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Predictability of the onset of spiking and bursting
in complex chemical reactions

Marcus W. Beims abc and Jason A. C. Gallas bcd

For three complex chemical reactions displaying intricate dynamics, we assess the effectiveness of

a recently proposed quantitative method to forecast bursting and large spikes, i.e. extreme events.

Specifically, we consider predicting extreme events in (i) a copper dissolution model where Bassett and

Hudson experimentally observed homoclinic (Shilnikov) chaos, (ii) a model derived from the mass action

law of chemical kinetics, and (iii) an autocatalator model. For these systems, we describe how the

alignment of Lyapunov vectors can be used to predict the imminence of large-amplitude events and the

onset of complex dynamics in chaotic time-series of observables.

1. Introduction

The prediction of catastrophic events, outliers, is an enduring
problem that continues to attract attention in virtually all
scientific disciplines.1–3 Such extreme events are usually
quite disruptive and manifest themselves as large-amplitude
fluctuations in time-series of observables, either measured or
computed. A plethora of methods to anticipate the onset of
catastrophic events exist. Recently, we proposed a quantitative
criterion to predict larger-amplitude events in chaotic systems.4,5

The criterion is obtained by studying the alignment of Lyapunov
vectors (LVs), sometimes referred to as ‘‘covariant’’ Lyapunov
vectors. The norms of the LVs, called Lyapunov exponents (LEs),
measure the temporal expansion (or contraction) of the distance
between two initially very close trajectories. Positive LEs are the
signature of chaotic trajectories. We observed empirically4,5 that
a tangency between LVs occurs every time that an observable
under consideration tends towards its maximum. This tangency
is an alignment of Lyapunov vectors. In some cases the value of
the maximum is inversely proportional to the degree of the
vector alignment.

In the present paper, as a further application of the proposed
criterion,4,5 we investigate the reliability of the alignment
between Lyapunov vectors as a predictive tool in the context of
complex chemical phenomena. Specifically, we use Lyapunov
vectors to predict the onset of bursting and spiking in three

familiar reactions. The first reaction was considered in pioneer-
ing work in 1988 by Bassett and Hudson6 to reproduce aspects of
the experimental electrodissolution of a copper rotating disk in
a H2SO4/NaCl solution. The second reaction is a mass-action
model used to study the interplay of three interacting chemical
species.7,8 The third reaction is a popular autocatalator model
used to study complex oscillations in isothermal chemical
systems.9 In all three examples, we find the alignment between
Lyapunov vectors to be an effective predictor of extreme events.
In addition, we point out some pitfalls of the method and
discuss how to apply it effectively.

Lyapunov vectors provide a detailed step-by-step record of
what exactly happens with the angles between stable and
unstable manifolds during the whole evolution of a given
dynamical process. The computation of Lyapunov vectors is no
more complicated than the computation of standard Lyapunov
exponents and is well-described in the literature.4,5,10–15 In an
Appendix, we summarize the steps involved in their computa-
tion. As discussed below, it was observed heuristically4,5 that the
onset of large peaks in a given physical variable corresponds to
the alignment of LVs along the flow direction. Therefore, since
Lyapunov vector alignment precedes large peaks, it can be used
to predict the latter. It has been shown4 that predictability
using LVs is closely related to alignment conditions, obtained
by defining thresholds of how close LVs become tangent to the
flow direction. When the alignment conditions are satisfied at a
given time, called the prediction time, an extreme spike is expected
to occur. The appropriate definition of the alignment conditions
depends sensitively on the specific dynamics of the system.

For systems with long quiescent intervals between large spikes,
the alignment conditions are very useful to anticipate unexpected
large spikes. However, when numerous smaller spikes occur
between large spikes, the choice of the appropriate alignment
conditions can be tricky and some preparatory trial-error checks
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may be needed. In general, while small and large spikes can be
predicted by the alignment of LVs, large spikes correspond to
the prediction times where LVs are strongly parallel to the flow
direction. Thus, the amplitude of the predicted peaks is related
to how close the LV direction aligns along the flow direction.4

Apart from the chemical phenomena described by the models,
complex chemical reactions are governed by sets of differential
equations which are significantly different from the equations
so far considered and no knowledge concerning the interplay
of their Lyapunov vectors exists. Thus, it is of interest to verify
the predictive power of Lyapunov vectors in foretelling the
imminence of large-amplitude events in chemical time-series.
Here, we check predictions for three typical systems governed
by nonlinear differential equations involving different combi-
nations of polynomial terms. We computed LVs using the
methodology explained in detail in ref. 4 and 5. See also
ref. 10–14 and the survey in ref. 15.

2. Electrodissolution of copper

In 1988, Bassett and Hudson6 performed a series of experi-
ments on the electrodissolution of a copper rotating disk in a
H2SO4/NaCl solution. They reported evidence of homoclinic
(Shilnikov) chaos in their experimental time-series. Among this
evidence, they presented a comparison of their time-series with
those obtained from a mathematical model considered previously
by Argoul et al.,16 in a discussion concerning homoclinic chaos
in the Belousov–Zhabotinski reaction. The model is defined by
the following three-dimensional flow

:
x = y, (1)

:
y = z, (2)

ż = �z � 1.3y � mx + x2 � 1.425y2 + 0.2xz � 0.01x2z. (3)

Here, (x, y, z) represent chemical concentrations and ( :x, :y, ż) are
their corresponding time derivatives. For mo 1.3 the origin is a
stable steady state and for m = 1.3 a subcritical Hopf bifurcation
occurs where the stable state becomes unstable and Shilnikov
chaos appears.

Fig. 1 shows the chaotic attractor for m = 1.4 and initial
conditions (�0.1, �0.1, 1.0). The attractor is obtained by
solving eqn (1)–(3) numerically with the standard fourth-order
Runge–Kutta algorithm and a fixed time-step h = 0.005. The
first 107 steps were discarded as transient, with LVs computed
subsequently for approximately 9.6 � 106 steps. The Lyapunov
exponents li (i = 1, 2, 3) are l1 = 0.234, l2 = �0.0013, and
l3 = �2.739, where the subindex i = 1 refers to the unstable
direction, i = 2 to the flow direction and i = 3 to the stable
direction. Accordingly, y12, represented in colors in Fig. 1, is the
angle between the unstable manifold and the flow direction.
We observe that along the attractor the angle y12 can change
substantially.

In order to get a more quantitative insight concerning the
ability of the alignment of LVs to anticipate spikes, Table 1
summarizes some statistical results. For this end, we consider

the chaotic trajectory from Fig. 1 which has 2192 spikes over
the integrated times, and say that there is a spike whenever
x o �9.0 and an extreme spike when x o �15.0. To explain the
quantities in Table 1, let us start by discussing the third line,
which is the alignment condition displayed in Fig. 2. From the
sample of 2192 spikes, Npp = 1693 of them were predicted,
which is around 76.3% of the total number of spikes. However,
Nfa = 686 (41.0%) from the 1693 predicted spikes are false
alarms, meaning that 1007 spikes are not extreme. False alarms
are those alarms which predicted spikes with small amplitudes,
i.e. predicted non-extreme spikes. From the total number
2192 � 1693 = 499 of non-predicted spikes, Next = 181 of them
were extreme spikes. Thus, for this alignment condition the
method did not predict 181 extreme spikes. Such a large
value of non-predicted extreme spikes has to be avoided. All
predicted extreme spikes have an associated prediction time
interval Dtp, which can be large or short. The prediction time
interval is defined as the absolute value between the prediction
time and the time for which the extreme spike occurs. While
large prediction time intervals are most welcome to allow
preparation to meet the extreme events, short prediction time
intervals can bring difficulties for such preparations. In other

Fig. 1 Representative attractor for the model of dissolution of copper,
eqn (1)–(3), with colors representing the values of the angle y12 between
the unstable invariant manifold and the flow direction.

Table 1 Statistics for the chaotic trajectory with 2192 peaks (x o �9.0) for
distinct values of thresholds y(min)

12 and y(max)
12 . The quantities are: Npp, the

number of predicted spikes; Nfa, the number of false alarms, i.e. predicted
spikes with smaller amplitudes (x 4 �15.0); Next, the number of non-
predicted extreme spikes (x o �15.0) and Dtp, the average prediction
time interval

y(min)
12 y(max)

12 Npp Nfa Next Dtp

0.05 3.09 759 (35%) 315 (41%) 725 19.1
0.10 3.04 1205 (55%) 484 (40%) 447 17.4
0.14 3.0 1693 (76%) 686 (41%) 181 15.2
0.20 2.94 1933 (88%) 795 (41%) 30 14.1
0.30 2.84 2146 (98%) 982 (45%) 4 15.1
0.50 2.64 2186 (99%) 1022 (47%) 4 18.2
0.70 2.44 2187 (99%) 1022 (47%) 3 20.4
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words, for very short prediction time intervals there may not
be enough time to prepare for the impingent extreme events.
To quantify this, the last row displays the mean prediction time

interval Dtp ¼ 15:2.
To better understand the relevance of y12, Fig. 2 shows a

time-window displaying the variable x (black curve) from the
chaotic attractor from Fig. 1. The angle y12 is plotted in the red
color. Apart from some small amplitude oscillations, y12 tends
to 0 or p before spikes appear in variable x. This means that the
peaks in x can be predicted in time if we define thresholds
for y12, namely y(min)

12 and y(max)
12 . The two horizontal blue lines

in Fig. 2 are illustrative thresholds for this trajectory, namely
y(min)

12 = 0.14 and y(max)
12 = 3.0. Instants of time where y12 crosses

these thresholds (i.e., y12 o 0.14 or y12 4 3.0) are called
prediction times and a large spike in x is expected to occur.
Three such examples are indicated with black arrows in Fig. 2,
the arrows chosen subjectively, for illustration purposes. For the
first two arrows on the left we have y12 4 3.0 and for the arrow
on the right y12 o 0.14, and they precede the large spikes with
x o �15. The thresholds define the alignment condition for the
LV along the flow direction and allows us to predict the spikes.
The effectiveness to predict spikes may change for different
alignment conditions, as discussed below in more detail.

The overall message from Table 1 is that for stronger
alignment conditions the number of non-predicted spikes
increases, specially the extreme spikes, Next. If the alignment
conditions are relaxed, the number of predicted peaks increases
but the number of false alarms also increases. Comparing the
stronger alignment conditions with the more relaxed condition,
Npp increases by around 65.2% but Nfa increases by only 5.2%.
In fact, more relaxed alignment conditions lead to longer pre-
diction time intervals. The selection of a suitable threshold
depends very much on what is needed for practical purposes.
For example, if we want to avoid all extreme spikes, we should
chose an alignment condition consistent with Next - 0. In this
case the appropriate alignment condition would be y(min)

12 = 0.7
and y(max)

12 = 2.44. On the other hand, if the large peaks provoke
no major damage, one may accept some such peaks together
with the condition to prevent a repetition of false alarms. This
means, a compromise must be found between allowing some
large peaks while at the same time not allowing the number of

false alarms to dominate. To find such a compromise, one may
consult Table 1 and select the suitable alignment condition
providing an adequate balance. In such case, an adequate
alignment condition would be y(min)

12 = 0.20 and y(max)
12 = 2.94.

3. Mass-action kinetics

In the next example, we revisit a chemical model introduced by
Gaspard and Nicolis7,8 to study homoclinic phenomena. The
dimensionless governing equations are

:x = (bx � fy � z + g)x, (4)

:
y = (x + sz � a)y, (5)

eż = x � az3 + bz2 � cz. (6)

As before, of interest is the temporal evolution of the concen-
trations (x, y, z), which depend on the control parameters a, b, e,
f, g, s, c, a, b. As usual, we kept fixed the constants a = 0.5, b = 3,
e = 0.01, f = 0.5, g = 0.6, s = 0.3 and c = 4.8 and change the pair
(a, b). Fig. 3 displays the chaotic attractor for a = 0.7825 and
b = 0.55, starting from the initial condition (x, y, z) = (1, 1, 1).
Colors represent the values of the angle y12 for each point
on the attractor. The attractor consists of a chaotic trajectory
with Lyapunov exponents l1 B 0.13, l2 B 0.0005 and l3 B�544.
Accordingly, the angle y12 is the angle between the unstable
manifold and the flow direction. The trajectory from Fig. 3 and
all subsequent simulations in this section were obtained by
solving eqn (4)–(6) numerically with the standard fourth-order
Runge–Kutta algorithm with a fixed time-step h = 0.00005. The
first 107 steps were discarded as transient, with LVs computed
subsequently for approximately 107 steps.

The trajectory forming the attractor in Fig. 3 starts parallel to
the xy plane with a chaotic spiraling-out motion, with the
angles y12 oscillating between p/4 (cyan) and p/2 (green), while
the reinjection loops are shown in black and red, associated
with y12 approaching either 0 or p, respectively.

Fig. 2 A time window displaying the evolution of x (black curve), of y12

(red), and two straight lines (blue) indicating the values of y(min)
12 = 0.14 and

y(max)
12 = 3.0 for the alignment condition.

Fig. 3 Chaotic attractor governed by the mass-action kinetics, eqn (4)–(6),
with colors representing the angle y12 as indicated by the colorbar.
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To better understand the time evolution of y12, Fig. 4 pre-
sents the evolution of z (black lines) and the associated LV
angle y12 (red lines) for a regular trajectory in Fig. 4(a) and for a
chaotic trajectory in Fig. 4(b). By ‘regular’ trajectory we mean a
trajectory which has no positive Lyapunov exponent. In both
cases, regular and chaotic, the LV angle y12 oscillates fast in
time but tends to approach 0 or p before the spikes in z are
observed. This means that the peaks in z can be predicted
in time when introducing suitable thresholds for y12, namely
y(min)

12 and y(max)
12 . As exemplified in Fig. 4, the two horizontal

blue lines indicate thresholds for these trajectories, namely
y(min)

12 = 0.1 and y(max)
12 = 3.04 for the regular case and y(min)

12 = 0.5
and y(max)

12 = 2.64 for the chaotic case.
In order to choose adequate thresholds for these trajectories, a

statistical analysis of the spikes must be performed, as done in the
next paragraph. When y12 crosses these thresholds, spikes in z are
to be expected. We note that y12 tends to approach 0 or p not only
before the large spikes, but also before the small spikes. The
crucial distinction is that, preceding large spikes, the angle comes
closer to 0 or p than before the small spikes. From a physical point
of view, our results show that each time the unstable (chaotic
case) and the stable (regular case) manifolds align along the
direction of motion, a spike in the z concentration is expected.

Fig. 4 also shows that, far from spikes, the angle y12

oscillates in time. Such oscillations occur when the eigenvalues
of the Jacobian matrix are complex and no invariant manifolds
exist. In fact, manifolds rotate and the angles oscillate in time.
This oscillatory behavior was observed and explained for

specific parameter values of the Hénon map.5 Analogous
angle oscillations were reported recently for interesting critical
transition problems,17 although no explanation concerning the
origin of the oscillations was given there.

The results above suggest that for times called prediction
times, as exemplified in Fig. 4 by black arrows, it is possible to
anticipate the imminent occurrence of a spike. It also becomes
clear that prediction time intervals, defined as the absolute
values between the prediction times and the times for which
the extreme spike occurs, depend on the thresholds chosen.

Similar to before, Table 2 summarizes some statistical results.
For this we consider the chaotic trajectory which has 549 spikes
during the integration interval. We say that there is a spike when
z 4 0.9 and an extreme spike when z 4 3.0. Let us start to discuss
the first line, which has a very strong alignment condition. From
the total of 549 spikes, Npp = 526 of them were predicted. However,
Nfa = 33 from the predicted spikes are false alarms, meaning that
the 33 spikes are not extreme (z o 3.0). From the 549 � 526 = 23
non-predicted spikes, Next = 16 are extreme spikes. The last row

displays the mean prediction time intervals Dtp.
The general behavior presented in Table 2 is similar to the

one in Table 1. For strong alignment conditions the number of
non-predicted spikes increases, especially the number Next of
extreme spikes. If the alignment conditions are relaxed, there is
an increase in the number of predicted peaks as well as in the
number of false alarms. However, the percentage of false alarms
is much smaller here. Comparing the stronger alignment con-
ditions with the more relaxed condition, one sees that Npp

increases by 4.2% while Nfa increases by only 1.0%. More relaxed
alignment conditions require longer prediction time intervals,
excluding almost all shorter (o1.0) prediction time intervals.

As discussed in the previous section, the appropriate align-
ment condition depends on what is sought in practical situa-
tions. If we again want to find a compromise between allowing
some large peaks while at the same time not allowing the
number of false alarms to dominate, consulting Table 2 the
suitable alignment condition providing an adequate balance
is y(min)

12 = 0.03 and y(max)
12 = 3.11.

4. The autocatalator model

Next, we consider the use of LVs to predict outliers in the
complex oscillations generated by the isothermal chemical

Fig. 4 Time window showing the variable z (black lines) and y12 (red lines)
for part of (a) a regular trajectory with parameters a = 0.7825 and
b = 0.39213 and (b) the chaotic trajectory from Fig. 1. Two horizontal blue
lines indicate thresholds to predict spikes and the two black arrows show
two prediction times where y12 crosses the thresholds.

Table 2 Statistics for the chaotic trajectory with 549 peaks (z 4 0.9) for
distinct values of thresholds y(min)

12 and y(max)
12 . The number of extreme spikes

(z 4 3.0) for this trajectory is 509. The quantities are: Npp, the number of
predicted spikes; Nfa, the number of false alarms, i.e. predicted spikes with
smaller amplitudes (z o 3.0); Next, the number of non-predicted extreme
spikes (z 4 3.0) and Dtp, the average prediction time interval

y(min)
12 y(max)

12 Npp Nfa Next Dtp

0.01 3.13 526 (95.8%) 33 (6.3%) 16 14.7
0.02 3.12 543 (98.9%) 37 (6.8%) 3 16.9
0.03 3.11 549 (100%) 40 (7.3%) 0 17.4
0.04 3.10 549 (100%) 40 (7.3%) 0 17.6
0.50 2.64 549 (100%) 40 (7.3%) 0 18.6
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system governed by the following four-parameter autonomous
polynomial model9

da
dt
¼ mðkþ gÞ � a b2 þ 1

� �
; (7)

db
dt
¼ 1

s
a b2 þ 1
� �

� b
� �

; (8)

dg
dt
¼ 1

d
ðb� gÞ; (9)

where a, b, g are dimensionless concentrations and m, k, s, d are
control parameters of the reaction.

Fig. 5 displays the attractor for the typical parameters
k = 2.5, d = 1, m = 0.2983 and s = 0.013 using the initial
condition (a, b, g) = (0.5, 2.5599, 0.5). As before, colors represent
the values of the angle y12 for each point on the attractor. The
attractor is formed by a chaotic trajectory with Lyapunov
exponents l1 B 0.755, l2 B 0.002 and l3 B �11.117. The
attractor in Fig. 5 and in subsequent simulations was obtained
by solving eqn (7)–(9) numerically with the standard fourth-
order Runge–Kutta algorithm and a fixed time-step h = 0.05.
The first 107 steps were discarded as transient, with LVs
computed during the next 6 � 106 steps. For better visualiza-
tion, only 12% of these points were plotted in Fig. 5. The angle
y12 changes along the attractor. The rightmost green ridge
clearly visible in Fig. 5 is related to angles close to p/2 and
corresponds to strong hyperbolic motion.

Fig. 6 presents a time-window of the evolution of b
(black lines) and associated LVs for the chaotic trajectory from
Fig. 5. Fig. 6(a) presents the angle y12 between the unstable
manifold and flow direction, while Fig. 6(b) displays the angle
y23 between the stable manifold and flow direction. Besides the
very fast variations of these angles, they assume values close to
0 and p for almost all integrated times.

Next, we consider a regular trajectory obtained for k = 2.5,
d = 1, m = 0.29776 and s = 0.013 and initial conditions
(a, b, g) = (0.5, 0.25599, 0.5). The Lyapunov exponents for this

case are l1 B 0.003, l2 B �0.914 and l3 B �16.16. Therefore
the angles y12 and y13 are the angles between stable manifolds
along the flow direction. The time evolution of the concentration
b is shown in Fig. 7 (black lines) with colors representing the
angle y12 obtained along the trajectory. Results are analogous to
the chaotic case discussed above, also for y23. Since for the
autocatalator the variables y12 and y23 show essentially the same
behavior, we use y23 to show that the prediction method also
works when using angles between other manifolds.

In sharp contrast to the reaction considered in Sections 2
and 3, here the variable of interest, namely the concentration b,
never relaxes to random quiescent intervals. It always increases
towards a peak (large or not) and decreases very fast to a
minimum. After each minimum, b promptly starts to increase
towards the next maximum, while y12 and y13 tend to approach

Fig. 5 Attractor for the autocatalator, eqn (7)–(9), with colors represent-
ing the angle y23.

Fig. 6 Time evolution of the concentration b (�3) (black lines) for a
chaotic trajectory and (a) the angle y12 (red line) and (b) y23 (green line).

Fig. 7 Time evolution of the concentration b (black lines) for a regular
trajectory and (a) the angle y12 (red line) and (b) y13 (green line).
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0 or p, usually right after the minimum. This is the alignment
of both stable and unstable manifolds along the direction of
motion and precedes the appearance of a peak. This is in
agreement with our recent proposal4 that the alignment of
LVs along the flow direction precedes peaks in a chaotic
dynamical system. Therefore all peaks in the concentration b
can be easily predicted by the angles y12 and y13. However, since
the concentration b always goes, after the minima, towards the
peaks, the alignment of LVs to predict peaks is not necessary in
this case. In fact, the dynamics is apparently strongly non-
hyperbolic for all the duration of the integration.

For all three models considered here, the alignment of LVs
is able to predict all peaks during the time evolution, large or
not. Therefore, while the comparatively large number of false
alarms found in Section 2 (B46.7%) is compatible with this
detection power, false alarms found in Section 3 (B7.3%) are
acceptable. However, this seemingly negative aspect of the
method can be essential to predict spikes in systems where
the quiescent motion does not give any indication that a spike
will appear. For example, in the quiescent intervals shown in
Fig. 2 and 4, the plotted quantities x and z, respectively, present
some smaller spikes with increasing amplitudes which indicate
that an extreme spike might appear. All these smaller spikes are
detected by the alignment of LVs and lead to false alarms.
Sometimes, the time evolution of the observed quantities x, z
and b in the examples above provides clues that a large spike
will appear. But the difficult situation is when such clues are
not found in the time evolution. In this circumstance, LV
alignment is quite helpful to predict large spikes. Comparing
results for the two systems in Sections 2 and 3, one sees that
when the alignment conditions are relaxed, the number of
predicted peaks increases much more than the number of false
alarms. In addition, the number of unpredicted extreme spikes
tends to zero very fast. All in all, for the reactions considered,
the LV alignment is able to foretell the imminence of spikes.

5. Conclusions and outlook

This work assessed the alignment of LVs as a quantitative tool to
predict large-amplitude spikes in three chemical models governed
by distinct polynomial dynamics. For the models in Section 2
and 3, the time evolution of the concentrations presents random
intervals of quiescent motion. In these cases, large events are
unpredictable by analyzing just the time evolution of the concen-
trations. Here, LVs are very helpful to predict spikes. In the model
presented in Section 4 the concentrations oscillate continuously
between minima and maxima. There is no relaxation and the
arrival of spikes can be recognized by the time evolution of the
concentrations. The three examples considered show that
the alignment of Lyapunov vectors along the flow direction
provides a straightforward and reliable quantity to predict
small and large events for typical chemical reactions.

The LV alignment as a spike prediction method is expected
to be very general since it is able to detect all spikes. It is
particularly useful when random intervals of quiescent motion

are present in the time evolution of the concentrations. Due to
the lack of analytical results, the relationship between the LV
alignment and extreme events in dynamical systems must be
tested for each particular case. An open challenge is to devise a
way to apply LVs (i) to observational data, namely, for data
which lack an underlying mathematical framework, and (ii) to
realistic systems where the presence of noise is inevitable.
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Appendix – numerical procedure

The most unstable direction of a chaotic trajectory can be deter-
mined from the direction of the eigenvector related to the largest
LE, obtained as an eigenvalue of the Jacobian matrix of the system.
The procedure for obtaining it is well known and widely used in
the nonlinear and complex systems community and an explicit
numerical code for the determination of Lyapunov exponents is
given by Wolf et al.18 It involves a Gramm–Schmidt (GS) ortho-
normalization procedure which, unfortunately, destroys the infor-
mation about the direction of all eigenvectors not related to the
largest Lyapunov exponent. To compensate for this loss, a method
proposed by Ginelli et al.,14 based on forward and backward time
integrations, allows one to recover the direction of all unstable and
stable invariant manifolds. This procedure is somewhat time
consuming but very precise. In order to obtain stable and unstable
directions in phase space we need to perform (i) forward and
(ii) backward time evolutions:

(i) The procedure summarized here is well known and uses
ordinary differential equation (ODE) integrators and the afore-
mentioned numerical code,18 based on the GS orthonormalization
procedure. For the forward time evolution we integrate the equations
of motion for variables (:x, :y, ż) (eqn (1)–(3), for example), together
with their corresponding linearized equations

Dxðtþ hÞ

Dyðtþ hÞ

Dzðtþ hÞ

0
BBB@

1
CCCA ¼ JðtÞ

DxðtÞ

DyðtÞ

DzðtÞ

0
BBB@

1
CCCA; (10)

with the Jacobian matrix

JðtÞ ¼

@ _x

@x

@ _x

@y

@ _x

@z

@ _y

@x

@ _y

@y

@ _y

@z

@ _z

@x

@ _z

@y

@ _z

@z

0
BBBBBBBBB@

1
CCCCCCCCCA

: (11)

Eqn (10) governs the time evolution in the tangent space.
Choosing Dx(0) = a(1)

0 , Dy(0) = a(2)
0 and Dz(0) = a(3)

0 , as an initially
orthonormal basis G0 = (a(1)

0 ,a(2)
0 ,a(3)

0 ), the evolution in tangent
space up to a time t = nh (n = 0, 1, 2, 3,. . .) is then obtained from

G̃n = JnG0, (12)

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
Ju

ne
 2

01
8.

 D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 7
:4

9:
24

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8cp02884b


This journal is© the Owner Societies 2018 Phys. Chem. Chem. Phys., 2018, 20, 18539--18546 | 18545

where Jn = Jn�1,Jn. . .J0 is the product of the Jacobian matrix of
the map evaluated for every orbital point at times t = nh. The
subscript represents the number of iterations with time step h.
It is implicit here that at the initial iteration (n = 0) we have
already computed the orbit for a sufficiently long time (forward
transient time) so that the orthonormal basis of the tangent
space converged already to the asymptotic Gram–Schmidt
vectors.11 In the numerical code,18 there are three sets of
linearized equations, one for G0 = (1, 0, 0), one for G0 = (0, 1, 0)
and the last one for G0 = (0, 0, 1). To avoid divergences, the
matrix G̃n is renormalized for each step. As usual, this can be
done by the QR decomposition

G̃n = GnRn. (13)

The matrix Rn is upper-triangular

Rn ¼

g
ð1Þ
n � að1Þn g

ð1Þ
n � að2Þn g

ð1Þ
n � að3Þn

0 g
ð2Þ
n � að2Þn g

ð2Þ
n � að3Þn

0 0 g
ð3Þ
n � að3Þn

0
BBBB@

1
CCCCA
; (14)

and contains the information obtained in the GS orthonorma-
lization procedure of G̃n. Here, Gn = (a(1)

n ,a(2)
n ,a(3)

n ) are the
GS vectors before the orthonormalization at iteration n and
(g(1)

n ,g(2)
n ,g(3)

n ) are the GS vectors after the orthonormalization.
Since g(1)

n , g(2)
n and g(3)

n are orthonormal by construction, they
can only provide information about the local rates of expansion
(contraction) of the vectors, stored in the diagonal elements of
Rn, from which the standard Lyapunov vectors can be obtained.
The correct direction of the eigenvectors of the Jacobian matrix
were corrupted by the orthonormalization procedure. They can
be recovered by the backward integration, as shown below.

(ii) The essential property is that for the backward time
evolution the unstable direction is the stable direction from the
forward time evolution. Thus, in the backward evolution the
Lyapunov vector related to the largest Lyapunov exponent
points along the stable direction from the forward evolution.
In this way we define the Lyapunov vectors as

v(1)
n = c(1,1)

n g(1)
n , (15)

v(2)
n = c(1,2)

n g(1)
n + c(2,2)

n g(2)
n , (16)

v(3)
n = c(1,3)

n g(1)
n + c(2,3)

n g(2)
n + c(3,3)

n g(3)
n . (17)

Since g(1)
n , g(2)

n and g(3)
n were computed in the forward time

evolution, the coefficients c( j,i)
n can be determined from the

dynamics in tangent space for the backward direction. In the
matrix form we have Cj�1 = Rj

�1Cj, where Rj
�1 is the inverse of

the Rj matrix. The time j starts to count after the backward
transient, which is the time in the backward evolution suffi-
ciently long to converge the tangent initial conditions close to
the LVs. The LVs have normalized length so that the columns of
Cj must be normalized to 1. The initial condition for Cn, before
starting the backward evolution, can be a generic nonsingular
upper triangular matrix, which is the GS basis. Finally, the
angles between LVs are calculated from yij = cos�1(v(i)

n �v( j)
n ).

Since in this work we use a fourth-order Runge–Kutta inte-
grator, the error in the variables is around h5, which is negligible
for the time steps h that we use. As convenient rules of thumb,
one has to chose time steps small enough compared to the
relevant oscillations of the system. For example, the peaks in
Fig. 4 occur for small intervals of time, around Dt B 0.4. Thus, to
compute many points along such a short peak, we used h = 5� 10�5

so to have around 8000 for each peak (not all plotted here). Once the
above compromises are satisfied, the predictions are independent
of the time step. On the other hand, the number of steps is more
related to how much computational time is available or, in our case,
how many peaks are needed to have a reliable statistical analysis.
The precision of Lyapunov vectors is more dependent on the
transient times than on other parameters.

It is worth mentioning that in general there is no need to
realize the backward time evolution. It is enough to determine
the unstable direction from the forward evolution and compare
it to the flow evolution direction. Below, we present in sche-
matic form the main steps used to determine Lyapunov vectors.
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