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Guidelines for optimizing the architecture of
battery insertion electrodes based on the concept
of wiring lengths

Robert E. Usiskin * and Joachim Maier

The kinetics of storing mass in a battery electrode are typically limited by slow diffusion in storage particles. The

diffusion timescale can be made faster by decreasing the size of the particles, but then it becomes more

difficult to efficiently contact each particle with ionic and electronic current collectors, e.g., electrolyte and

carbon. To achieve an optimal balance, the dimensions of the various phases in the electrode architecture

should be tuned to the transport properties of the storage phase. Here we quantify this strategy by modeling

the kinetics of galvanostatic charging for several particle geometries using the Nernst–Planck formalism and

assuming mass storage via a solid solution. We show that when ions and electrons are inserted at separate con-

tact surfaces, in general the storage kinetics depend on two length scales – the ionic and electronic wiring

lengths – that characterize the transport distances within the storage material to the respective current collec-

tors. Quantitative guidelines for the optimal wiring lengths are derived for two model geometries, and the

dependence on transport parameters, particle shape, and contact geometry is discussed. These results can

guide the optimization of various aspects of the architecture of a battery electrode, including the size and shape

of individual particles and the configuration of the electrolyte and current collector networks.

1. Introduction

A battery electrode consists of an electroactive storage phase
that is supplied with ions from an ionic current collector
(typically a liquid electrolyte) and electrons from an electronic
current collector (typically a carbon admixture connected to
metal foil). The storage phase often consists of a myriad of solid
particles, and a binder may be added for mechanical stability.
The overall storage capacity and kinetics in such a multi-phase
composite system depends on more than just the choice of
materials used – the choice of architecture is equally important.
The architecture encompasses all aspects of the electrode
geometry. Thus it includes such critical parameters as the size
and shape of the storage particles, the geometry of the contacts
between the various phases, and the morphologies of the ionic
and electronic current collector networks. The latter are critical
because typically these networks comprise a substantial frac-
tion of the electrode weight and volume, yet are largely inactive
for storage.

The electrochemical kinetics in a given architecture are
influenced by many transfer and transport steps. Solid-state
transport within the storage material is typically a dominant
factor, so it is pertinent to concentrate on this process, which

requires the transport and storage of both ions and electrons.
The governing transport equations involve an intermingling of
electrical migration and chemical diffusion.1 The associated
mass storage can occur by four possible modes: solid solution,
phase transformation, multiphase conversion, and interfacial
storage.2 This work focuses on the solid solution storage mode
(which arises in LiCoO2, for example). If the storage particles
are identical and (dis)charge concurrently, and if the transport
resistances in the current collector networks and the interfacial
resistances at the contacts can be neglected, then the charging
behavior of the entire architecture can be understood by
considering the kinetics in a single particle.

Previous works have modeled ambipolar diffusion in a
particle exhibiting solid solution storage. Atlung et al. used
the one-dimensional (1D) diffusion equation to obtain analy-
tical solutions for the transport behavior in three simple
particle shapes: plate, cylinder, and sphere.3 For each shape,
the interfaces with the ionic and electronic current collector
phases – which for brevity we will call the ionic and electronic
contacts – were assumed to be coincident, i.e., both contacts
span the entire surface of the particle. This assumption is valid
only for certain situations, such as a carbon-coated particle
immersed in a liquid electrolyte. The analytical approach and
relevant results for this case are reviewed below in Section 3.1.
The charging kinetics in these 1D situations can also be usefully
modeled using an equivalent circuit approach.4,5
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When the storage phase takes the form of a film, the ionic
and electronic contacts are no longer coincident; instead they
contact the particle on opposing faces. Preis and Sitte analyzed
this geometry assuming constant transport coefficients, and for
both galvanostatic6 and potentiostatic7 cases they showed that
the transport behavior depends on the transference numbers for
ions and electrons. (For a storage particle with two mobile carriers,
the transference numbers are teon � seon/(sion + seon) and tion =
1 � teon, where sion and seon are the ionic and electronic
conductivities.) If teon - 0, then electron transport is limiting
and the diffusion propagates from the electronic contact; if
teon - 1, then ion transport is limiting and diffusion proceeds
from the ionic contact; and for intermediate values, the diffu-
sion propagates from both contacts simultaneously. The galva-
nostatic results and their implications for battery charging are
summarized below in Section 3.2.

More complex geometries have been treated numerically by
solving the diffusion equation, e.g., using a commercial multi-
physics solver.8 Phase fields have also been used to explore the
influence of strain effects,9 grain boundaries,10 and phase
transitions.11 However, the solid solution storage mode has rarely
been addressed using phase fields.9,10 More significantly, we are
unaware of any two- or three-dimensional analysis that considers an
arbitrary electronic transference number in the mixed-conducting
storage phase; instead, teon E 1 is the common assumption.

The above three situations – coincident contacts, film geo-
metry, or teon E 1 – are special cases in which the storage
kinetics depend on only one length scale. The key conceptual
insight in the present work is that in the general case of
non-coincident contacts combined with two- or three-dimensional
diffusion and arbitrary transference number, the kinetics depend
on two length scales, which we term the wiring lengths. The ionic
wiring length is defined as the path length from the ionic contacts
to the farthest point away in the storage material. It is also possible
(and equivalent) to define the ionic wiring length as the length scale
down to which the storage phase and the ionic current collector
network are mixed in the composite structure. The electronic wiring
length is defined analogously for the electronic contact. These
parameters are illustrated in Fig. 1 for two example electrode
architectures. In Fig. 1A, ions are inserted over the entire length
of each cylinder surface, while electrons are inserted only at one
end. In Fig. 1B, the electrolyte penetrates the porous structure and

provides ions on the length scale of the individual particles, while
the electronic current collector (e.g., carbon, shown schematically in
orange) is more coarsely distributed and provides electrons only at
the perimeter of each cluster of particles. For both examples,
charging the electrode requires the transport of ions over Lion and
electrons over Leon, and these distances may be different by orders
of magnitude. Moreover, for any given values of the wiring lengths,
the kinetics may be fast or slow, depending on the ionic and
electronic conductivities in the storage phase.

These considerations offer a rational approach for optimizing the
architecture of an electrode. The overall strategy is to tune the wiring
lengths based on the transport properties of the storage phase.
In this work, analytical models are developed that provide some
intuition and an initial set of guidelines for this strategy. First, the
modeling approach based on the Nernst–Planck formalism is
reviewed for the special cases of four geometries (plate, cylinder,
sphere, and film) in which the storage kinetics depend on a single
length scale. The analysis is then extended to the more general
situation where the kinetics are characterized by two length scales.
Two geometries (rectangular slab and cylinder) are chosen for
analysis based on the fact that in these particular geometries, the
wiring lengths can be independently varied. The discharge behavior
in each configuration is derived, and quantitative guidelines for the
optimal values of the wiring lengths are obtained. Finally, the
examples in Fig. 1 are revisited, and the applicability and limits of
the strategy are discussed.

A comment on the definition of ‘‘optimal’’ is warranted. In
practice, the optimization of an architecture depends on many
factors: cost, weight, ease of manufacturing, and so on. To simplify
the problem while still capturing much of its essence, it is useful to
note that a smaller particle volume is often detrimental for many of
these factors. In particular, smaller particles are often more difficult
and more costly to manufacture; they generally require the use of an
increased amount of the electronic current collector and electrolyte
phases, which are relatively inactive for storage and therefore lower
the charge capacity per mass or volume; the requirement of a more
intricate length scale can make the synthesis of a composite
electrode more challenging; the time required to infiltrate liquid
electrolyte into the architecture during manufacturing may be
increased; and so on.12 Consequently, in this work the optimal
dimensions are considered to be those that maximize the particle
volume while still achieving the desired kinetics (i.e., the desired
fraction of the theoretical storage capacity in the fastest (dis)charging
time needed in the application).

2. Governing relations
2.1. Differential equation

In this section we review the derivation of the differential
equation that will be used in subsequent sections.1,13

Bulk transport in a mixed conductor is governed by the
diffusion-drift equation – also called the Nernst–Planck equa-
tion – which is essentially a local combination of Fick’s and
Ohm’s laws. If the only mobile species are electrons and ions of

Fig. 1 Schematic of the ionic wiring length Lion and electronic wiring
length Leon associated with inserting metal ions (Mz+) and electrons (e�)
into (A) cylindrical particles and (B) clusters of spherical particles. The
clusters are wrapped in carbon (shown in orange).
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a single fixed valence (Mz+), then this equation can be expressed
as:1

iion = �zeDionrcion � sionrf (1)

ieon = eDeonrceon � seonrf (2)

where iion and ieon are the current densities, Dion and Deon are the
individual carrier diffusivities, sion and seon are the conductivities,
and cion and ceon are the concentrations of the ionic and electronic
carriers; z is the valence of the mobile ion; e is the charge of an
electron; and f is the electric potential.† Although there are two
mobile charge carriers, the corresponding currents must be equal in
magnitude to maintain overall electroneutrality, and this coupling
leads to a common chemical diffusivity Dd.1 The individual current
densities can be reformulated as:

iion = �zeDdrcion + tioni (3)

ieon = eDdrceon + teoni (4)

where tion and teon are the transference numbers and i is the
total current density. The chemical diffusivity is related to the
individual carrier diffusivities by14

Dd = wionteonDion + weontionDeon (5)

where wion and weon are factors that account for trapping effects;
they take values between 0 (every carrier of the indicated
species is trapped) and 1 (the species undergoes no trapping).‡
Estimates of Dd are available for many materials (e.g., see
Table 1 in ref. 12), although reliable measurements are rather
scarce. Many papers in the literature assume Dd = Dion, but this
simpler expression is only valid if electron transport and
concentration are dominant and trapping effects are negligible.

Taking the divergence of both sides of eqn (3) yields

r�iion = �zeDdr2cion + r�(tioni) (6)

As an expression of mass conservation, the continuity
equation holds:

@cion
@t
þ 1

ze
r � iion ¼ 0 (7)

Combining eqn (6) and (7) and converting the concentration
changes to the neutral species results in

@c

@t
¼ r � Ddrc

� �
þ 1

ze
r � tionið Þ (8)

where c is the concentration of the neutral metal species (M).
This equation applies for the general case in which the trans-
port parameters tion and Dd depend on concentration and thus
position within the storage phase. For sufficiently small

changes in concentration, these parameters can be considered
constant. Then r�(tioni) = tionr�i = 0 follows from local electro-
neutrality, and eqn (8) simplifies to a conventional Fick’s law
expression for diffusion of a neutral species:

@c

@t
¼ Ddr2c (9)

This differential equation is used throughout the analysis
below and is correct to first order in concentration changes.

It is noteworthy that flux divergences within the material –
and hence mass storage – only occur as a consequence of the
diffusion term in the drift-diffusion equation. The influence of
the drift term consists in defining the boundary conditions,
where concentration gradients build up immediately after
switching on the current.

2.2. Boundary conditions

The boundary conditions are determined by noting that at
interfaces with the electronic current collector, iion in eqn (3)
can be set equal to zero, since ions are blocked. At interfaces
with the electrolyte, ieon in eqn (4) can be set equal to zero, since
electrons are blocked. At interfaces where neither carrier is
blocked, eqn (3) and (4) can be simply summed. In all three
cases, a Neumann boundary condition emerges.

3. Special cases with a single length
scale
3.1. 1D diffusion in a plate, cylinder, and sphere

We first review the case of galvanostatic charging of a plate
particle (Fig. 2), following a simpler version of the treatment by
Atlung et al.3 The particle half-thickness, denoted L, is assumed
to be much smaller than the width and height, so that the
diffusion can be considered with negligible error to be one-
dimensional in the x-direction. The plate is surrounded by an
Mz+-conducting electrolyte and is assumed to be coated by a
thin electron conductor (e.g., carbon) that is permeable for Mz+.

Fig. 2 Ion and electron insertion into a plate particle with half-thickness L.
The plate is coated by an electron-conducting material (e.g., carbon,
shown in orange) that is permeable for Mz+.

† The equations in this section can be extended to situations with an arbitrary
number of mobile charge carriers, including mobile ions with other valence states
and mobile trapping sites; then the concentration and transport parameters refer
to the total amount of the mobile element, i.e., summed over all valence states
and trapping sites. For details see ref. 14.
‡ The expression given in eqn (5) allows for trapping effects but assumes the
trapped species are immobile. If the trapped species can move, a more general
expression is required (ref. 14).
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Thus the ionic and electronic contacts are coincident, and
both ions and electrons can be inserted over all surfaces. By
symmetry only the region from x = 0 to x = L must be
modeled.

The transport is governed by eqn (9) in one dimension:

@c

@t
¼ Dd@

2c

@x2
(10)

The boundary and initial conditions are:

@c

@x

����
x¼L
¼ I

2AzFDd (11)

@c

@x

����
x¼0
¼ 0 (12)

cðx; 0Þ ¼ 0 (13)

where I is the total insertion current, A is the area of one of the faces
normal to the x-direction, z is the valence of the Mz+ ion, and F is
Faraday’s constant. The solution to eqn (10) with these conditions is
found in a standard reference book on diffusion:15

cðx; tÞ ¼ IL

2AzFDd

Ddt

L2
þ 3x2 � L2

6L2

�

� 2
X1
n¼1

ð�1Þn
n2p2

exp �Ddn2p2t
�
L2

� �
cos

npx
L

) (14)

This expression is plotted in Fig. 3. At short times, the behavior
involves two semi-infinite diffusion profiles propagating inward
from the two faces. When the profiles meet, a transition occurs
and the two profiles merge and converge towards a single U-shaped
profile at long times. It is apparent from Fig. 3A that the transition
from ‘‘short-time’’ to ‘‘long-time’’ behavior is mostly completed over
a rather short timespan. Fig. 3B and C illustrate that the concen-
tration polarization (i.e., the steepness of the U-shape) strongly
depends on the insertion current.

At some time the electrode discharging is considered com-
plete, and the current is cut off. Typically the cutoff is chosen as
the point beyond which further discharging would yield

undesirable phase decomposition, metal plating, or a battery
voltage below the minimum needed in the application. At the
cutoff, the highest concentration in the particle is at the particle
surface, c(L, t). Taking this concentration as the theoretical
limit yields Qth = zFc(L, t) � 2AL, where Qth is the theoretical
capacity that would be obtained if the limiting concentration
were reached throughout the volume (2AL). However, the
obtained capacity Q is smaller and equals only It.

Thus

Q

Qth
¼ It

2zFcðL; tÞAL (15)

Inserting eqn (14) with x = L into eqn (15), one finds

Q

Qth
¼ 1

1þ L2

3Ddt
� 2L2

Ddt

P1
n¼1

1

n2p2
exp �Ddn2p2t=L2ð Þ

(16)

This expression is plotted in Fig. 4 as a function of the

quantity
L2

Ddt
. It predicts the fraction of the discharge capacity

Fig. 3 Concentration profiles in the plate at time t. (A) Non-dimensional form. (B and C) Dimensional form with the example values Dd = 5 � 10�6 cm2 s�1,
L = 0.25 cm, A = 1 cm2, z = 1, and I = (B) 10 mA or (C) 1 mA.

Fig. 4 Normalized charge capacity Q/Qth obtained when a particle with
the indicated shape is discharged until its cutoff voltage is reached at time
t. Solid lines show the exact solutions; dotted lines correspond to the
approximation in eqn (21).
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that is obtained when a plate particle reaches its cutoff voltage
in time t. The solid lines in this figure were first obtained by
Atlung et al.3 At long discharge times, the capacity obtained
approaches the theoretical limit, as expected. As the discharge
time decreases, the obtained capacity also decreases: slowly at
first, then more dramatically as the concentration polarization
becomes more significant.

The above derivations can be repeated in cylindrical or
spherical coordinates to find the concentration profile and
the capacity obtained from a cylinder or sphere:3,15

Cylinder:

cðx; tÞ ¼ IL

AzFDd

2Ddt

L2
þ x2

2L2
� 1

4

�

� 2
X1
n¼1

exp �Ddan2t
�
L2

� �J0 xan=Lð Þ
an2J0 anð Þ

) (17)

Q

Qth
¼ 1

1þ L2

8Ddt
� L2

Ddt

P1
n¼1

1

an2
exp �Ddan2t=L2ð Þ

(18)

Sphere:

cðx; tÞ ¼ IL

AzFDd

3Ddt

L2
þ x2

2L2
� 3

10

�

�2L
x

X1
n¼1

exp �Ddbn
2t
�
L2

� �sin bnx=Lð Þ
bn2 sin bnð Þ

) (19)

Q

Qth
¼ 1

1þ L2

15Ddt
� 2

3

L2

Ddt

P1
n¼1

1

bn2
exp �Ddbn2t=L2ð Þ

(20)

where A is the surface area, x is the distance from the center, L
is the particle radius, J0 and J1 are Bessel functions of the first
kind, an is the nth positive solution of J1(an) = 0, and bn is the
nth positive solution of bn = tan(bn).

Eqn (18) and (20) are also plotted in Fig. 4. For a given value
of the particle half-thickness or radius L, the charging time of a
sphere is seen to be somewhat shorter than that of a cylinder,
which in turn is shorter than that of a plate. This result is
sensible, since the volume fraction that falls within a given
distance of the surface is higher in a sphere than in a cylinder
or plate. In other words, switching to a higher symmetry shape
leads to somewhat faster kinetics. The precise magnitude of the
improvement depends on the cutoff threshold. For example, if
99% of the theoretical capacity is desired, then switching from
a plate to a sphere geometry shortens the charging time by a
factor of 5.

Eqn (16), (18), and (20) give the normalized capacity Q/Qth in
terms of L, Dd, and t. For sufficiently long times, the exponen-
tial terms in the infinite sums can be neglected, and then all
three equations are well-approximated by:

Q

Qth
¼ 1

1þ L2

nDdt

(21)

where n � 3, 8, or 15 for the plate, cylinder, or sphere. This
approximation is shown in dotted lines in Fig. 4. The agree-
ment with the exact solutions is excellent for Q/Qth 4 0.6, and
most practical cases fall in this range. Eqn (21) can be rear-
ranged to yield an estimate for the charging time in terms of
the other parameters:

t ¼ L2

naDd (22)

where a � 1/(Q/Qth) � 1. Alternatively, one can rearrange this
expression to provide a guideline for the largest particle size L* that
achieves a desired discharge capacity Q*/Qth in a desired time t*:

L� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
na�Ddt�
p

(23)

where again a* � 1/(Q*/Qth) � 1 and n � 3, 8, or 15 for the
plate, cylinder, or sphere. The asterisks here are added to
emphasize that the values are tailored for a particular applica-
tion. The factor a* captures the dependence on the desired
discharge capacity, while n captures the modest dependence
on whether the diffusion proceeds in a planar, cylindrical
radial, or spherical radial fashion. The particle size L* given by
eqn (23) is optimal in the sense that for larger sizes, the
desired capacity is not obtained in the desired time, while for
smaller sizes, the particle is unnecessarily small. To reiterate,
this guideline is valid for Q*/Qth 4 0.6, which encompasses
most applications.

Often it is useful to discuss electrode kinetics in terms of the
discharge rate rather than the discharge time. Under a constant
current I, the time to fill the theoretical capacity is tth = Qth/I.
The obtained capacity is lower than the theoretical capacity and
is reached sooner. The reciprocal of tth is the discharge rate r,
which is defined here as the number of full discharges to the
theoretical capacity that can be completed per unit time:

r ¼ I

Qth
(24)

The C-rate is simply the value of r in units of h�1. For
example, a 5C rate corresponds to the current that can fill the
theoretical capacity 5 times per hour. Note that r = 1/tth o 1/t.
Combining the relation Q = It with eqn (24) leads to

t ¼ 1

r

Q

Qth
(25)

Eqn (25) can be inserted into eqn (16), (18), or (20) to obtain
implicit solutions for the discharge capacity Q/Qth in terms of the
discharge rate r. Insertion into eqn (21) gives an explicit solution:

Q

Qth
¼ 1� L2

nDdr (26)

This expression gives the discharge capacity as a function of
discharge rate and is valid for Q/Qth 4 0.6. Finally, after adding
asterisks to eqn (25) to indicate the values are selected for a
particular application,

t� ¼ 1

r�
Q�

Qth
(27)
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eqn (27) can be inserted into eqn (23) to yield a guideline
for the optimal particle size in terms of the desired discharge
rate r*:

L� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 1�Q�=Qthð ÞDd

r�

s
(28)

The above analysis treats the situation where both ions and
electrons are inserted over the entire particle surface. The next
section addresses the case where ions and electrons are
inserted at opposing faces.

3.2. 1D diffusion in a film

In the typical film configuration shown in Fig. 5A, the
ionic and electronic contacts are separated. By setting
eqn (3) and (4) equal to zero, the boundary conditions are
found to be:

@c

@x

����
x¼0
¼ teonI

AzFDd (29)

@c

@x

����
x¼L
¼ tionI

AzFDd (30)

where teon and tion are the electronic and ionic transference
numbers. There is still only one characteristic length scale, L,
which here corresponds to the total thickness. Using these
conditions, an expression for the concentration profile in the
film was derived by Preis and Sitte:6

cðx; tÞ ¼ teonIL

AzFDd

Ddt

L2
þ ðL� xÞ2

2L2
� 1

6

�

� 2
X1
n¼1

1

n2p2
exp �Ddn2p2t

�
L2

� �
cos

npx
L

)

þ tionIL

AzFDd

Ddt

L2
þ x2

2L2
� 1

6

�

� 2
X1
n¼1

ð�1Þn
n2p2

exp �Ddn2p2t
�
L2

� �
cos

npx
L

)

(31)

The first term in this relation corresponds to diffusion
inward from the interface with the electrolyte, while the second

term captures diffusion inward from the interface with the
electronic current collector. The resulting profiles are plotted in
Fig. 5 for three values of tion. As noted in the introduction, the
diffusion can proceed from either interface or both, depending
on tion. There is no source of mass inside the particle because of
the assumption that the transference numbers are independent
of concentration.

The voltage change of the battery in Fig. 5A was also
obtained by Preis and Sitte:6

DUðtÞ ¼ � 1

ðzFÞ2
@m
@c

IL

ADd

� Ddt

L2
þ 1

3
� 2

X1
n¼1

1

n2p2
exp �Ddtn2p2

�
L2

� �(

� teon
2 þ tion

2 þ ð�1Þn2teontion
� 	)

(32)

The normalized charge capacity Q/Qth can now be deter-
mined as follows. Denote the cutoff voltage change by DUth.
For sufficiently slow current Islow, the charging time tslow

required to reach the cutoff voltage change is so long that
the second and third terms in the brackets in eqn (32) can be
neglected, and the voltage expression simplifies to:

DUth ¼ �
1

ðzFÞ2AL
@m
@c

Islowtslow (33)

When the voltage reaches this cutoff threshold, DU = DUth,
so eqn (32) and (33) can be set equal, yielding

Islowtslow ¼ Itþ IL2

Dd

1

3
� 2

X1
n¼1

1

n2p2
exp �Ddtn2p2

�
L2

� �(

� teon
2 þ tion

2 þ ð�1Þn2teontion
� 	) (34)

Since Q = It and Qth = Islowtslow, it follows that

Q

Qth
¼ It

Islowtslow
(35)

Fig. 5 Insertion into a film electrode. (A) Schematic. (B–D) Concentration profiles at various non-dimensional times Ddt/L2 (see legend) when the ionic
transference number tion equals (B) 0.001, (C) 0.5, or (D) 0.999.
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and inserting eqn (34) into eqn (35) gives

This result is plotted in Fig. 6. As tion approaches 0 or 1, the
film behavior matches the plate behavior shown in Fig. 4, as
expected; for such an extreme tion, the film is isomorphic to half
of the plate. For intermediate values of tion, diffusion proceeds
inward from both faces simultaneously, which leads to some-
what faster polarization initially. The threshold voltage is then
reached more quickly, and thus the obtained capacity is low-
ered slightly relative to the 1D plate.

These results can be interpreted as providing a guideline for
the optimal film thickness L*, i.e., the thickest film that can be
discharged to the desired charge capacity Q*/Qth in a desired
time t*:

L� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a�Ddt�
p

(37)

where a* � 1/(Q*/Qth) � 1. As with eqn (23), this guideline is
valid for Q*/Qth 4 0.6, and it can be rewritten in terms of the
charging rate r* simply by inserting eqn (27). Except for the fact

that here L* refers to the full thickness rather than the half
thickness, the guidelines for the film (eqn (37)) and plate
(eqn (23)) are identical.

4. Cases with two length scales
4.1. 2D diffusion in a rectangular slab

4.1.1. Exact solution. In this section the analytical
approach shown above is extended to 2D particles, in order to
explore the more general behavior that arises when the kinetics
depend on two length scales that may be very different. The
first configuration to be modeled is shown in Fig. 7A. The
storage particle is a rectangular slab, and the contacts are
chosen such that the particle has two planes of mirror symme-
try. Thus it is sufficient to model one quadrant of the particle,
as shown in Fig. 7B. The ionic and electronic wiring lengths

correspond to Ly and Lx.
The governing diffusion equation is:

@c

@t
¼ Dd @2c

@x2
þ @

2c

@y2


 �
(38)

The boundary and initial conditions (with the particle depth
normalized to unity) are:13

@c

@y

����
x;Ly

¼ I=4Lxð Þteon
zFDd (39)

@c

@x

����
Lx ;y

¼
I
�
4Ly

� �
tion

zFDd (40)

@c

@y

����
x;0

¼ @c

@x

����
0;y

¼ 0 (41)

cðx; y; 0Þ ¼ 0 (42)

Fig. 7 Ion and electron insertion into a rectangular particle with current collector and electrolyte contacts as shown. (A) Schematic. (B) Coordinate
system used in the model. The particle centroid is at (0, 0).

Q

Qth
¼ 1

1þ L2

3Ddt
� 2

L2

Ddt

P1
n¼1

1

n2p2
exp �Ddtn2p2=L2ð Þ teon2 þ tion2 þ ð�1Þn2teontionf g

(36)

Fig. 6 Capacity obtained when a film is discharged until its cutoff voltage
is reached at time t.
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The factor of 4 arises in eqn (39) and (40) because only one
fourth of the total current I is inserted into the quadrant being
modeled.

The analytical solution to this 2D problem can be determined
by inspecting and modifying the 1D film solution. First, consider
the two terms in the 1D film solution (eqn (31)). These terms
correspond to diffusion from the ionic and electronic contacts,
respectively. Both terms satisfy the 1D diffusion equation, and
they can be summed because the differential equation is linear.
The 2D problem in Fig. 7B has analogous interfaces, and the
differential equation remains linear. Thus the 2D solution
should have the same two superimposed terms, except that the
term from the electrolyte face propagates in the y-direction, and
the contact areas with the electrolyte and metal are no longer the
same. With this rationale, the following 2D solution is
obtained:

This expression satisfies eqn (38)–(42). Typical concentration
profiles are illustrated in Fig. 8. As expected, the diffusion can
propagate from the electronic contacts, the ionic contacts, or both,
depending on tion. The profiles also illustrate that for any given
dimensions and value of Dd, the transport kinetics may be primarily
limited by ions, electrons, or both, depending on the transference

number. In Fig. 8A ions are limiting, and the particle could be made
far longer without substantially penalizing the kinetics. In Fig. 8C
electrons are limiting; it is visually evident that the particle is too long
and the kinetics are slow. Fig. 8B shows the optimal situation where
the aspect ratio is tuned to the transference number. The dimensions
that correspond to this optimal situation will be derived shortly.

At the voltage cutoff, the concentration is highest in the corners,
where (x, y) = (�Lx,�Ly). If this limiting concentration were reached
throughout the particle volume (4LxLy), then the full theoretical
capacity Qth would be obtained, so Qth = zFc(Lx, Ly, t) � 4LxLy.
However, the obtained capacity is only Q = It. Dividing these,
one finds

Q

Qth
¼ It

4zFc Lx;Ly; t
� �

LxLy

(44)

and inserting eqn (43) into eqn (44) yields the exact solution

which can also be written in non-dimensional form:

where L̂ � Lx/Ly and t̂ � Ddt/Ly
2.

This equation is plotted in Fig. 9. For Lx/Ly = 1 (not shown),
the behavior matches the 1D plate exactly, regardless of tion. For
Lx/Ly a 1 and tion sufficiently close to 0 or 1, the behavior still
matches the 1D plate; examples are shown in Fig. 9A for the tion

values 0.001 and 0.999 and in Fig. 9B for 0.00001 and 0.999. This
behavior is physically reasonable, because only ions are limiting
when tion is sufficiently close to 0, and only electrons are limiting
when tion is sufficiently close to 1; in both cases the resulting
diffusion is effectively 1D. However, for Lx/Lya1 and certain inter-
mediate tion, the kinetics in 2D are improved relative to the 1D
behavior. Overall the possible improvement increases with increas-
ing Lx/Ly. Two cases are illustrated here. In Fig. 9A, Lx/Ly is only a
factor of 4 different than unity, and the boost in kinetics is small; in
Fig. 9B, Lx/Ly is a factor of 100 different than unity, and for a certain
range of tion values, the possible improvement is substantial.

The optimal particle dimensions are now determined. As
noted earlier, the analysis is rooted in the assumption that

Fig. 8 Contour plots of the non-dimensionalized concentration (4zFDdLx/ILy)c for a particle that is lithiated with current I. The data shown correspond to
Lx = 4Ly, time t = 0.5Ly

2/Dd, and tion equal to (A) 0.001, (B) 0.06, and (C) 0.999.

Q

Qth
¼ 1

1þ teonLy
2 þ tionLx

2

3Ddt
� 2

LxLy

Ddt

P1
n¼1

1

n2p2
teonLy

Lx
exp �Ddn2p2t

�
Ly

2
� �

þ tionLx

Ly
exp �Ddn2p2t=Lx

2ð Þ
� � (45)

Q

Qth
¼ 1

1þ teon þ tionL̂

3t̂
� 2

t̂

P1
n¼1

1

n2p2
teon exp �n2p2 t̂ð Þ þ tionL̂2 exp �n2p2 t̂

�
L̂2

� �� 	 (46)

cðx; y; tÞ ¼ teonILy

4zFDdLx

Ddt

Ly
2
þ y2

2Ly
2
� 1

6

�

� 2
X1
n¼1

ð�1Þn
n2p2

exp �Ddn2p2t
�
Ly

2
� �

cos
npy
Ly

)

þ tionILx

4zFDdLy

Dt

Lx
2
þ x2

2Lx
2
� 1

6

�

� 2
X1
n¼1

ð�1Þn
n2p2

exp �Ddn2p2t
�
Lx

2
� �

cos
npx
Lx

)

(43)
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making the particle unnecessarily small is undesirable due to
several potential negative consequences.12 Thus the optimal
dimensions are considered here to be those that maximize the
particle volume while still having sufficient kinetics to obtain
the desired capacity Q*/Qth in time t*.

An exact solution to this optimization problem can be
obtained numerically as follows. First fix Q*/Qth to the desired
threshold. Then, for each value of tion, an iterative routine can
be used to find the value of L̂ � Lx/Ly that maximizes the ratio
L̂/t̂ (which is proportional to the volume 4LxLy) subject to the
constraint of eqn (46). This analysis was performed using the
constrained minimization routine fmincon in MATLAB (Math-
works). The (exact) results for multiple values of Q*/Qth are
shown as points in Fig. 10. In this figure the terms Lx* and Ly*
are renamed Leon* and Lion* to make the notation independent
of the coordinate system labels. The curves shown are analytical
approximations that are derived in the next two sections.

4.1.2. Long-time approximation. At sufficiently long times,
the exponential terms in eqn (45) become negligible, and the
following long-time approximation is obtained:

Q

Qth
¼ 1

1þ teonLy
2 þ tionLx

2

3Ddt

(47)

This expression can be rewritten as

t ¼ teonLy
2 þ tionLx

2

3aDd (48)

where a � 1/(Q/Qth) � 1. The same expression was obtained in
eqn (22) for the 1D plate geometry, except here the single length
scale is replaced by a weighted average of the two wiring lengths.

The optimization problem is then to maximize the volume 4LxLy

subject to eqn (48). This problem can be solved analytically by

rearranging eqn (48) to give Ly ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3aDdt� tionLx

2ð Þ=teon
p

; then the

particle volume equals 4Lx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3aDdt� tionLx

2ð Þ=teon
p

, and the max-
imum can be found by setting the derivative with respect to Lx equal
to 0. The result is

Lx
�

Ly
� ¼

ffiffiffiffiffiffiffi
teon

tion

r
(49)

where again the asterisks indicate the values are optimal for a
particular application. It is striking that this optimal aspect
ratio does not depend on the chemical diffusivity Dd, the
desired timescale t*, or the desired capacity Q*/Qth. Combin-
ing eqn (49) with eqn (48) yields expressions for each of the
wiring lengths:

Lx
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a�Ddt�

2tion

s
(50)

Ly
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a�Ddt�

2teon

s
(51)

In general the two optimal wiring lengths are different.
Only when teon = tion= 0.5 are they equal, and in this special
case, the above guidelines match the 1D plate expression
in eqn (23).

As before, the guidelines in eqn (50) and (51) can be written
in terms of charging rate r* simply by inserting eqn (27).

4.1.3. ‘‘Short-time’’ approximation. The derivation of
eqn (49)–(51) neglected the two exponential terms in eqn (45).
For sufficiently large or small values of the ratio Lx/Ly, one of
those terms is no longer negligible, and then eqn (49)–(51) do
not apply.

A different set of guidelines is valid instead. These can be
derived by switching to a ‘‘short-time’’ approximation for one of
the infinite sum terms in eqn (45) while retaining a long-time
approximation for the other term. Of course, the time t is the
same in both terms, but the quotients t/Lx

2 and t/Ly
2 in the

exponential arguments can be quite different; when the ratio
Lx/Ly is sufficiently large or small, one of these quotients
becomes small enough to make a ‘‘short-time’’ approximation
valid. The derivation depends on whether the ratio Lx/Ly is large
or small, i.e., if tion is close to 0 or 1. Here we show the situation
where the ratio is large. In this case the exponential term
preceded by teon in the concentration expression (eqn (43)) will
decay much faster than the exponential term preceded by tion.
The former can thus be neglected, yielding the following

Fig. 9 Charge capacity obtained when discharging the particle in Fig. 7,
where tion takes the indicated values and Lx/Ly equals (A) 4 or (B) 100.

Fig. 10 Optimal ratio of the wiring lengths, Leon*/Lion* � Lx*/Ly*, for the
rectangular geometry shown in Fig. 7 with desired capacities Q*/Qth =
0.99, 0.9, or 0.8. Points are the exact values found numerically; lines are
the analytically-derived guidelines shown in the rightmost column of
Table 1. This figure is also valid if the subscripts ion and eon are exchanged.
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expression for the concentration at the point (Lx, Ly):

c Lx;Ly;t
� �

¼ teonILy

4zFDdLx

Ddt

Ly
2
þ1
3

� �

þ tionILx

4zFDdLy

Dt

Lx
2
þ1
3
�2
X1
n¼1

1

n2p2
exp �Ddn2p2t

�
Lx

2
� �( )

(52)

Consider the second term in this relation. A virtually iden-
tical term appeared for the 1D film geometry in ref. 6, and the
Laplace transform of that term in the short-time limit was given
in eqn (16B) of that work. By analogy (or by repeating the
derivation described in that work), a short-time approximation
for the Laplace transform of this second term can be found:

�c2nd term Lx;Ly; p
� �

¼
tion I

�
Ly

� �
4zFDdp

ffiffiffiffiffiffiffiffiffiffiffi
p=Dd

p (53)

where p = io denotes the Laplace transform variable. Taking the
inverse Laplace transform yields

c2nd term Lx;Ly; t
� �

¼ I
ffiffi
t
p

2zF
ffiffiffiffiffiffiffiffiffi
pDd
p tion

Ly


 �
(54)

and replacing the second term in eqn (52) with this
expression yields

c Lx;Ly; t
� �

¼ teonILy

4zFDdLx

Ddt

Ly
2
þ 1

3

� �
þ I

ffiffi
t
p

2zF
ffiffiffiffiffiffiffiffiffi
pDd
p tion

Ly


 �
(55)

By inserting eqn (55) into eqn (44), an approximation for the
ratio Q/Qth is obtained:

Q

Qth
¼ 1

teon þ
teonLy

2

3Ddt
þ 2tionLxffiffiffiffiffiffiffiffiffiffi

pDdt
p

(56)

The optimal particle dimensions can now be found analyti-
cally by maximizing the volume 4LxLy subject to eqn (56). The
following condition is obtained:

Lx
�

Ly
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= Q�=Qthð Þ � teonð Þpteon

p
3tion

�
ffiffiffiffiffiffiffi
a�p
p

3tion
(57)

using a* � 1/(Q*/Qth) � 1 and teon E 1. Inserting this relation
into eqn (56) yields expressions for the optimal wiring lengths

in this regime:

Lx
� ¼ a�

ffiffiffiffiffiffiffiffiffiffiffiffi
pDdt�
p

3tion
(58)

Ly
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�Ddt�
p

(59)

Because a long-time approximation was used in this derivation
for the first term in the concentration, eqn (57)–(59) are only valid
for Q*/Qth 4 0.6, as was found for eqn (49)–(51) and eqn (23).

The guidelines in eqn (49) and (57) are plotted as curves in
Fig. 10. Within their regimes of validity, these guidelines
exhibit excellent agreement to the exact numerical solution,
with the introduced errors being smaller than the markers in
the figure (i.e., less than a few percent in virtually all cases).
Moreover, as with the transition from short times to long times
in the previous geometries (e.g., Fig. 3A), the transition between
the regimes in Fig. 10 is rather abrupt. By setting eqn (49) equal

to eqn (57), the transition is found to occur where tion ¼
pa�

9� p

and
Leon

�

Lion
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� p
pa�

� 1

r
. For instance, when Q*/Qth = 0.99, the

transition point is at tion = 0.005 and Leon*/Lion* = 14.
The above analysis applies when tion approaches 0. If instead

teon approaches 0, a similar derivation leads to identical guide-
lines except with the ion and eon subscripts swapped. The
complete set of guidelines is summarized in Table 1. In all
cases the guidelines can be rewritten in terms of a selected
discharge rate r* simply by inserting eqn (27).

4.2. 2D diffusion in a cylinder

A natural question is whether the trends derived for the rectangular
geometry can be extended to other geometries. Some insight can be
gained by replacing the rectangular particle in Fig. 7 with a cylind-
rical particle where ions diffuse in a radial direction while electron
diffusion is still linear. This configuration is shown in Fig. 11. The
two wiring lengths now correspond to Lx and Lr. The analysis for this
situation is summarized in the Appendix, and the resulting guide-
lines are shown in Table 2. Again, the guidelines can be rewritten in
terms of a selected discharge rate r* simply by inserting eqn (27).

Comparing Tables 1 and 2, it is apparent that upon switch-
ing from linear to radial diffusion for the ions, the scaling
of the expressions with Dd, t*, tion, and Q*/Qth remains
unchanged. Furthermore, the prefactor changes are modest;
for example, the optimal wiring length for ions increases by a

Table 1 Guidelines for optimizing the rectangular geometry shown in Fig. 7, where a* � 1/(Q*/Qth) � 1 and Q*/Qth is the desired (normalized) charge
capacity. Leon* = Lx* and Lion* = Ly* denote the optimal wiring lengths for electrons and ions

Regime Range Leon* Lion* Leon*/Lion*

Low tion tion o
a�p
9� p

a�
ffiffiffiffiffiffiffiffiffiffiffiffi
pDdt�
p

3tion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�Ddt�
p ffiffiffiffiffiffiffiffi

a�p
p

3tion
Intermediate tion a�p

9� p
o tion o 1� a�p

9� p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a�Ddt�

2tion

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a�Ddt�

2teon

s ffiffiffiffiffiffiffiffi
teon

tion

r

High tion 1� a�p
9� p

o tion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�Ddt�
p

a�
ffiffiffiffiffiffiffiffiffiffiffiffi
pDdt�
p

3teon

3teonffiffiffiffiffiffiffiffi
a�p
p
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factor of 2 or less. A comparable impact of geometry occurs for
the 1D diffusion cases discussed earlier; as seen in eqn (23),
switching from a plate to a cylinder or sphere causes the
optimal length scale to increase by a factor of 1.6 or 2.2. This
comparison suggests that except for modest changes to the
prefactor, the optimal wiring lengths are insensitive to shape.

In summary, for a mixed conductor exhibiting tion roughly
in the range 0.01–0.99, the optimal wiring lengths scale as

Leon
� 	

ffiffiffiffiffiffiffiffiffiffi
Ddt�

tion

s
and Lion

� 	

ffiffiffiffiffiffiffiffiffiffi
Ddt�

teon

s
, and their ratio scales as

Leon
�

Lion
� 	

ffiffiffiffiffiffiffiffi
teon

tion

r
¼

ffiffiffiffiffiffiffiffiffi
seon
sion

r
. For an electrolyte or an electronic con-

ductor with tion outside the range 0.01–0.99, the optimal wiring

lengths scale as Leon
� 	

ffiffiffiffiffiffiffiffiffiffi
Ddt�
p

tion
and Lion

� 	
ffiffiffiffiffiffiffiffiffiffi
Ddt�
p

teon
, and their

ratio scales as
Leon

�

Lion
� 	

teon

tion
¼ seon

sion
. In both cases, it is striking

and useful that the optimal ratio of the wiring lengths is
independent of Dd and t*.

(As an aside, it can be derived that Dd 	 sd

Cd 	
sionseon

s
1

Cd,

where Cd is the chemical capacitance,1 and combining this

relation with the ones above yields Lion
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
siont�=Cd

p
and

Leon
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
seont�=Cd

p
, whereas the corresponding expression

for coincident ionic and electronic contacts is L� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sdt�=Cd

p
.

The similarity between these expressions indicates that the
problem of finding the optimal wiring lengths is mimicked
by a diffusion problem with coincident contacts (homogeneous
boundary conditions) but apparent anisotropic diffusivities

given by replacing sd with seon and sion. But note that the true
diffusion inside is characterized by Dd only.)

5. Applications

The relations derived above can help guide the optimization of
realistic electrode microstructures. A full discussion is beyond
the scope of the current work, but here we give three illustrative
examples. The first application is depicted in Fig. 12. Three
electrodes are shown that consist of cylindrical columns grown
on an electronically conducting substrate. The critical design
question is to estimate the optimal dimensions for the columns.
Suppose the storage phase is known to have tion = 0.01. Fig. 12A
shows a situation where the aspect ratio is unnecessarily small:
Leon/Lion = 2. Since the storage phase has relatively high electronic
conductivity, the columns could be longer with no carbon coating
and minimal loss in kinetics. Fig. 12C shows the other extreme
where the columns are excessively long: Leon/Lion = 16. Here the
kinetics are substantially slowed because the electronic wiring
length is too large. The optimal aspect ratio is depicted in
Fig. 12B: Leon*/Lion* = 6, as estimated from the intermediate tion

relation
Leon

�

Lion
� ¼

ffiffiffiffiffiffiffiffiffiffiffi
3teon

16tion

r
in Table 2. If the storage phase is changed

to a material with tion = 10�4, such as LiNi0.5Mn1.5O4,16 then the
optimal aspect ratio would become Leon*/Lion* = 220. If the chemical
diffusivity Dd is known, then not just the optimal aspect ratio but
also the optimal column dimensions can be estimated from
Table 2. For LiNi0.5Mn1.5O4, a value of 10�9 cm2 s�1 has been
measured for Dd;16 if this value is taken to be roughly constant

Fig. 11 Insertion into a mixed-conducting cylindrical particle. The particle has a mirror symmetry plane at x = 0 and a rotational symmetry axis at r = 0
(indicated by dot-dash lines). (A) Schematic. (B) Coordinate system used in the model. The particle centroid is at (0, 0).

Table 2 Guidelines for optimizing the cylindrical geometry shown in Fig. 11, where a* � 1/(Q*/Qth) � 1 and Q*/Qth is the desired fraction of the
theoretical capacity. Leon* = Lx* and Lion* = Lr* denote the optimal wiring lengths for electrons and ions

Regime Range Leon* Lion* Leon*/Lion*

Low tion tion o
a�p

12� p
a�

ffiffiffiffiffiffiffiffiffiffiffiffi
pDdt�
p

4tion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a�Ddt�
p ffiffiffiffiffiffiffiffi

a�p
p

8tion
Intermediate tion a�p

12� p
o tion o 1� a�p

12� p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�Ddt�

tion

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16a�Ddt�

3teon

s ffiffiffiffiffiffiffiffiffiffiffiffi
3teon

16tion

r

High tion 1� a�p
12� p

o tion

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a�Ddt�
p

a�
ffiffiffiffiffiffiffiffiffiffiffiffi
pDdt�
p

4teon

8teonffiffiffiffiffiffiffiffi
a�p
p
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during battery cycling, then the optimal dimensions to achieve
99% charging at a 5C rate can be estimated from Table 2 to
be Lion* = 2 mm and Leon* = 380 mm. For comparison, quasi-
spherical LiNi0.5Mn1.5O4 particles are commercially available
from NEI Corporation (Nanomyte SP-10) with an average radius
of 3 mm.17 The good agreement between this radius and the
predicted Lion* helps to validate the guidelines. The large
predicted Leon* suggests that manufacturing the particles as
long rods rather than spheres would yield comparable kinetics,
while potentially improving the architecture in other ways
(e.g., reducing the weight of contact phases, decreasing the
electrolyte infiltration time during manufacturing, and so on).

Strictly speaking, the geometry modeled in Fig. 11 and Table 2
includes a no-flux symmetry boundary at the end of the cylindrical
region modeled, whereas in Fig. 12, the ends of the cylinders are
uncovered and available to support an ion flux. This difference
makes the overall ion transport slightly less slow relative to electron
insertion, which decreases the optimal wiring length ratio for the
columns in Fig. 12 relative to the estimates in Table 2. However, the
difference is negligible when the columns are sufficiently long, or
when they are capped.

A second application is given in Fig. 13. The electrodes shown
consist of an agglomeration of spherical particles attached to a
metal substrate. The critical design question here is to estimate the
optimal configuration of the carbon. Suppose the storage phase
again exhibits tion = 0.01. Fig. 13A depicts the typical case where
every particle is carbon-coated: Leon/Lion = 1. However, since the
storage phase has relatively high electronic conductivity, this
configuration uses an unnecessarily large amount of carbon, which
is undesirable because it lowers the capacity per weight of the
electrode. Fig. 13C shows the other extreme with no carbon:

Leon/Lion = 16. The kinetics are greatly slowed in this case because
the electronic wiring length is too long. The best configuration will
take maximum advantage of the electronic conductivity of the
storage phase and use only enough carbon as is necessary achieve
the optimal wiring length for electrons, as depicted in Fig. 13B.

A precise calculation of Leon*/Lion* for the geometry in Fig. 13
would need to consider the nearly spherical insertion path for the
ions, porosity effects, as well as constriction and transfer effects that
may arise as the electrons are transported through the narrow
contact area between particles. Such a calculation would likely
require numerical modeling, but an upper bound can be analytically
estimated from the present work. It was shown above that a
spherical geometry is slightly more favorable than a cylindri-
cal geometry, so for the geometry in Fig. 13, the prefactor for
Lion* should be slightly larger than in the cylindrical guide-
lines shown in Table 2. On the other hand, the constriction
effects impede electron transport, so the optimal value of
Leon* in Fig. 13 should be lower than in the guidelines derived
above. Both of these effects will tend to decrease the ratio
Leon*/Lion*, and thus the guidelines shown in Table 1 for
Leon*/Lion* can be taken as an upper bound for the configu-
ration in Fig. 13. For tion = 0.01, the upper bound is Leon*/Lion* = 10.
For tion = 10�4, the upper bound is Leon*/Lion* = 590.

It is quite plausible that such intermediate-loading micro-
structures can be achieved in practice. For example, the parti-
cles could be mixed with a dilute amount of graphene sheets, or
agglomerates of particles could be sprayed with an organic
compound that decomposes into carbon upon annealing.

A third application involves optimizing the distribution of a
solid electrolyte when the storage phase has high tion (e.g.,
Na3V2(PO4)2F3).18 This scenario can arise in solid state

Fig. 13 Battery electrodes consisting of an agglomeration of spherical particles, where (A) every particle is carbon coated (Leon/Lion = 1); (B) clusters of
particles are carbon coated (Leon/Lion = 4); or (C) no carbon is used (Leon/Lion = 16). An upper bound for the optimal ratio of the wiring lengths can be
estimated by neglecting corrections for porosity and constriction effects, as discussed in the text.

Fig. 12 Battery electrodes consisting of an array of columnar particles grown on a metal substrate, where Leon/Lion = (A) 2, (B) 6, and (C) 16.
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batteries, and it is analogous to the situation in Fig. 13, except
with the roles of ions and electrons reversed. It follows that in
some cases an intermediate loading of the solid electrolyte will
be optimal, rather than contacting every particle with solid
electrolyte or admixing no solid electrolyte at all.

6. Conclusions and outlook

The kinetics of inserting ions and electrons into an electroactive
particle in a battery electrode are shown to depend in general on two
length scales – the ionic and electronic wiring lengths – that
characterize the transport distances within the particle to the
respective current collectors. Alternatively, the wiring lengths can
be interpreted as characterizing the ‘‘mixing length scales’’ (‘‘mesh
sizes’’) of the ionic and electronic current collector networks with
the storage phase. Analysis indicates that the optimal values of the
wiring lengths depend on whether the ionic transference number
tion in the storage phase is low, intermediate, or high. The following
guidelines are derived for galvanostatic charging of a rectangular

slab geometry: Leon
� � a�

ffiffiffiffiffiffiffiffiffiffiffiffi
pDdt�
p .

3tion and Lion
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�Ddt�
p

in

the low range (roughly tion o 0.01), where a* � 1/(Q*/Qth) � 1 and
Q*/Qth is the desired charge capacity normalized by the theoretical

capacity; Leon
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a�Ddt�=2tion

p
and Lion

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a�Ddt�=2teon

p
in

the intermediate range (tion E 0.01–0.99); and in the high range
(tion 4 0.99), the guidelines are identical to the low range except
with the ion and eon subscripts reversed. These expressions resem-

ble the mean square displacement expression L� 	
ffiffiffiffiffiffiffiffiffiffiffiffi
a�Dt�
p

that
arises from a typical single-species diffusion analysis, but they also
include a dependence on transference number that arises because
the two carriers are inserted at separate surfaces. The prefactors are
weakly dependent on whether the corresponding carrier diffuses in
planar or radial fashion, but the required corrections are modest (on
the order of a factor of 2).

From these considerations, a design rule for the architecture of a
battery insertion electrode can be formulated: the storage phase
should be shaped and contacted by the current collector phases so
that the ionic and electronic wiring lengths are as close to the
optimal values as is practically feasible. The initial set of guidelines
derived here can be used to estimate (or at least bound) the optimal
values for a variety of electrode architectures. For example, one can
estimate that the optimal aspect ratio for columnar storage particles
grown on a metal substrate (Fig. 12) increases from 6 to 220 if tion in
the storage phase is decreased from 0.01 to 0.0001.

It is important to keep in mind that these guidelines are based on
several key assumptions: mass storage by a solid solution mecha-
nism; transport parameters that do not vary significantly with
concentration; no strain effects; isotropic transport; no cracking;
negligible resistance in the electrolyte and electronic current collec-
tors; negligible interfacial resistances; no constriction effects; and
galvanostatic charging. An interesting topic for future work is to
quantify the impact on the wiring lengths of relaxing one or more of

these assumptions. For instance, mass storage by a two-phase
mechanism could be treated by combining the concept of wiring
lengths with the theory of diffusion via a moving two-phase bound-
ary. Anisotropic transport properties could be handled by favorably
aligning the carrier transport paths with the crystallographic direc-
tions exhibiting the fastest ionic and electronic transport. Significant
transport resistances in one of the current collector networks will
decrease the corresponding optimal wiring length, but this impact
can be mitigated by the implementation of a hierarchical structure.
The analysis of these more complex situations is likely to require
numerical methods.
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Appendix
2D diffusion in a cylinder

Diffusion equation:

@c

@t
¼ Dd 1

r

@c

@r
þ @

2c

@r2
þ @

2c

@x2


 �
(60)

Boundary and initial conditions:

@c

@r

����
x;Lr

¼ ðI=2Þ=2pLrLxð Þteon
zFDd (61)

@c

@x

����
Lx ;r

¼
ðI=2Þ

�
pLr

2
� �

tion

zFDd (62)

@c

@r

����
x;0

¼ @c

@x

����
0;r

¼ 0 (63)

c(x, r, 0) = 0 (64)

Concentration solution:

cðx; r; tÞ

¼
teon

I

4pLrLx


 �
Lr

zFDd

� 2Ddt

Lr
2
þ r2

2Lr
2
� 1

4
� 2
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n¼1

1

an2
exp �Ddan2t

�
Lr

2
� �J0 ran=Lrð Þ

J0 anð Þ

( )

þ
tion

I

2pLr
2
Lx

zFDd

� Ddt

Lx
2
þ x2

2Lx
2
� 1

6
� 2

X1
n¼1

ð�1Þn
n2p2

exp �Ddn2p2t
�
Lx

2
� �

cos
npx
Lx


 �( )

(65)

Capacity (exact):

Q

Qth
¼ 1

1þ teonLr
2

8Ddt
þ tionLx

2

3Ddt
� 2

Ddt

P1
n¼1

teonLr
2

an2
exp �Ddan2t=Lr

2ð Þ þ tionLx
2

n2p2
exp �Ddn2p2t=Lx

2ð Þ
� � (66)
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Capacity (long-term approximation):

Q

Qth
¼ 1

1þ teonLr
2

8Ddt
þ tionLx

2

3Ddt

(67)

Capacity (short-term approximation):

Q

Qth
¼ 1

teon þ
teonLr

2

8Ddt
þ tion2Lxffiffiffiffiffiffiffiffiffiffi

pDdt
p

(68)

By maximizing the cylinder volume pLr
2(2Lx) subject to the

constraints given by eqn (67) or (68), one finds the optimal
wiring lengths reported in Table 2.
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