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Influence of quasi-particle density over polaron
mobility in armchair graphene nanoribbons

Gesiel Gomes Silva,ab Wiliam Ferreira da Cunha,b

Rafael Timóteo de Sousa Junior, c Antonio Luciano Almeida Fonseca,d

Luiz Antônio Ribeiro Júnior *de and Geraldo Magela e Silvab

An important aspect concerning the performance of armchair graphene nanoribbons (AGNRs) as materials for

conceiving electronic devices is related to the mobility of charge carriers in these systems. When several

polarons are considered in the system, a quasi-particle wave function can be affected by that of its neighbor

provided the two are close enough. As the overlap may affect the transport of the carrier, the question

concerning how the density of polarons affect its mobility arises. In this work, we investigate such dependence

for semiconducting AGNRs in the scope of nonadiabatic molecular dynamics. Our results unambiguously

show an impact of the density on both the stability and average velocity of the quasi-particles. We have found

a phase transition between regimes where increasing density stops inhibiting and starts promoting mobility;

densities higher than 7 polarons per 45 Å present increasing mean velocity with increasing density. We have

also established three different regions relating electric field and average velocity. For the lowest electric field

regime, surpassing the aforementioned threshold results in overcoming the 0.3 Å fs�1 limit, thus representing a

transition between subsonic and supersonic regimes. For the highest of the electric fields, density effects alone

are responsible for a stunning difference of 1.5 Å fs�1 in the mean carrier velocity.

Introduction

In recent years, graphene has attracted great interest from the
scientific community due to its electronic properties such as
high electric conductivity, as well as to the possibility of
implementing alternative technology for electronic devices.1–6

It is well known that a whole pristine graphene sheet has no
bandgap,7 which is an undesirable trait for the development of
electronics devices based on semiconductor technology. As
derived structures, armchair graphene nanoribbons (AGNRs)
are strips extracted from graphene sheets. Interestingly, AGNRs
may have a finite bandgap varying according to the width of the
nanoribbons.8 Such nanoribbons are usually classified into
different families depending on their width. Considering the
number of sites that compose the ribbon width, AGNRs can be
of 3p, 3p + 1 and 3p + 2 nature, for a given integer p. As only
AGNRs of the 3p and 3p + 1 families show semiconducting

gaps, these are the most important class of nanoribbons as far
as electronics is concerned.9

Generally, simulations aiming to investigate charge dynamics
in AGNRs consider the presence of a single quasi-particle. This
kind of assumption is undoubtedly a simplification but a useful
one, for it allows one to gain a deep phenomenological under-
standing of the charge behavior through the chain,9 how it may
interact with defects,10 and the generation mechanism of charge
carriers,11 among many other insights. If, on the other hand, one
is concerned with the actual development of new nanodevices,
the first step is to assess the behavior of the system when more
than one charge carrier is present. This is because actual devices
typically use high charge carrier densities. Logically, the quasi-
particles will interact with each other and both charge localiza-
tion and lattice deformation ought to be altered. Even more
critical, as a result, when a considerable density of charge
carriers is present, the dynamics of the system as a whole might
be severely affected. Thus, considering higher densities is a
decisive step towards developing a more realistic model. In this
sense it is a requisite condition for the development of AGNR
technology to investigate how charge carrier density can impact
charge dynamics in these structures.

A similar reasoning has encouraged Ribeiro12 and coworkers
to investigate how the concentration of charge carriers is relevant
to the dynamics of oppositely charged polaron recombination in
conjugated polymers. They showed the dependence of their
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SE-581 83 Linköping, Sweden. E-mail: luiju@ifm.liu.se

Received 13th April 2018,
Accepted 21st May 2018

DOI: 10.1039/c8cp02373e

rsc.li/pccp

PCCP

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
M

ay
 2

01
8.

 D
ow

nl
oa

de
d 

on
 6

/2
6/

20
25

 1
1:

42
:3

6 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

http://orcid.org/0000-0003-1101-3029
http://orcid.org/0000-0001-7468-2946
http://crossmark.crossref.org/dialog/?doi=10.1039/c8cp02373e&domain=pdf&date_stamp=2018-06-07
http://rsc.li/pccp
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c8cp02373e
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP020024


This journal is© the Owner Societies 2018 Phys. Chem. Chem. Phys., 2018, 20, 16712--16718 | 16713

results on the initial concentration of charge carriers and the electric
field strength. The group has also13 investigated the relation between
the appearance and stability of polarons with different values of the
electron–phonon coupling constant in AGNRs. They showed that the
characteristic value of the coupling constant for the appearance of
the polaron depends on the width of the AGNR. It was also verified
that the velocity of polarons in an AGNR decreases when the
coupling constant increases. This result is especially accentuated
when the electric field strength is high. In another theoretical
contribution14 it was verified that an increase in the electron–
phonon coupling constant favors the localization of the polaron
charge in an AGNR. The studies of the charge dynamics for families
3p and 3p + 1 of AGNRs showed that the polaron mobility reduces
when the coupling constant increases. Naturally these results are
linked: a greater polaron charge localization leads to a decreased
polaron mobility. Another result demonstrated was about the
polaron saturation velocity. For a given value of the coupling
constant, the polaron saturation velocity increases with the nano-
ribbon width. Johansson and Stafström15 studied the relationship
between polaron velocity in a one-dimensional conjugated polymer
chain and the electric field intensity. It was found that for an electric
field intensity less than 0.135 mV Å�1, the polaron velocity is slightly
below the velocity of sound in this polymer chain. Furthermore,
there is an apparent discontinuity in the velocity of the polaron,
whereby for fields slightly larger than this limit, the velocity of the
polaron would go to a supersonic regime. We conclude that a similar
investigation considering the effects of charge carrier density and
electric field on the transport properties of AGNRs is highly required.

In this work our goal is to study how quasi-particle density
impacts the velocity of these very carriers in AGNRs of the 3p + 1
family. The simulations were performed with different inten-
sities of electric field, in order to investigate the influence of
electric field intensity when more than one quasi-particle is
considered on the charge dynamics on the AGNRs. In addition,
we describe a phase transition for the velocities of the quasi-
particles from subsonic to supersonic regimes. In AGNRs, as in
conjugated polymers, several kinds of quasi-particle may arise
as a result of the coupling between the electronic and the lattice
degrees of freedom. Among these quasi-particles, the most
usual one that serves as charge carrier is the polaron.16 A
polaron is constructed in our system by removing an electron
from the highest occupied molecular orbital (HOMO) and then
self consistently solving the model equations. In the present
work, we make use of a modified hybrid tight-binding 2D
model that includes lattice relaxation in a first order expansion.
Thus, we simultaneously treat coupled electrons and phonons.
The system is evolved by employing a molecular dynamics
approach in the scope of the Ehnrenfest methodology. The
electrons are treated using the Schrödinger equation and for
the lattice we used Euler–Lagrange equations.

Methodology

We make use of a hybrid two-dimensional model Hamiltonian
in which the lattice is classically treated and p-electrons are

treated in the second quantization formalism. An electron–
phonon coupling constant is included in an otherwise tight-
binding Hamiltonian, thus connecting electrons and phonons
by introducing relaxation effects to the lattice. As a result of this
coupling, quasi-particles are allowed to occur. Because the lattice
displacements are considerably small, amounting to oscillating
displacements of not much more than 2%, s-bonds are treated
in an harmonic approximation. This very argument can also be
used to justify considering the hopping integral associated with
p-electrons in a first order expansion according to:

tij = t0 � ayij. (1)

In eqn (1) t0 is the hopping integral traditionally employed
by pure tight-binding models. yij stands for the variation of the
bond length between two arbitrary neighboring i and j sites.
a is the aforementioned electron–phonon coupling constant,
responsible for the connection between the degrees of freedom
of the electrons and lattice. The values used for these constants
are 2.7 eV and 4.1 eV Å�1, respectively, the choice of which was
consistent with that accepted in the literature.17,18

In this work, the electric field plays an important role in
driving the polarons throughout the lattice. This excitation is
introduced into the system by modifying eqn (1), i.e., performing
a Peielrs substitution on the phase factor to included a time-
dependent vector potential19 as follows:

tij = e�igA(t)(t0 � ayij). (2)

Here, g � ea/h�c, a is the lattice parameter, e is the absolute
value of electronic charge and c is the velocity of light. The time-
dependent electric field is related to the vector potential by

~EðtÞ ¼ ð�1=cÞ _~AðtÞ. It should be noted that we decided to turn
the field on adiabatically because an abrupt implementation
would lead to the artificial inclusion of numerical errors, thus
causing further non-physical destabilization of the lattice.

The Hamiltonian of the system can be expressed by

H ¼ �
X
hi; ji;s

tijC
y
i;sCj;s þ tij

�Cyj;sCi;s

� �
þ 1

2

X
hi; ji

Kyij
2 þ 1

2

X
i

ðPiÞ2
M

:

(3)

i and j index two arbitrary neighboring sites according to Fig. 1,
which represents a section of a considered nanoribbon.

C†
i,s is the creation operator of a p-electron with spin s in the

i-th site and Cj,s is the annihilation operator of a p-electron with
spin s in the j-th site. K is the elastic harmonic constant, whose
value was set to 21 eV Å�2.17,20 The kinetic energy of the sites is
written in terms of momenta of the sites Pi, where M is the mass
of each site. All the interactions considered in the systems are
described by means of this model Hamiltonian. Therefore, on
solving the equations of motion we do not need to carry out any
other further modification of the system.

From an initial set of coordinates, yij, and the first term of
eqn (3), an initial electronic Hamiltonian can be constructed.
The initial self-consistent state is obtained through the diagonaliza-
tion of this electronic Hamiltonian coupled with the equation of
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motion of the lattice given by
@hLi
@yi
¼ 0, in an initial static

configuration. This solution consists of obtaining the eigenvalues
(energies Ek) and eigenvectors (wave functions cj,k) and the corres-
ponding bond variations yij at the initial time.

The iterative solution of the stationary case consists of
repeating this process self-consistently until a given conver-
gence criterion is met. At the end of this process an initial self-
consistent state related to the degrees of freedom of both the
electrons and the lattice is obtained.

By considering eqn (3), one can construct the Lagrangian of the
system. It follows that the solution of the lattice can be classically
obtained through the associated Euler–Lagrange equation:

d

dt

@hLi
@ _yi

� �
� @hLi

@yi

� �
¼ 0: (4)

hLi represents the expected value of the Lagrangian with the
total wave function of the system, hC|L|Ci, obtained from the
diagonalization of the electronic Hamiltonian:

hLi ¼ 1

2

X
i

Pi
2

M
� 1

2

X
hi; ji

Kyij
2 þ

X
hi; ji;s

e�igAðtÞ t0 � ayij
� �

Bij þ c:c:
h i

;

(5)

where

BijðtÞ ¼
X0
k;s

c�k;sði; tÞck;jð j; tÞ: (6)

In the last equation the sum is carried out over the occupied
states only. Eqn (6) represents the terms that link the classical
and quantum parts of the solution.

The time evolution of the system from the self consistent
initial state is obtained through the solutions of the time-
dependent Schrödinger equation for electrons and the Euler–
Lagrange equations (eqn (4)) for the lattice. The wave function
can be expanded in terms of a basis set of eigenstates of the
electronic Hamiltonian at each instant t (|f(t)i). Consequently,
the time evolution of the wave function in the instant t + dt
takes the form

ckðtþ dtÞj i ¼
X
l

flðtÞjckðtÞh ie�
i
h
eldt flðtÞj i (7)

The time evolution of the lattice dynamics is achieved
from the solution of the Euler–Lagrange equation with a new
Lagrangian constructed from the new wave functions (eqn (7)).
This solution leads to a Newton-type equation21 which describes
the lattice behavior

Fi;jðtÞ ¼ M€yij ¼
1

2
K yi;i0 þ yi;i00 þ yj; j0 þ yj; j00 � 4yi; j
� 	

þ 1

2
a Bi;i0 þ Bi;i00 þ Bj; j0 þ Bj; j00 � 4Bi; j þ h:c:
� 	 (8)

Results

As we aim to study how the density of quasi-particles affects the
charge transport in AGNRs, we first need to choose a specific
representative system. First of all, because narrow 3p + 1 AGNRs
consist of systems that present a characteristic semiconducting
bandgap, we decided to carry out our simulations with a 4 sites
wide AGNR. The narrower the nanoribbon, the bigger the
confinement of the wave functions along its width. This points
towards more stable localized states such as polarons, which
are an important asset as far as applications in organic electro-
nics are concerned. As our focus is the inclusion of several
polarons in the chain, the stability aspect becomes crucial.
This, together with the advantages narrow systems present as
semiconducting systems, encouraged us to choose the narrowest
3p + 1 AGNR representative.

As for the length of the nanoribbon, it should be noted that
the structure must be long enough so that no edge effects
are present and that the polarons’ wave functions do not
completely overlap among one another, eventually giving rise
to different kinds of excitations by means of recombination. On
the other hand, these systems should not be so large as to make
the calculations prohibitively expensive computationally. To
obtain a good compromise between reliability of the desired
physical scenario and computational feasibility we start by
investigating what would be the minimum length of the
nanoribbon to clearly observe the presence of a polaron in
our system. In order to do this, we gradually increased the
length of the nanoribbon starting from 4 � 30 and growing
until 4 � 90, as shown in Fig. 2. In each case we simulated the
presence of a single polaron by extracting an electron and
finding the initial self-consistent solution as explained in the
previous section. From Fig. 2(a) one can see that for nano-
ribbons smaller that 50 sites long the charge is completely

Fig. 1 Schematic representation of an arbitrary AGNR. The site indexed as
‘‘i’’ has three neighbors, namely, ‘‘j’’, ‘‘l’’ and ‘‘k’’.
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delocalized, being distributed over the whole nanoribbon. This
means that, in these cases, a polaron could not be formed, for
no localization characteristic of a quasi-particle takes place. For
nanoribbon 4 � 60, corresponding to approximately 90 Å in
length, however, one can see that the charge density is already
localized in a region smaller that the size of the nanoribbon. This
unambiguously characterizes the localization corresponding to a
quasiparticle; in this case, a polaron.

Considering the nature of the present contribution, obtaining a
minimum value for accommodating a single polaron is not enough.
Because we are concerned with density effects, we should find
the smallest chain that can support higher densities of polarons
without degenerating these quasi-particles with considerable over-
lap. Fig. 2(b) corresponds to the same systems shown on the
previous figure but now with two polarons, obtained from the self-
consistent solution with the extraction of two electrons, thus con-
sisting of twice the density. One can see that, although the center of
charges can be distinguished even for the shortest of the nanor-
ibbons, it is only for lengths larger that 60 sites that one can clearly
observe two distinct entities, as opposed to an eventual two centered
single quasi-particle. This is because for AGNRs of lengths 30, 40 and
50, the size of each polaron is objectively larger than half the size of
the nanoribbon. The 4 � 60 nanoribbon is the intermediate case;
the size of the polarons it bears is probably roughly half its size. It is
only for the 4 � 70 AGNR case, with approximately 100 Å of length,
that we can be confident to characterize two distinct polarons. This
can be confirmed by the absence of charge density between the two
positive charge accumulations.

Importantly, when comparing the minimal length to observe
one polaron to that of observing two, we can conclude that the
nanoribbon length and the number of quasi-particles do not keep in
direct proportion. Otherwise, it would be necessary to have a
nanoribbon of approximately 180 Å to distinguish two polarons;
that is to say, a system 80% greater in relation to that obtained in
Fig. 2(b). This result is interesting for the purposes of this work
because it allows us to simulate various quasi-particles in an AGNR,
without having to consider too large a system which would lead to a
great computational cost.

Taking into account ten as the highest desired number of
polarons in a chain, preliminary calculations allowed us to
conclude that 300 sites was the smallest length that would allow
us to distinguish each polaron as an independent quasi-particle.
Thus, this length provided a good compromise between reliability
of the desired physical scenario and computational feasibility;
they were long enough to accommodate independent polarons for
all the different concentrations and yet it was possible to carry
out accurate calculations. Also, preliminary calculations, not
shown here, allowed us to conclude that even when considerably
changing the width of the nanoribbons, the qualitative results are
similar. As a consequence, in the remainder of the work we
consider a fixed AGNR chain of 4 � 300 sites with different
numbers of polarons, thus simulating different densities. We
subject these systems of different densities to different electric
field intensities in order to assess properties such as carrier
stability and average velocity, which is an important indication
of the overall systems’ mobility.

Simulations for cases from 1 to 10 polarons per 450 Å
(300 sites) were performed. For the sake of brevity, Fig. 3 shows
the panel where the charge dynamics are presented only for some
of these cases, with 1.2 mV Å�1 electric field intensity. It is
important to remember that Fig. 3(a) – the one polaron case –
corresponds not only to the smallest density, but it is also the only
case where, because the polaron has no competing quasi-particle, it
drifts freely through the lattice mantaining its integrity until the
end of the simulation. This is a rather different situation from that
represented by Fig. 3(b) – 4 polarons – in which we can see the
detachment of part of the polarons’ charges, thus characterizing a
decrease of the quasi-particle stability. This comparison indicates
the importance of the present work, as simulations that consider a
single quasi-particle are prone to overestimate the structures’
stability to the point of completely disregarding it. The results
suggest a decrease in stability with increasing polaron density up to
the limit of seven polarons per 450 Å of Fig. 3(c), when a kind of
phase transition takes place. For higher densities, the results
suggest a increase in the stability instead. This is probably due to
the fact that the extreme competition between these quasi-particles

Fig. 2 Schematic representation of a 4 � M AGNR where M = 30, 40, 50, 60, 70, 80 and 90. (a) One polaron in AGNR. (b) Two polarons in AGNR.
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in high density regimes – as in the case of the 10 polarons of
Fig. 3(d) – gives rise to an entropic loss culminating in spacial
ordering and ends up generating a collective behavior for the system.

As an elucidative way to summarize our results concerning
the question of polaron densities, we plot the density of
polaron occupation through the nanoribbon’s length as a
function of the very number of sites in this length. Such density

is, therefore, defined as lp ¼
N � LP

LC
, where N is the number of

polarons, LP is the mean length of each polaron and LC is the
length of each chain. One can readily see that for the smallest
chain, we could not actually define a polaron for the charge
because it is completely displaced throughout the chain’s
length. As the nanoribbon’s length increases, we are able to
accommodate more polarons in the system. Because the localiza-
tion of the quasiparticle increases, one can see that the defined
density, i.e., a relative measure of how filled the nanoribbon is,
decreases. Naturally, a saturation trend is expected to take place.
The figure shows that such an equilibrium is achieved for relative
densities smaller than 50% (Fig. 4).

Besides the influence of polarons’ density on their own
stability, we also investigate its impact on the average velocity of

the particles when different electric field intensities are considered.
In Fig. 5 we represent the average velocity as a function of the
number of polarons in the nanoribbon for several electric field
intensities from 0.2 to 2.4 mV Å�1. By analyzing the curves’ behavior

Fig. 3 Polaron dynamics for a 4 � 300 AGNR with a 1.2 mV Å�1 electric field and: (a) one polaron, (b) four polarons, (c) seven polarons (d) ten polarons.

Fig. 4 Polaron density of occupation as a function of the number of sites.
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we can highlight three different regimes, labeled as A, B and C in
Fig. 5, and represented by different colors. As higher electric fields
correspond to higher velocities, the variation in the average velocity is
a more representative quantity to be analyzed. This variation is
considerably more pronounced in the region C, where the velocity
tends to decrease as the number of polarons increases. This fact is
associated with the decrease of the stability. When more than seven
polarons are considered, the average velocity decreases approxi-
mately linearly. These facts are in agreement with what has been
discussed in relation to Fig. 3. This behavior of velocity decreasing is
a counterpoint to polaron dynamics in polymeric chains, as it has
been shown that the increase in the number of polarons in these
systems tends to lead to an increase in the velocity of the quasi-
particles.22 In the B region of Fig. 5, the average velocities present
much more subtle variations with the increase of the number of
polarons. When more than seven polarons are considered, one can
note a slight increase of the averaged velocities. Another result of
Fig. 5 is the comparison between the polarons’ averaged velocity and
the velocity of sound in graphene, found by Vos and coworkers23 to
be 0.30 Å fs�1. As shown in Fig. 5, it is only for an electric field of
0.20 mV Å�1 that the average velocities are smaller than the velocity
of sound in graphene, characterizing an acoustic regime. In this case
the polaron velocity crosses the sound velocity barrier when more
than seven polarons are considered. It should be noted that the
overcoming of this threshold for seven polarons is responsible for
the phase transition discussed in Fig. 3. For other electric fields
intensities, shown in the regions B and C, the average velocities of
the polarons are greater than the velocity of sound, characterizing an
ultrasonic or optical regime. Johansson15 has shown similar results
for conjugated polymers where, for low field strength, the polaron
velocity is less than the velocity of sound. A transition between these
regimes was also observed in that system.

Conclusion

We investigate the importance of polaron density over charge
transport for narrow 3p + 1 AGNRs. We employed a two
dimensional modified tight-binding model that includes lattice

relaxation. After determining a suitable size for our systems, we
simulated several different densities and found that, in general,
as the density increases, the stability of the polaron decreases.
However, for the highest considered densities, specifically for
more than seven electrons per 300 sites, a phase transition
occurs in the sense of increasing stability by virtue of a
collective behavior mediated by mutual polaron interactions.
By analyzing the variation of the average velocity of the polar-
ons, one can see that for electric fields greater than 0.6 mV Å�1,
the increase of the number of quasi-particles does not cause a
considerable variation in their velocities, as we show in region
B of Fig. 5. A common result is the linearity of the graphs when
more than seven polarons are considered, which corroborates
the idea of greater stability in these cases. The different results
observed here reinforce the importance of conducting density
dependent investigations to obtain a correct and realistic
description of charge transport in AGNRs.
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