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Uptake and accommodation of water clusters by
adamantane clusters in helium droplets: interplay
between magic number clusters
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We report an experimental study of water clusters as guests in interactions with clusters of adamantane

(Ad) as hosts that occur in doped helium droplets at extremely low temperatures. Separate experiments

with pure water as dopant showed ready formation of a distribution of water clusters (H2O)mH+ that

peaks at m = 11 and extends beyond m = 100 with local maxima at m = 4, 11, 21, 28 and 30 with

(H2O)21H
+ being the most anomalous and showing the greatest stability with respect to clusters

immediately adjacent in water content. When adamantane is also added as a dopant, extensive hydration

is seen in the formation of water/adamantane clusters, (H2O)mAdn
+; magic number clusters (H2O)21Adn

+

are seen for all the adamantane clusters. Other magic numbers for water clusters attached to

adamantane, (H2O)mAdn
+, are as for pristine protonated water, with m = 28 and m = 30. The icosahedral

shell closure of pure adamantane at n = 13 and 19 appears to be preserved with (H2O)21 replacing one

adamantane. (H2O)21Ad12
+ and (H2O)21Ad18

+ stand out in intensity and demonstrate the interplay of magic

number water clusters with magic number adamantane clusters, observed perhaps for the first time in

gas-phase cluster chemistry. There was no clear evidence for the formation of clathrate hydrates in

which adamantane is trapped within structured water.

1. Introduction

Water is omnipresent in biological and chemical environments
where it is often accommodated by molecular aggregates as
clusters of water.1–4 The accommodation of the uniquely stable
(H2O)21 cluster is of particular interest, both in solution and in
the gas phase, and so has been the focus of many experimental
investigations.5–8 For example, Cao et al. recently reported a
study of template trapping and crystal structure of the magic
number (H2O)21 cluster in the tetrahedral hole of a nanoscale
global ion packed in a face-centered cubic pattern.9 Other
experimental studies have explored the confinement and
stabilization of condensed-phase water clusters within other

predesigned hosts, such as organic materials,10 inorganic
microporous materials11,12 and metal–organic frameworks.13–18

Such studies, in general, can provide insight into the structure
and behavior of condensed-phase water clusters that otherwise
cannot be discretely isolated.

Clathrate hydrates in which organic molecules are trapped
within a crystal structure of water, as in methane hydrate or
‘‘fire ice’’, are also known.19–22 Methane hydrates are thought to
occur in the outer regions of the solar system23 where the
temperatures are low and they also have been found as out-
crops on the cold ocean floor.24–26

Discrete water clusters are more readily accessible in the gas
phase and can be identified, after ionization, using mass
spectrometry. Since 1973,27 mass spectrometry experiments
with different sources of water and different modes of ionization
consistently have shown (H2O)21H+ to be anomalously intense and
so have ‘‘magic number’’ stability. (H2O)28H+ and (H2O)30H+ show
similar, although less dominant, intensity anomalies.28 A ‘‘magic
number’’ water cluster has been observed for (H2O)4 adsorbed to
positively charged fullerenes.29,30 Also the protonated tetramer
(H2O)4H+ has been mentioned as a particularly stable cluster in the
literature.31–33 The enhanced stability of (H2O)21H+ has been
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attributed to a regular dodecahedral cage structure encaging a
H2O molecule within the cavity and has found support from
theoretical calculations and the known polyhedral clathrate
hydrates.34–42 However, there appear to have been no previous
demonstrations of the confinement and stabilization of water
clusters as guests within host molecules in the gas phase.43

However, the confinement of protonated water clusters, consisting
of n = 20 and 21 molecules, in TMA was explored by Castleman
and coworkers and the results support a dodecahedral arrange-
ment of the water molecules.44

Here we report an experimental study of water clusters as
guests in interactions with clusters of adamantane as hosts that
occur in doped helium droplets at extremely low temperatures
(0.37 K) with mass spectrometric detection. The guest water
clusters are first investigated separately in the absence of a
host; our studies of the host adamantane clusters already have
appeared in the literature.45 The main focus here is on the
water guest/adamantane host interactions in very cold helium
droplets in which cluster formation is enhanced for both the
guest and the host molecules. This provides an opportunity to
study the accommodation of various sizes of water clusters by
various sizes of host adamantane aggregates in the gas phase,
including the accommodation of magic number water clusters
by magic number adamantane clusters.

2. Experimental methods

Helium nanodroplets (HND) were produced by expanding helium
(Linde, purity 99.9999%) at a stagnation pressure of 2.1 MPa
through a 5 mm nozzle, cooled by a closed-cycle refrigerator to
9.6 K, into vacuum. At these conditions the droplets contain an
estimated average number of 4 � 105 helium atoms.46 The
expanding beam was skimmed by a 0.8 mm conical skimmer
located 8 mm downstream from the nozzle and traverses a
differentially pumped pick-up cell. Adamantane (Sigma Aldrich,
Z99% purity) was introduced via a heated tube from a reservoir
attached to the vacuum chamber and kept at a temperature of
313 K. Water (Sigma Aldrich, UHPLC grade) was used after three
freeze pump thaw cycles at the inlet system of the instrument. The
vapor from the headspace at room temperature was introduced via
a heated inlet and the pressure in the pickup region was controlled
by a regulated leak valve. Both molecules are heliophilic47,48 and
enter the droplet where they quickly decelerate to the Landau
critical velocity.49 Collision of dopants leads to cluster growth and
the binding energy is released into the surrounding He matrix and
results in the evaporations of 1600 He atoms per eV.50 As the
growth process of the neutral dopant clusters is purely statistical,
we expect that the cluster size distribution of the dopant clusters
before ionization is free of any magic numbers. After the pickup of
adamantane and water, the beam of the doped helium droplets
was collimated and crossed by an electron beam with a nominal
energy between 50 and 100 eV. Cations were accelerated into
the extraction region of a reflectron time-of-flight mass
spectrometer (TofwerkAG, model HTOF) with an effective mass
resolution m/Dm B 4000 (Dm = full-width-at-half-maximum).

Further experimental details and possibilities of this setup have
been published elsewhere.51–55

As in several previous investigations, when we doped HNDs
with two dopants, we do not see noticeable differences in the
mass spectra when changing the pickup sequence of the two
species. This seems to be in contradiction to core–shell nano-
particles grown in large HNDs that have been investigated by
transmission electron microscopy after soft-landing.56–59 Also, for
water clusters surrounded by another small molecular dopant or
Ar, Liu et al. report a small co-dopant effect on the fragmentation
of the resulting water cluster ions.60 In the present study, the
number of dopants being picked-up is lower than 100 in contrast
to several 1000 in case of the core–shell nanoparticles. Further-
more, the highly exothermic ionization process, i.e., charge
transfer from He+, is expected to scramble the dopant cluster.

Mass spectra were evaluated by means of customized soft-
ware designed to extract the abundance of specific ions after
deconvoluting possible overlapping contributions to particular
mass peaks by different ions and isotopologues.61 The software
automatically fits mass peaks, subtracts background signals,
and explicitly considers isotopic patterns of all ions that are
expected to contribute to a given peak.

3. Results and discussion
Water clusters in helium droplets

We first performed helium droplet experiments with only water
being injected (pump freeze methods) before exposure of the
droplets to an ionizing electron beam. The resulting mass
spectrum recorded under these conditions is shown in Fig. 1.
Water clusters appear as protonated clusters (H2O)mH+ rather
than ionized clusters (H2O)m

+ as H3O+ ions, formed by reactions
of H2O+ with H2O, are a source of protons for water clusters with

Fig. 1 Experimental results for protonated water–cluster formation
in helium droplets. The protonated water cluster series shows a very
high relative abundance of the (H2O)21H

+ cluster and slightly enhanced
abundances for (H2O)28H+ and (H2O)30H+. Conditions: THe = 9.5 K,
pHe = 2.2 MPa, average droplet size 106, water pressure 0.23 mPa,
Eel = 50 eV, Iel = 40 mA.
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n = 2 and higher, as illustrated by the following intracluster
proton-transfer reaction, eqn (1).13

(H2O)n - (H2O)n
+ - (H2O)mH+ + (n � m � 1)H2O + OH

(1)

A clear maximum is seen in the spectrum in Fig. 1 for the
protonated water cluster (H2O)21H+. Also interesting to note are
minor maxima corresponding to (H2O)4H+, (H2O)11H+,
(H2O)28H+ and (H2O)30H+, all of which have been observed
previously in other gas-phase experiments,28,31 and by us in
recent HND experiments with D2O,62 and again likely due to
enhanced stabilities. Clearly then, the observation of magic-
number protonated water clusters generated from the ionization
of helium-solvated neutral water clusters is reminiscent of the
distribution of ionized water clusters generated from either
the VUV photoionization of neutral beams of gas-phase water
clusters63 or from the discharge of rare-gas supersonic expansions
containing dilute water vapor.40

Clusters of adamantane in helium droplets

We have previously reported the results of our study of adamantane
clusters in helium droplets.44 High-resolution mass spectrometry
revealed the presence of ‘‘magic number’’ m/z peaks that can be
attributed to the packing of adamantine molecules into cluster
structures of special stability involving preferred arrangements of
these molecules. Magic numbers were observed for Adn

+ for n = 13,
19, 38, 52, 61, 70, 75, 79, 82, 86, 90, 94, 98, 104, 108, 112, 116,
120 and 124. The magic numbers of 13 and 19, which are in the
range of the adamantane experiments reported here, could be
attributed to the packing of a cation that leads to closure of the
first icosahedral shell (n = 13) and the formation of a nested
icosahedron (n = 19). Further packing to form the next icosahedron
(n = 55) did not seem to occur.

Mixed clusters of adamantane and water in helium droplets

Fig. 2 displays a mass spectrum of helium nanodroplets doped
with both adamantane and water. The prominent mass peaks
are due to bare adamantane cluster ions, Adn

+, with n = 1 to 29
and n = 13 (m/z = 1768) and 19 (m/z = 2584) being relatively more
intense. Water/adamantane clusters of the type (H2O)mAdn

+ are
clearly visible throughout.

Expanded portions of the spectra in Fig. 2 are shown in
Fig. 3 for clusters (H2O)mAdn

+ with n = 11 to 21 to provide a closer
look at the water pattern (H2O)m and to search for possible magic
water/adamantane clusters, (H2O)21Adn

+ with n = 13 and 19.
Extensive hydration is seen in Fig. 3 for all the adamantane

clusters. The distribution in water content is especially striking
for the water/adamantane clusters (H2O)mAd12

+ and (H2O)mAd18
+

for which generally the water content is significantly enhanced
with distributions in water content that peak at m = 10 and 13,
respectively. The magic number clusters (H2O)21Adn�2

+ are seen
in Fig. 3 for all the adamantane clusters from n = 9 to 18
and again the water/adamantane clusters (H2O)21Ad12

+ and
(H2O)21Ad18

+ stand out in intensity.
Clathrate hydrates in which adamantane is trapped within

structured water appear to be absent. Based on what we know

about methane clathrates, we looked for magic large water
clusters with small amounts of embedded adamantane. n = 21
water molecules, and to a lesser extent also n = 28 and 30, exhibit
the only intensity anomalies for any number of adamantane
molecules in the clusters. Typical clathrates with small guest
molecules such as methane, ethane, carbon dioxide and so on,
consist of 85 mol% water and 15 mol% guest(s).58 Thus, we
conclude that water does not form a clathrate network around
such a large number of guest molecules in our experiments.

Fig. 4 focuses on the actual observed cluster size distribution
of (H2O)mAdn

+. For n 4 5 we observe the emergence of a magic
m = 21 cluster that becomes more pronounced in relative
intensity with increasing adamantane number n. Other magic
numbers for water clusters attached to adamantane, (H2O)mAdn

+,
are as for pristine protonated water, with m = 28 and m = 30.
Also, for 5 o m o 21, the water cluster replaces one adamantane

Fig. 2 Two mass spectra of helium nanodroplets doped with adamantane,
C10H16 (molecular weight = 136) and H2O (molecular weight = 18).
Conditions: THe = 9.5 K, pHe = 2 MPa, average droplet size 106, adamantane
pressure: 0.5 mPa, Eel = 90 eV, Iel = 28 mA, upper panel: water pressure in
the second pickup chamber: 0.1 mPa, lower panel: 1.15 mPa.

Fig. 3 Sections of the mass spectra shown in Fig. 2 above. Red dots
indicate (H2O)21Adn�2

+.
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(see high yield for all complexes that contain 12, 18 or 22
adamantane units and more than 5, 9 or 12 water molecules
in Fig. 2–4). Apparently the icosahedral shell closure of pure
adamantane at n = 13 and 19 is preserved with (H2O)21 replacing
one adamantane unit. The schematic picture in Fig. 5 shows a
magic cluster in which 12 adamantane molecules surround, in
an icosahedric arrangement, 21 water molecules that form a
pentagon dodecahedral structure.

Large adamantane clusters are picked up by large HND,
however the volume scales with the cross section to the power
1.5. Thus, after pickup of many adamantane units, there is still
more He left to also pick up more water molecules. By reducing
the water pressure by a factor of two in the pickup cell, He
droplets with a geometric cross section twice as large are able to
capture the same amount of water molecules. Thus, for high water
pressure, small adamantane complexes exhibit well pronounced
maxima for (H2O)21Adn

+, whereas a lower water pressure yields
optimum conditions for larger values of n (see Fig. 6).

Clusters in helium droplets doped with heavy water and
adamantane

Heavy water leads to less congested mass spectra as (D2O)7 is
four mass units heavier than adamantane, whereas the mass
difference between (H2O)15 and Ad2 is only 2 mass units which
quickly leads to overlapping peak series due to isotopologues

containing 13C. Fig. 6 and 7 show low and high mass spectra
observed in D2O/adamantane mixtures over a wide range of
D2O concentrations.

In Fig. 6, clear magic numbers can be seen at n = 21, 28 and
30 for the ion series of (D2O)mD+, (D2O)mAd+ and (D2O)mAd12

+.
For pure water also m = 4 and 11 are slightly enhanced
compared to their neighbors.

Fig. 4 Observed cluster size distributions for (H2O)mAdn
+. Please note the

logarithmic scale for up to 12 adamantane units. The yields were extracted from
the high water pressure spectrum shown in Fig. 2 and 3 with 1.15 mPa H2O.

Fig. 5 Schematic picture of a magic cluster in which 12 adamantane
‘‘nanodiamonds’’ surround, in an icosahedric arrangement, 21 water
molecules that form a pentagon dodecahedral structure. Each adamantane
is placed above the center of a pentagonal face.

Fig. 6 Cluster size distributions measured for pure (heavy) water clusters
(D2O)mD+ (solid triangles, p(D2O) = 4 mPa), water clusters with one
adamantane molecule (D2O)mAd+ (solid circles, p(D2O) = 3.98 mPa), and
water clusters with 12 adamantane molecules (D2O)mAd12

+ (solid squares,
p(D2O) = 2.6 mPa). THe = 9.7 K, pHe = 2.4 MPa, electron energy 82 eV,
electron current 206 mA. For comparison also (H2O)mAd+ (open circles) is
shown for high water pressure p(H2O) = 4 mPa.
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4. Conclusions

Clearly, helium nanodroplets provide a low-temperature environ-
ment very favorable for the formation of water, adamantane and
mixed water/adamantane clusters that can readily be revealed with
exposure to ionization and mass-spectrometric detection.

Our pure water-dopant experiments demonstrate that water
clusters readily form at the extremely low temperatures of HND.
The distribution in the size of the water clusters that is seen
mass spectrometrically as (H2O)mH+ peaks at n = 11 and extends
beyond m = 100. Local maxima are exhibited at m = 4, 11, 21, 28
and 30 with (H2O)21H+ being the most anomalous and showing
the greatest stability compared to clusters immediately adjacent
in water content, as has been observed previously by others with
higher temperature gas-phase experiments.

Extensive hydration occurs with all the adamantane clusters
and the magic number clusters (H2O)21Adn

+ are seen for all the
adamantane clusters from n = 9 to 18. Other magic numbers for
water clusters attached to adamantane, (H2O)mAdn

+, are as for
pristine protonated water, with m = 28 and m = 30.

For 5 o m o 21 the water cluster replaces one adamantane
in (H2O)mAdn

+, (high yields are observed for all complexes that
contain 12, 18 or 22 adamantane units and more than 5, 9 or
12 water molecules). The icosahedral shell closure of pure
adamantine at n = 13 and 19 appears to be preserved with
(H2O)21 replacing one adamantane. The water/adamantine
clusters (H2O)21Ad12

+ and (H2O)21Ad18
+ stand out in intensity

and demonstrate the interplay of magic number water clusters
with magic number adamantane clusters. This may well be the
first observation of the interplay between two magic number
clusters in gas-phase cluster chemistry generally. There was no
clear evidence for the formation of clathrate hydrates in which
adamantine is trapped within structured water.

The observed mass spectra of course do not provide information
on the structures of the mixed water/adamantane clusters
(H2O)mAdn

+, nor do they provide insight into the dynamics of their
formation. These may be accessible with high-level theoretical
computations, although these clusters contain many atoms and
are generally relatively large in size.
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