenvalues (m2 s�1)
Ðij Maxwell–Stefan diffusion coefficient between i–j

(m2 s�1)
Di* Self diffusion coefficient of i (m2 s�1)
D̂ij Ideal mobility between i–j (m2 s�1)
f (x) Objective function (—)
f I

i Fugacity of i in phase I (—)
G Gibbs energy (J mol�1 K�1)
gij Energies of interaction between i–j pair of molecules

(J mol�1 K�1)
Ji Molar flux of i (mol m�2 s�1)
k Detector constant (mV)
M Total tie-lines (—)
N Number of collected experimental data (—)
Ptot Total pressure (bar)
Pvap

i Vapour pressure of i (bar)
r Pipe inner radius (m)
R Universal gas constant (J mol�1 K�1)
Ri Molar refractivities (m3 mol�1)
S Detector signal (mV)
Scalc Calculated detector signal (mV)
Sexp Experimental detector signal (mV)
t Time (s)
tR Retention time (s)
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T System temperature (K)
Tc Consulate temperature (K)
wi Mass fraction of i (—)
W1 Eigenvalues weight (—)
xi Mole fraction of i (—)
x̂i Activity coefficient model calculated mole fraction

of i (—)

Greek letters

a Dynamic fluctuation parameter (—)
a1 Fraction of the initial refractive index (—)
DCi Concentration difference between the stream and the

pulse of component i (mol m�3)
eij NRTL non-randomness parameter between i–j (—)
mi Chemical potential energy of i (J mol�1 K�1)
G Thermodynamic correction factor (—)
gi Activity coefficient of i (—)
t UNIQUAC i–j interaction parameter (—)
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