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A general formulation of the quasiclassical
trajectory method for reduced-dimensionality
reaction dynamics calculations†

Tibor Nagy, *a Anna Vikár a and György Lendvay *ab

Dimension reduction by freezing the unimportant coordinates is widely used in intramolecular and

reaction dynamics calculations when the solution of the accurate full-dimensional nuclear Schrödinger

equation is not feasible. In this paper we report on a novel form of the exact classical internal-

coordinate Hamiltonian for full and reduced-dimensional vibrational motion of polyatomic molecules

with the purpose of using it in quasiclassical trajectory (QCT) calculations. The derivation is based on the

internal to body-fixed frame transformation, as in the t-vector formalism, however it does not require

the introduction of rotational variables to allow cancellation of non-physical rotations within the body-

fixed frame. The formulas needed for QCT calculations: normal mode analysis and state sampling as

well as for following the dynamics and normal-mode quantum number assignment at instantaneous

states are presented. The procedure is demonstrated on the CH4, CD4, CH3D and CHD3 isotopologs of

methane using three reduced-dimensional models, which were previously used in quantum reactive

scattering studies of the CH4 + X - CH3 + HX type reactions. The reduced-dimensional QCT

methodology formulated this way combined with full-dimensional QCT calculations makes possible the

classical validation of reduced-dimensional models that are used in the quantum mechanical description

of the nuclear dynamics in reactive systems [A. Vikár et al., J. Phys. Chem. A, 2016, 120, 5083–5093].

1. Introduction

Dimension reduction is often used in modeling phenomena in
chemical physics to reduce the complexity of the model. By
selecting the degrees of freedom that are relevant to the investi-
gated properties of the system, one can concentrate the effort on
a model whose smaller size allows one to perform a simulation at
a higher level of sophistication. In molecular physics, reduced-
dimensional (RD) models have been used in the description of
nuclear motion both in rovibrational spectroscopy1,2 as well as in
molecular3–5 and reaction dynamics simulations.6–17 In both
cases, the possibility of simplification is offered by the separation
of time scales and the weakness of the coupling between the
various modes of nuclear motion.

In vibrational spectroscopy, the semi-rigid modes are well
described by the normal mode approximation18–20 in which the
potential and kinetic energies are considered as quadratic func-
tions of Cartesian or internal coordinates and of the conjugate
momenta, resp. The description of large amplitude motion (LAM),
in floppy molecules, such as hindered rotor type modes, however,
require a more sophisticated treatment, because the quadratic
approximation does not work, often within the space swept by the
zero-point motion. The frequencies of such modes are generally
much smaller than those of stiffer vibrations, and the potential
coupling between the fast and slow degrees of freedom is often
also limited. A way to achieve a numerically feasible description of
vibration of molecules with LAMs is that one reduces the dimen-
sionality of the problem to those of the strongly anharmonic low-
frequency modes by freezing the fast vibrations.1,2

In molecular dynamics simulation of, for example, bio-
molecules in water, when a large number of solvent molecules
are present, the high-frequency OH stretching vibrations
require the integration time step to be small. However, their
instantaneous phase has no effect on the much slower con-
formational motion, thus one can freeze them,4,5 which allows
a significantly faster, yet realistic simulation of the system.

In reaction dynamics, the reactive event often concerns a
small number of internal coordinates involving only a few atoms,
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called active modes, and the rest are considered as ‘‘spectators’’.
Dimension reduction is possible because the potential-
and often the kinematic coupling between the active and
spectator modes are small. In the corresponding scattering
calculation the active degrees of freedom are treated explicitly,
while the coordinates of spectator modes are frozen at their
values at the saddle point of the potential energy surface (PES)
or at the equilibrium geometry of reactant molecules. In
quantum and state-to-state quasiclassical dynamical calcula-
tions it is necessary to know the quantum states of the
reactants and products, for which one needs to properly
characterize the vibrational motion involving only the active
degrees of freedom of the reactant and product molecules,
respectively. This is equivalent to the reduced-dimensional
vibrational spectroscopic problem. RD models are mostly used
in quantum mechanical simulations of reactions, because of
the exponential growth of the computational effort with the
number of degrees of freedom,1,2,6–16 but only rarely in
quasiclassical trajectory (QCT) simulations, where the growth
is linear.

In the QCT method,20,21 the motion of the atoms is described
classically and the only nuclear quantum effect considered is
that the rovibrational energies of the reactant molecules are
discrete. Accordingly, each rovibrational quantum state of the
reactant molecules is simulated by an ensemble of semiclassi-
cally quantized classical states (i.e. coordinates and momenta).
In RD reaction dynamical models the spectator degrees of free-
dom are frozen during the reaction. This means that the number
of vibrational degrees of freedom of the reactant and the product
molecules is also reduced. Consequently, the problem of semi-
classical quantization also arises when state-to-state reactivity
parameters or simply state distributions of product molecules
are to be determined. In what follows, the generation of classical
states corresponding to a quantum state will be called the direct
problem, and the determination of the quantum state corres-
ponding to a given classical state will be referred to as the inverse
problem.

Application of dimension reduction in QCT simulations is
rather scarce. One of the reasons for this is that there is no
general theory for the vibrational analysis, initial state prepara-
tion and final state analysis is available. Among the few reduced-
dimensional trajectory calculations performed so far, in a set
only trivial reductions were applied: some of the Cartesian
coordinates were simply disregarded. Lu and Hase22 applied
RD models of benzene, obtained by constraining and truncating
the molecule to planar C3H3 and C3H moieties to prevent zero-
point energy leakage from neighboring high-frequency modes
during the simulation of intramolecular vibrational energy
redistribution (IVR). Klossika and Schinke23 investigated the
photodissociation of HNCO induced by NH vibrational excita-
tion, by constraining the atoms into a plane using a reduced-
dimensional analytic potential energy surface calculated only
for planar arrangement of atoms.

In another set of dynamical studies the vibrations of mole-
cules or fragments were completely frozen and only their
relative motion was simulated. Raff and coworkers24,25 applied

rigid-body dynamics to investigate rotational energy transfer
between CO2 and He as well as H2. Rotational dynamics in
collisions of H2O and H2 with frozen stretch vibrations were
studied by Faure et al.26 In some reactive scattering calculations
bond lengths and angles were frozen, focusing again on rota-
tional dynamics in the capture step of some bimolecular
reactions (Maergoiz et al.,27 Faure et al.,28 Harding et al.29).
Harding et al.30 investigated the roaming dynamics of the
photochemical decomposition of CH3CHO, where they froze
the vibrations of the fragments to avoid zero-point energy
leakage and the need for constructing a high-dimensional
analytic PES.

More complex constraints were considered by the authors of
the present paper in a recent study comparing the results of
reduced- and full-dimensional (FD) quasiclassical trajectory
calculations. The purpose of that work was to assess the
accuracy of the Palma–Clary RD quantum dynamical model of
the CH4 + H - CH3 + H2 reaction,31 whose FD counterpart is
computationally too expensive to solve. In the present paper
the general theory of reduced-dimensional QCT calculations
used in that study is described. We demonstrate how the QCT
method, including initial condition generation and final state
can be consistently applied to RD models involving arbitrary
constraints.

In the following, first we describe the three fundamental
coordinate systems used in this work (Section 2.1); then in
Section 2.2 we derive the vibrational Lagrangian in body-fixed
Cartesian coordinates and then the vibrational Lagrangian and
Hamiltonian in internal coordinates (Section 2.3). We discuss
the connection of our formulation to the t-vector and s-vector
formalisms in both full and reduced-dimensionality (Section 2.4).
As applications, normal mode analysis (Section 2.5) and normal
mode sampling (NMS, Section 2.6) in internal coordinates and the
subsequent transformation of states to laboratory frame are
described. In Section 2.7, two methods of RD trajectory integra-
tion are presented and compared. Section 2.8 is devoted to the
inverse problem, where first the classical state given in laboratory
frame is transformed to the internal coordinate system, and the
normal coordinate displacements and momenta are calculated,
from which the normal mode quantum numbers are determined.
The equations presented in Section 2 (apart from Section 2.4) hold
not only for reduced-dimensional models but are also applicable
in full dimensionality and can also serve as a basis in the
derivation of RD quantum Hamiltonians. In Section 3, as a proof
of principle, the method is applied to a hierarchy of three RD
models of the methane molecule CZ3Y, in each of which the CZ3

group is constrained to maintain C3v symmetry. A complete
reaction dynamics study based on this theory has been presented
in ref. 31.

2. Theory
2.1 Frames and coordinate systems

Derivation of the classical vibrational Hamiltonian in
internal coordinates starts from the full Lagrangian expressed
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in Cartesian coordinates in a space-fixed (a.k.a. laboratory)
frame:

L X; _X
� �

¼ 1

2
_XTM _X� VðXÞ; (1)

where for an N-atomic system X = (X1x, X1y, X1z,. . .,XNz)
T and

:
X

are the 3N-component coordinate and corresponding velocity
column vectors, respectively, which are composed of the corres-
ponding atomic coordinate Ri = (Xix, Xiy, Xiz)

T and velocity
:
Ri

vectors. M = diag(m1,. . .,mN) is the diagonal 3N � 3N mass
matrix, containing the atomic masses. The classical mechanical
state of the system can be given either by the coordinates and
the velocities, (X,

:
X) or by the coordinates and the conjugate

momenta, (X,PX), the Cartesian momenta being defined as
PX = M

:
X.

For the description of molecular vibrations, internal coordi-
nates such as valence coordinates (bond lengths, bond and
torsion angles etc.) are much more meaningful than Cartesians
as the forces acting between atoms are inherently intra-
molecular, i.e., they do not depend on the position and orienta-
tion of the molecule. In addition, the force constants defined in
terms of valence coordinates can be rationalized using
chemical intuition (for example, they are roughly transferable
between molecules).32 Furthermore, the use of internal
coordinates is advantageous also when approximations to the
Hamiltonian (e.g. quadratic- or quartic-order) are applied as
they can describe large amplitude curvilinear motion more
effectively than Cartesians.

In general, an internal coordinate is such a function of
Cartesian coordinates, whose value is invariant under displace-
ment and rotation of the molecule, thus it is necessarily
formulated by using scalar (a�b = aTb), and vector (a � b)
products of atomic Cartesian coordinate vector differences
Ri � Rj. Consequently, functions of internal coordinates are
also internal coordinates. It is worth noting that those internal
coordinates that are defined in terms of a cross product (e.g.,
torsion angles), change sign under mirroring the molecule
through a plane (they are pseudoscalars).

For the description of the vibrating molecule one needs to
define n independent, otherwise arbitrary internal coordinates
y(X) = (y1(X),. . .,yn(X))T in terms of Cartesian coordinates. n is
less than or may be equal to f = 3N � 6, the number of internal
degrees of freedom. If n equals f then the set of internal coordi-
nates is complete and the model is called full-dimensional. In
reduced-dimensional models the set of irredundant internal coor-
dinates is incomplete (n o f ) and the remaining f � n internal
degrees of freedom are constrained by fixing f � n functions
yn+1(X),. . .,yf (X) at values yn+1,0,. . .,yf,0. These constraint functions
are generally expressed in terms of the usual valence coordinates.
For example, such a function can measure the deviation from
some desired symmetry, e.g., it may be the difference of two bond
lengths, which is constrained to zero. Variables yn+1(X),. . .,yf (X)
expressing the constraints are formally internal coordinates,
because their values should also be independent of the position
and the orientation of the molecule. Note that these constrained
variables are not included in vector y.

In full-dimensional models of vibrating molecules, the
kinetic energy in internal coordinates is given with the help
of the Wilson B matrix evaluated at the instantaneous
geometry:19

B ¼ dy

dX
; (2)

The row vectors of the (3N � 6) � 3N dimensional B matrix are
called vibrational s-vectors1,33 (si = dyi/dX). The nonredundant
internal coordinates y are defined for all values of laboratory
coordinates X, so that the inverse mass matrix

Gy,vib = BM�1BT (3)

properly assigns masses to the internal coordinates and the
vibrational kinetic energy in internal coordinates written as,

Ekin ¼
1

2
pTyGy;vibpy: (4)

will be exact. However, in reduced-dimensional models (n o f ),
the X coordinates are interrelated by the constraints and the B
matrix defined in (2) with reduced number of rows lacks the
information on the corresponding constrained internal coordi-
nates, which is required to disentangle them from the free
ones. Consequently, such a reduced-dimensional B matrix
cannot be used for the construction of the exact reduced-
dimensional kinetic energy expression, unless the frozen inter-
nal coordinates are orthogonal in some sense to the free ones
(see ref. 1 and Section 2.4).

In order to circumvent this problem, we use the inverse
transformation, which converts f internal coordinates y to 3N
lab Cartesian coordinates X. The inverse function X(y) and
its partial derivatives by definition take into account the con-
straints because they are evaluated under the condition
yj (X) = yj,0 for j = n + 1,. . .,f. However, the internal coordinates
do not determine the position and orientation of the molecule
in the Cartesian system. To locate and orient the molecule one
can utilize an intermediate body-fixed frame and an attached
Cartesian coordinate system. In this auxiliary body-fixed frame
the Cartesian coordinate 3N-vector and the coordinate 3-vector
of atom i will be denoted by x = (x1x, x1y, x1z,. . .,xNz)

T and
ri = (xix, xiy, xiz,)

T, respectively. The body-fixed coordinates X are
connected to the space-fixed frame by an instantaneous trans-
lation and rotation, summarized in the function x(X). The
definition of the intermediate frame allows us to derive the
Lagrangian in internal coordinates via converting the kinetic
and potential energy expressions (1) from space-fixed to body-
fixed frame and (2) from body-fixed to internal frame using the
inverse transformations X(x) and x(y), respectively.

In what follows we proceed on this route in two steps. First
we describe the body-fixed frame and its connection to the
internal coordinates, x(y) and then its relationship to the space-
fixed Cartesian frame, X(x) and show how a classical state given
in internal coordinates can be transformed into the space-
fixed frame.

There are many possible ways of defining a body-fixed
Cartesian frame, and it depends on the system which one is
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the most favorable. One of the simplest possibilities is that one
places the origin either at the center of mass of the molecule or
at one of the atoms and selects four non-coplanar atoms within
the molecule and orthonormalizes three vectors pointing from
one of them to the other three to obtain the basis vectors
e (a = x, y, z).

The definition of the body-fixed Cartesian coordinates as a
function of internal ones is given by a vector–vector function

x = x(y), (5)

whose time derivative connects the internal coordinate and the
Cartesian velocities:

:x = C(y) :y. (6)

The columns of the 3N � n matrix C(y) = dx/dy are known as
vibrational t-vectors1,33,34 (ti = qx/qyi).

When one knows the x coordinates, the Cartesian coordinates
of the atoms in the space-fixed frame can be obtained by
considering that the body-fixed and space-fixed Cartesian frames
can be brought into overlap by a translation and a rotation, i.e.,
the ri coordinate vectors need to be rotated by matrix Oframe and
shifted by vector Rframe to get the space-fixed coordinates Ri:

Ri = Rframe + Oframeri. (7)

The atomic velocity
:
Ri is obtained from that in the body-fixed

frame ( :x) by differentiating eqn (7) with respect to time:
:
Ri =

:
Rframe +

:
Oframeri + Oframe

:ri, (8)

where
:
Rframe is the velocity of the body-fixed frame with respect to

the space-fixed one. To get
:
Oframe, one needs to take into account

that the body-fixed frame may rotate around its origin with angular
velocity xframe. The total time derivative of the rotation matrix Oframe

is then
:
Oframe = xframe � Oframe, where the cross product of oframe

and matrix Oframe needs to be evaluated column by column. With
this, the atomic velocity Ri in the space-fixed Cartesian frame is:

:
Ri =

:
Rframe + (xframe � Oframe)ri + Oframe

:ri. (9)

Unless special care is taken, the body-fixed frame does not
move together with the molecule: its instantaneous linear
(
:
Rframe) and angular velocities (xframe) differ from those of the

molecule in the space-fixed frame. For example, when the body-
fixed frame for a vibrating water molecule (H2O) is selected to
be centered at the O atom with the x-axis parallel to H1H2, then
the linear velocity of the origin of the frame is not identical to
that of the center of mass, and the antisymmetric OH stretch
vibration generates angular motion of the molecule (see Fig. 1).

Obviously, the physically correct description of motion
requires both the displacements of the atoms of the molecule
in the body-fixed frame and translation + rotation of the body-
fixed frame in the lab frame. Consequently, the transformation
of internal coordinates and momenta to body-fixed frames
according to eqn (5) and (6) usually generates unphysical (often
referred to as spurious35) translation and rotation.

When the focus is on the vibrational motion of a molecule,
however, the general procedure is that the motion of the

body-fixed frame is disregarded and extra steps are made to
eliminate the spurious rotation and translation which would
falsify the effective masses assigned to internal coordinates. In
the t-vector formalism the cancellation of spurious rotation is
achieved by the introduction of rotational coordinates when
vibrational energy levels are calculated.1,2

In classical mechanics, when a vibrational state is generated
by normal mode sampling, the molecule can artificially be
cleared of these unwanted velocities.36 In general, it is desirable
to avoid the appearance of the unphysical translational and
rotational terms, a novel way of which is proposed in the
following sections.

2.2 Vibrational Lagrangian in body-fixed Cartesian
coordinates

To derive the pure vibrational Lagrangian Lx,vib(x, :x) in body-
fixed Cartesian coordinates, first the Lagrangian Lx(x, :x) for the
non-translating and non-rotating body-fixed frame is obtained.
To achieve this, one substitutes eqn (7) and (9) into eqn (1) and
eliminates the rotational and translational motion of the body-
fixed frame by setting

:
Rframe = 0 and xframe = 0. Exploiting that

matrix M is diagonal and matrix Oframe is unitary, the kinetic
energy function in the new coordinates can be transformed into
the same form in body-fixed Cartesian coordinates as it was
in the lab Cartesian frame, in accordance with the expectations.
The form of the potential energy function will also remain the
same because it is a function of internal coordinates only,
which are defined with dot and cross products (brief common
notation: _�), that are also left unchanged by Oframe.

Lx x; _xð Þ ¼ L XðxÞ; _X x; _xð Þ; _Rframe ¼ 0;xframe ¼ 0
� �

¼
XN
i¼1

1

2
mi

_R
T

i
_Ri � V Rj � Rk

� �
_� Rl � Rmð Þ

� �� �

¼
XN
i¼1

1

2
mi _r

T
i _ri � V rj � rk

� �
_� rl � rmð Þ

� �� �

¼ 1

2
_xTM _x� VðxÞ:

(10)

Fig. 1 Schematic drawing of the motion of a water molecule (H1OH2) in a
specific body-fixed frame, which is centered at the O atom with the x-axis
parallel to the H1H2 line. (a) The equilibrium geometry with space-fixed
displacements (blue arrows) due to antisymmetric stretch vibration. (b) The
distorted molecule and the body-fixed frame aligned according to the new
H–H axis. (c) The distorted molecule when the body-fixed frame is aligned
as in (a), showing the corresponding atomic displacements in the body-
fixed frame, which result in a clockwise rotated structure whose center of
mass (CM) is displaced upward and to the left in the body-fixed frame.
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The curly bracket refers to the sets of products involving the
atomic indices ( j, k, l, m) that are used in the definition of
internal coordinates.

We would like to obtain the pure vibrational Lagrangian.
For this we need to decompose the kinetic energy into sepa-
rate vibrational as well as translational and rotational parts.
If one introduces mass-scaled coordinates x̃ = M1/2x, the
quadratic form of the kinetic energy expressed in the body-
fixed Cartesian frame (Tx) reduces to the square of the mass-

scaled velocity vector _~x
� �

. This form is advantageous, because

it allows one to decompose the instantaneous mass-scaled
velocity vector into orthogonal translational, rotational and
vibrational parts (we show later how). Once these compo-

nents, _~xtrans, _~xrot and _~xvib are available, the kinetic energy
can also be broken down into the corresponding Ttrans, Trot

and Tvib terms:

Tx ¼
1

2
M

1
2 _x

� 	T

M
1
2 _x ¼ 1

2
_~x2 ¼ 1

2
_~xtrans

2 þ _~xrot
2 þ _~xvib

2
� �

¼ Ttrans þ Trot þ Tvib:

(11)

Consequently, the vibrational part can be obtained by elim-
inating the components of the mass-scaled velocity that corre-
spond to translation and rotation, i.e., projecting the velocities
onto the complementary and orthogonal, instantaneous
(geometry-dependent) vibrational subspace. If the 3N � 3N
matrix that performs the desired projection in the space of
mass-scaled velocities is denoted by Pvib(x), the pure vibrational
Lagrangian can be formally written as:

Lx;vib x; _xð Þ ¼ 1

2
PvibðxÞM

1
2 _x

� 	T

PvibðxÞM
1
2 _x� VðxÞ: (12)

Utilizing the fact that the orthogonal projectors onto the
translational and rotational subspaces, Ptrans and Prot(x), can
be easily found (see below) and their sum is complementary to
Pvib(x), we define Pvib(x) in terms of them:

Pvib(x) = E � Ptrans � Prot(x), (13)

where E is the 3N � 3N unit matrix. In the following we
define the basis vectors of the translational and rotational
subspaces and using them, we construct the corresponding
projectors.

The translational subspace of mass-scaled displacements and
velocities is spanned by the three 3N-component translational
basis vectors utrans,a (a = x, y, z):

utrans;aig ¼ @~xig
@xCM;a

¼

ffiffiffiffiffiffi
m1
p

ea

..

.

ffiffiffiffiffiffiffi
mN
p

ea

0
BBBB@

1
CCCCA

ig

¼ ffiffiffiffiffi
mi

p
eað Þg¼

ffiffiffiffiffi
mi

p
dag ¼ M1=2ttrans;a

� �
ig

(14)

utrans,a
ig denotes the g (g = x, y, z) component of the mass-scaled

displacement of atom i during translation of the whole mole-
cule along axis a (see Fig. 2a–c). dag is the Kronecker symbol,
which is evaluated using x = 1, y = 2, z = 3 assignments to the
possible values of its indices a and g. The translational basis
vectors are related to translational t-vectors (ttrans,a) by mass-
scaling. The translational basis vectors only depend on the
masses and are independent of the geometry and also of the
choice of the origin of the body-fixed frame. Consequently,
the translational subspace is the same at all geometries and thus
it includes all finite mass-scaled translations of the molecule.

The rotational subspace is spanned by the three 3N-component
rotational basis vectors urot,a(x), which describe the relative magni-
tude of the mass-scaled displacements of atoms due to an
infinitesimal rotation of the molecule around the a principal axis
(PA) of the instantaneous moment of inertia tensor (a = 1, 2, 3, but
not x, y, z). Rotational basis vectors can be calculated from the
orthonormal unit vectors of principal axes ePA

a (given in the
body-fixed frame) and the instantaneous position vectors of
atoms qi := ri � rCM (i = 1,. . .,N) relative to the center of mass of
the molecule, rCM:

urot;aig ðxÞ ¼
@~xig
@jPA

a

¼

ffiffiffiffiffiffi
m1
p

ePAa � q1
� �

..

.

ffiffiffiffiffiffiffi
mN
p

ePAa � qN
� �

0
BBBB@

1
CCCCA

ig

¼ ffiffiffiffiffi
mi

p
ePAa � qi
� �

g

¼ ffiffiffiffiffi
mi

p X
s¼x;y;z

X
t¼x;y;z

egstePAas rit ¼ M1=2trot;a
� �

ig
:

(15)

urot,a
ig characterizes the relative magnitude of the g component

(g = x, y, z) of the mass-scaled displacement of atom i when the

Fig. 2 The three translational (a–c), two rotational (d and e) and one vibrational (f) normalized basis vectors of a homonuclear diatomic molecule
(H2, O2, etc.) at a given orientation. The Cartesian coordinate system and the indices of atoms are shown in the leftmost panel. In panels (d and e), the
center of mass (CM) is shown in blue, and the unit vectors along the principal axes are shown in red.
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molecule is rotated infinitesimally around the a (= 1, 2, 3)
principal axis (see Fig. 2d and e). The angle of the rotation
around ePA

a is denoted by jPA
a . egst is the Levi-Civita tensor which

is evaluated using assignments x = 1, y = 2, z = 3 regarding the
possible values of its indices g, s and t. The rotational basis
vectors are related to rotational t-vectors (trot,a) corresponding
to rotations around the principal axes by mass-scaling. The
rotational basis vectors depend on the geometry. Thus they can
be used to describe only infinitesimal mass-scaled displace-
ments of atoms during the rotation of the molecule. The
translational and the rotational basis vectors are orthogonal to
each other, and by normalizing them an orthonormal set of
translational and rotational basis vectors, utrans,a

0 and urot,a
0 (x) can

be obtained. The proof of orthogonality and the derivation of
the squared norms of the basis vectors are presented in the
Appendix.

The instantaneous vibrational subspace, which is orthogonal
to the translational and rotational subspaces, also depends on
the geometry, thus it will span only infinitesimal mass-scaled
displacements during the vibration of the molecule. When the
shape and the orientation of the molecule do not change during
its motion, for example, during the symmetric stretch vibration
of CH4 or during the translation of any molecule, the rotational
and vibrational subspaces will not change either. A possible
orthonormal basis (uvib,i

0 (xe), i = 1,. . ., f ) of the vibrational sub-
space at equilibrium geometry (xe) is formed by the vibrational
normal mode eigenvectors (see Fig. 2f), which are obtained
from harmonic vibrational analysis done in Cartesian frame
at xe and are mass-scaled by definition. The orthonormal basis
vectors of the translational, rotational and vibrational subspaces
of a homonuclear diatomic molecule are summarized in Fig. 2.
The orthogonal projection matrices Ptrans and Prot(x) can be
defined as dyadic products a � b ¼ abT

� �
of the relevant basis

vectors:

Ptrans ¼
X

a¼x;y;z
u
trans;a
0 u

trans;a;T
0 ; (16)

ProtðxÞ ¼
X3
a¼1

u
rot;a
0 ðxÞurot;a;T0 ðxÞ: (17)

These are the projectors to be used in eqn (13) to generate the
orthogonal projection matrix Pvib(x) onto the complementary,
vibrational subspace. Matrix Pvib(x), being an orthogonal pro-
jector, is idempotent (Pvib

2(x) = Pvib(x)) and symmetric while the
mass matrix M is diagonal. Consequently, by introducing an
effective vibrational mass matrix:

Mvib(x) = M1/2Pvib(x)M1/2, (18)

which is geometry dependent and dense as opposed to matrix
M, the Lagrangian in eqn (12) can be rewritten in the form:

Lx;vibðx; _xÞ ¼ 1

2
_xTMvibðxÞ _x� VðxÞ: (19)

Matrix Mvib(x) is singular, since it assigns non-zero masses
only to the motion within the vibrational subspace, which has

fewer dimensions than 3N. Momenta px,vib canonically
conjugate to coordinates x are obtained by differentiating the
Lagrangian:

px;vib ¼
@Lx;vibðx; _xÞ

@ _x
¼MvibðxÞ _x: (20)

While the velocity vector :x may describe translation and
rotation in addition to vibration of the molecule in the
body-fixed frame, the momentum vector px,vib describes
only vibrations, because it is obtained by the singular mass
matrix Mvib(x). Thus, the Euler–Lagrange equations of motion
cannot describe translation and rotation within the body-fixed
frame.

We note that the present derivations are similar to the
projection method proposed by Miller et al.37 and Szalay used
projections for the approximate decomposition of the kinetic
energy in the Eckart frame.38 The difference is that we apply the
exact decomposition of the instantaneous kinetic energy.

2.3 Vibrational Hamiltonian in internal coordinates

The vibrational Lagrangian in internal coordinates y and velo-
cities :y can be obtained from eqn (19) using the transforma-
tions in eqn (5) and (6):

Ly;vibðy; _yÞ ¼ 1

2
ðCðyÞ _yÞTMvibðxðyÞÞCðyÞ _y� VðxðyÞÞ

¼ 1

2
_yTMy;vibðyÞ _y� VyðyÞ:

(21)

Here we introduced the potential energy Vy(y) = V(x(y)) as well
as the n � n vibrational mass matrix, My,vib as a function of
internal coordinates y:

My,vib(y) = CT(y)M1/2Pvib(x(y))M1/2C(y). (22)

At this point, it becomes obvious that by projecting onto the
vibrational subspace, we cancel the spurious translation and
rotation in the body-fixed frame and the masses corresponding
to them will not contaminate the mass matrix assigned to the
internal coordinates, which would unphysically increase the
matrix elements. Without the projection, for example, harmonic
vibrational analysis would give incorrect, reduced frequencies
for some of the normal modes.

Eqn (22) applies as it is regardless whether n = f or n o f.
Its form implies that in reduced-dimensional models the reduced-
dimensional My,vib(y) matrix can also be obtained from the full-
dimensional My,vib by simply deleting the rows and columns
corresponding to the constrained internal coordinates.

Momenta canonically conjugate to the internal coordinates
are obtained as:

py ¼
@Ly;vibðy; _yÞ

@ _y
¼My;vibðyÞ _y; (23)

and the velocity :y as a function of y and py will be

:y = My,vib
�1(y)py = Gy,vib(y)py. (24)

Here, the n � n dimensional Gy,vib(y) matrix is the inverse of the
non-singular My,vib(y) matrix. Applying Legendre transformation
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to the Lagrangian, one can obtain the vibrational Hamiltonian
in internal coordinates:

Hy;vib y; py

� �
¼ pTy _y y; py

� �
� Ly;vib y; _y y; py

� �� �
¼ 1

2
pTyGy;vibðyÞpy þ VyðyÞ:

(25)

This form is correct in any nonredundant set of internal
coordinates, be it reduced (n o f ) or complete (n = f ).

2.4 Connection with the t-vector and the s-vector formalisms

In the previous two sections we derived the vibrational kinetic
energy in internal coordinates by introducing the body-fixed
frame x and using the inverses of the arbitrarily defined x(X)
and y(x) transformations. In this section we show the relation-
ship of our method to those that are generally used for this
purpose in the literature, one those based on the X - y trans-
formation1,33,39 (s-vector formalism) as well as on the y - x
transformation1,40 (t-vector formalism).

The s-vector formalism provides the exact vibrational
Hamiltonian for the full-dimensional vibrational problem. To
derive the reduced-dimensional kinetic energy and the mass
matrices using the X - y transformation, it is necessary to extend
the set of variables to a full set of internal variables and first
construct the full-dimensional Gy,vib (see eqn (3)). Then one can
either calculate the full-dimensional My,vib by inversion, then delete
rows and columns and invert again, or directly correct the block of
Gy,vib corresponding to the kept variables (ref. 19, Appendix IX) to
account for the effect of the constrained ones.

The t-vector formalism requires the definition of a body-
fixed frame (e.g., Eckart frame41), which is rarely the absolute
co-rotating frame. To compensate for the arising spurious
rotation during the change of internal coordinates of the
molecule, rotational coordinates need to be introduced and a
rovibrational Hamiltonian has to be constructed to make
possible the exact description of the vibrational problem. The
reduced-dimensional Hamiltonian is directly obtained by using
only those vibrational t-vectors which belong to non-constrained
internal variables.

The method presented in this work is analogous to the
t-vector formalism also in the sense that both are based on the
dx/dy derivatives and allow the direct construction of a reduced-
dimensional Hamiltonian. However, instead of introducing rota-
tional variables, our method exploits the orthogonality of the
mass-scaled translational and (instantaneous) rotational basis
vectors (3N-component) to vibrational ones so that rotation and
translation are exactly removed. This approach provides a pure
vibrational kinetic energy expression equivalent with the one
provided with the s-vector formalism.

It can be shown that the inverse mass matrix Gy,vib in the
s-vector formalism (eqn (3)) is the inverse of the My,vib mass
matrix in eqn (22) and that this does not hold for the reduced-
dimensional case as the pure-vibrational infinitesimal mass-
scaled Cartesian displacement vectors corresponding to the
various internal coordinates are not orthogonal to each other
in general. This also implies that the s-vector formalism in full

internal dimensionality is in fact a reduced-dimensional
approximation, because it considers only vibrations and trans-
lational and rotational coordinates are simply omitted. This
raises the question how it can be exact for vibrations. The
reason for this is the inherent orthogonality of vibrations to
rotations and translations in mass-scaled infinitesimal displace-
ment space.

2.5 Normal mode analysis in internal coordinates

During normal mode analysis the vibration of the molecule is
approximately decomposed into independent harmonic oscil-
lators using the harmonic approximation to the kinetic and
potential energy expressions. The harmonic approximation to
the Lagrangian in internal coordinates in the neighborhood of
a stationary point y0 can be obtained by replacing the My,vib(y)
matrix function with its value at y0, My,vib,0 = My,vib(y0), approxi-
mating the potential energy to second order around y0, and
setting its zero level to that at geometry y0:

Lharm
y;vib ðy; _yÞ ¼ 1

2
_yTMy;vib;0 _y� 1

2
y� y0ð ÞTFy;0 y� y0ð Þ: (26)

Here Fy,0 = Vy
00(y0) is the force constant matrix. This generally

proves to be a good approximation to the Lagrangian at low
energies in semi-rigid molecules, where no internal rotations or
other large amplitude motion can take place.

From here on one can follow the standard procedure of
normal mode analysis. After introducing mass-scaled vectors of

deformation ỹ = My,vib,0
1/2(y � y0) and velocity _~y ¼My;vib;0

1=2 _y

and the F̃y,0 = Gy,vib,0
1/2Fy,0Gy,vib,0

1/2 mass-scaled force constant
matrix (where Gy,vib,0 = My,vib,0

�1) one solves its F̃y,0U = UK
eigenproblem. Matrix F̃y,0 is symmetric, thus all n eigenvalues
li (in matrix K = diag(l1,. . .,ln)) are real and the eigenvectors
(i.e. columns of U) can be chosen to be orthonormal. If y0 is a
potential minimum, all eigenvalues are positive, whereas for a
kth-order saddle point k of them are negative. The vector of
normal-mode deformation coordinates Q = (Q1,. . .,Qn)T and the
canonically conjugate momentum vector P = (P1,. . .,Pn)T (in fact,
the normal-mode velocity vector

:
Q) are defined as:

Q = UTỹ = UTMy,vib,0
1/2(y � y0), (27)

P =
:
Q = UTỹ = UTMy,vib,0

1/2 :y. (28)

In normal coordinates both the Lagrangian and the Hamiltonian
(i.e. energy) decompose into sums of n harmonic oscillator (HO)
terms:

H1D
harm;i Qi;Pið Þ ¼ E1D

harm;i ¼
1

2
Pi

2 þ 1

2
oi

2Qi
2

¼ 1

2
_Qi
2 þ 1

2
oi

2Qi
2:

(29)

The normal mode frequencies can be obtained as oi = li
1/2.

2.6 Normal mode sampling

The purpose of normal mode sampling is the generation of a
set of classical states corresponding to a preselected vibrational
state of a reactant molecule that will serve as initial conditions
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for collision or intramolecular trajectories. In QCT calculations,
the initial states of molecules are usually generated by assuming
that vibration and rotation are separable and the vibrations are
well described by the normal mode approximation. The procedure
for normal mode sampling is well known for full-dimensional
models, but without the proper RD normal mode analysis,
it cannot be used in reduced dimensionality. In normal mode
sampling it is assumed that the vibrating molecule can be well
approximated as a set of independent normal oscillators with
n distinct quantum numbers v1,. . .,vn (n constants of motion).
In quasiclassical quantization, normal coordinate and momentum
amplitudes (Qi,max, Pi,max =

:
Qi,max) of each normal mode oscillator

are set so that the energy of the oscillator (E1D
harm,i) matches that of

the corresponding quantum harmonic oscillator in a given vi

quantum state:

E1D
harm;i ¼

1

2
oi

2Qi;max
2 ¼ 1

2
Pi;max

2 ¼ 1

2
_Qi;max

2

¼ �hoi vi þ
1

2

� 	
:

(30)

For the generation of classical states (Q,P), a random initial
phase ji,0 is selected from a uniform distribution in the [0,2p)
interval for each vibrational mode, and then the normal mode
coordinate and velocity of normal oscillator i can be calculated
according to:

Qi = Qi,max cosji,0, (31)

Pi =
:
Qi = �

:
Qi,max sinji,0. (32)

The corresponding classical state (y, :y) in internal coordinates
can be obtained by inverting eqn (27) and (28):

y = y0 + Gy,vib,0
1/2UQ, (33)

:y = Gy,vib,0
1/2UP = Gy,vib,0

1/2U
:
Q. (34)

The resulting classical state (y, :y) is the appropriate initial state
if one intends to follow the time evolution of the system using
the Euler–Lagrange or Newton equations of motion. If one
would like to describe the same dynamics in the more con-
venient Hamiltonian formalism (see Section 2.7.1), then the
initial state should be expressed in internal coordinates and the
conjugate momenta (y,py), where the momenta are obtained
from eqn (23) with the mass matrix My,vib(y) calculated at the
instantaneous geometry y.

When the trajectory integration is to be performed in
Cartesian coordinates, the state (y, :y) needs to be transformed
to the body-fixed Cartesian frame and one should ensure that
the unphysical translation and rotation generated during trans-
formations in eqn (5) and (6) are removed. To obtain the pure
vibrational classical state (x,px,vib), the body-fixed Cartesian
coordinates x are calculated from y using eqn (5); the corres-
ponding Cartesian momenta describing vibration only are found
by transforming :y to :x with matrix C(y) and finally to px,vib with
matrix Mvib(x) using eqn (6) and (20), respectively:

px,vib = Mvib(x) :x = Mvib(x(y))C(y) :y. (35)

The point here is that the geometry-dependent mass matrix
Mvib(x), which assigns mass only to vibrations, guarantees that
the resulting classical states (x,px,vib) will have zero center-of-
mass momentum and angular momentum. The coordinate and
velocity conversion equations also ensure that Cartesian coor-
dinates x, velocities :x and momenta px,vib fulfill the equations
of geometrical constraints (yn+1(x) = yn+1,0,. . .,yf(x) = yf,0) and
their time derivatives (see Section 2.7.2).

The ensemble of classical states (x,px,vib) in Cartesian coordi-
nates, which corresponds to the pre-selected vibrational quan-
tum state of the reduced-dimensional model of the reactant
molecule is generated by carrying out the sampling procedure
many times with different random phases in eqn (31) and (32).
It should be noted that the ensemble obtained this way is not
monoenergetic. In QCT calculations the nonrotating molecules
are randomly oriented before collision. If a rovibrational state is
to be generated, then the molecule’s angular momentum is also
set to that of the desired quantum state. The obtained classical
states are in laboratory Cartesian frame and thereby they can be
used in the definition of initial conditions of the molecule (X,PX),
for QCT calculations.

The standard method to prepare monoenergetic ro-vibrating
ensembles by iterative rescaling of deformations and momenta
and angular momentum vector adjustment after normal mode
sampling has been proposed by Hase and coworkers.42 That
method can be generalized to reduced-dimensional models.
What remains the same is that the scaling factor is determined
in the lab frame. The important difference is that in the full-
dimensional model the scaling factor can be applied to scale
the lab-frame deformations and momenta. In RD models the
rescaling step needs to be performed in internal coordinates,
because otherwise it would violate the constraints. It should be
noted that the ensembles generated this way are not stationary
when allowed to evolve on the real, anharmonic PES.21 Mono-
energetic, stationary and accurately quantized ensembles
of classical states representing a rovibrational quantum
state can be generated by applying the adiabatic principle of
classical mechanics. A generalized version of the adiabatic
switching method, which accurately includes anharmonicity
and coupling of vibrations, has recently been shown to perform
well for polyatomic molecules.43 The method has also been
extended to generate ensembles corresponding to rovibrational
quantum states.

2.7 Dynamics in reduced dimensionality

In reduced-dimensional classical trajectory calculations the
equations of motion for the intramolecular motion of molecules
have to guarantee the fulfillment of the constraints prescribed by
the model. In the following, we discuss two choices: the applica-
tion of equations of motion in internal coordinates and the
integration of the equations of motion in lab Cartesian frame,
supplemented by constraint forces. Integration in internal coor-
dinates is more appropriate for the description of a vibrating
molecule, whereas the equations presented for integration in 3N
Cartesians are equally applicable both to pure bound motion
and to scattering problems.
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2.7.1 Equations of motion in internal coordinates.
Hamiltonian equations of the pure vibrational motion in
internal coordinates can be derived from the Hamiltonian in
eqn (25).

_py ¼ �
@Hy;vib y; py

� �
@y

¼ �1
2
pTyGy;vib

0 ðyÞpy � Vy
0 ðyÞ; (36)

_y ¼
@Hy;vib y; py

� �
@py

¼ Gy;vibðyÞpy: (37)

Rank-3 tensor Gy,vib
0(y) and vector Vy

0(y) are the coordinate
derivatives of the inverse mass matrix Gy,vib(y) and the potential
energy Vy(y). The initial conditions of the motion can be
obtained via eqn (33) and (34) and formula py = My,vib(y) :y.
When vibrational dynamics are simulated, internal to body-
fixed frame transformation and projection onto the vibrational
subspace have to be performed several times at every integra-
tion step for the evaluation of Gy,vib(y), Gy,vib

0(y) and Vy
0(y) (see

eqn (5), (6), (22) and (24)). The generally involved calculation of
the rank-3 Gy,vib

0(y) derivative tensor can be sped up by using
some analytical transformations (see ESI†). A more serious
drawback of using internal coordinates is that they may become
indeterminate and in that neighborhood they change very
steeply. At these points the coordinate transformation in
eqn (5) or its inverse has singularities, which can cause signi-
ficant numerical errors during the solution of the equations of
motion. For example, such a singularity arises for 3D polar
coordinates (r, y, j) at small (y = 01) and large (y = 1801) polar
angles where j may change very quickly during dynamics. With
careful selection of the body-fixed frame and the set of internal
coordinates one can achieve that the singularities of the transfor-
mation equations (eqn (5) and (6)) will be at highly deformed
geometries which are not sampled by normal mode state prepara-
tion and not visited during the vibration of the molecule. It is
important to emphasize that eqn (36) and (37) describe the
vibration of non-rotating molecules only.

2.7.2 Equations of motion with constraints in space-fixed
Cartesian coordinates. During the internal motion of floppy
molecules, as well as in loose clusters and chemical reactions,
where bonds get broken and formed, highly-deformed geome-
tries are visited and the moieties of reactant molecules can have
arbitrary orientation with respect to each other. For such systems,
it is preferable to simulate the reduced-dimensional dynamics by
integrating the equations of motion in the full set of 3N lab
Cartesian coordinates (X) and enforcing the restrictions in the
internal degrees of freedom by constraint forces. To derive
constraint forces, we introduce functions gi(X) (i = 1,. . ., f � n)
as the deviations of functions yn+i(X) from their corresponding
frozen values yn+i,0. The equations of constraints are obtained
by equating the gi(X) functions to zero.

gi(X) := yn+i(X) � yn+i,0 = 0 i = 1,. . ., f � n. (38)

These constraints are holonomic as they depend only on the
position coordinates (but not on their time derivatives) and are
scleronomic as they do not depend on time explicitly. They are

expected to be fulfilled all along a trajectory, implying that their
time derivatives must also be zero:

:
gi(X,

:
X) = rTgi

:
X = rTgiM

�1PX = 0 i = 1,. . ., f � n, (39)

which serve as constraint equations for the velocities
:
X and

momenta PX. Consequently, a mechanical state, which is fully
characterized either by (X,

:
X) or (X,PX), should fulfill eqn (38)

and (39) simultaneously. The 3N-component constraint force
arising from constraint i in eqn (39) is necessarily parallel to
gradientrgi, because it confines the allowed motion (velocity

:
X) to

a (3N � 1)-dimensional surface orthogonal to rgi. Consequently,
each constraint force Fconstr

i is expressed as being proportional to
rgi which, multiplied by Lagrange multipliers li (i = 1,. . ., f � n)
are added to Hamilton’s equations for momenta, supplementing
there the potential forces:

_PX ¼ �rV þ
Xf�n
i¼1

Fconstr
i ¼ �rV þ

Xf�n
i¼1

lirgi: (40)

The Hamiltonian equations of motion for the coordinates
remain the same (

:
X = M�1PX) since the constraints in

eqn (38) are holonomic. The Lagrange multipliers need to be
calculated at every time step of trajectory integration via a set of
linear equations. An excellent description of how the Lagrange
multipliers are determined in practice can be found in ref. 3,
4 and 20. For completeness, the equations with the present
notations are summarized in the ESI.†

2.7.3 Comparison of the computational aspects of the two
descriptions. Usually the most expensive part of trajectory
simulations is the evaluation of potential gradients. If no
analytical gradients of the potential energy are available, then
they need to be evaluated numerically with finite difference
formulae, whose computational cost scales linearly with the
number of gradient components. When nonredundant internal
coordinates are used, some computational savings come from
the reduced number ( f o 3N � 6) of gradient components in
the Vy

0(y) potential gradient compared to the full-dimensional
Cartesian problem (3N). On the other hand, simulation of
the dynamics in irredundant internal coordinates requires
repeated evaluation of rank-3 tensor Gy,vib

0(y), which can be
expensive unless analytical first and second derivatives
(matrices C(y) and C0(y)) of the coordinate transformation x(y)
are available. Analytical derivation of matrix C can be compli-
cated and requires non-negligible human effort even when
computer algebra packages are employed, and even when the
derivatives are available, their evaluation may require numerous
algebraic operations.

In the alternative method, integration of the equations of
motion in Cartesian coordinates under the control of con-
straints, at least 6 more potential gradient components need
to be evaluated; in addition, the constraint forces need to be
determined. Yet, the application of Cartesian coordinates together
with constraints can be overall cheaper than using internal
coordinates, especially when analytic first derivatives of the PES,
and first and second analytic derivatives of the constraints
are available.
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An additional aspect is the accuracy to which the constraints
prescribed by the reduced-dimensional model are fulfilled.
Integrating in internal coordinates automatically satisfies these
constraints. On the other hand, when full-dimensional Cartesian
coordinates are used, the constraints are enforced numerically,
so that their fulfillment (eqn (38) and (39)) depends on the
accuracy of the numerical procedure. Accordingly, in long
simulations it is desirable to check regularly how well the
constraints are met. If any of them is violated significantly,
fulfillment of them can be reestablished by minimizing to zero
the sum of the properly scaled squares of the left hand sides of
eqn (38) and (39).

2.8 Assignment of normal mode quantum numbers to
reduced-dimensional classical states

Solution of the inverse problem, determination of normal mode
quantum numbers corresponding to a reduced-dimensional
classical state of the molecule is needed when product-state
resolved properties are calculated for bimolecular reactions or
when the classical evolution of vibrationally excited states of
molecules is of interest. Depending on which of the two sets of
Hamiltonian equations of motion (Section 2.7) were used for
trajectory integration, the classical state of the system is provided
either in nonredundant internal coordinates and momenta (y,py)
or in space-fixed Cartesian coordinates and momenta (X,PX)
fulfilling constraints in eqn (38) and (39).

In the former case, since the normal mode analysis of the
reduced-dimensional model is done in internal coordinates
(see Section 2.5), the state expressed as (y, :y = Gy,vib(y)py) can
be directly used for quantum number assignment as described
below. However, when the state is given in Cartesians, X and PX

need to be converted to internal coordinates and velocities.
Coordinates y can be computed directly from the X coordinates,
which fulfill the f � n constraints given in eqn (38), using the
definition of the internal coordinates y(X). Velocities of internal
coordinates can be obtained by either numerical derivation
along the trajectory or analytical differentiation utilizing the
reduced-dimensional variant of Wilson’s B matrix (see eqn (2))
and the Cartesian velocities

:
X = M�1PX:

_yðtÞ ¼ lim
Dt!0

y XðtÞ þ _XðtÞDt
� �

� y XðtÞð Þ
Dt

¼ dy

dXjXðtÞ
_XðtÞ ¼ BðXðtÞÞM�1PXðtÞ

(41)

It is important to point out that, while the reduced-
dimensional B matrix cannot be used for the construction of
Gy,vib due to the non-orthogonality of internal coordinates (see
Section 2.4), it can be applied to transform Cartesian velocities
to internal coordinate velocities if and only if they fulfill the
constraints.

Once the state is given as (y, :y), the normal mode coordinates
and momenta can be calculated by inverting eqn (33) and (34):

Q = UTMy,vib,0
1/2(y � y0), (42)

P =
:
Q = UTMy,vib,0

1/2 :y. (43)

The E1D
harm,i mode energies can be calculated from the

instantaneous normal coordinates and momenta via eqn (29).
The quantum numbers vi are obtained from the energy corres-
ponding to each vibrational mode using the inverse of the
harmonic oscillator quantization rule (eqn (30)).

ni ¼
E1D
harm;i

�hoi
� 1

2
(44)

Note that the vibrational quantum numbers ni obtained this
way are in general not integer numbers and because of this, the
assignment of a quantum state to the given classical one is not
unequivocal, and various tricks are generally used to do it (see,
e.g. ref. 44 and 45).

3. Results
3.1 Three reduced-dimensional models of methane

In this section we apply the methods described above to normal
mode analysis and sampling in various reduced-dimensional
models of methane used in ref. 31 to study RD QCT reaction
dynamics calculations of the reaction, which is the most
complicated type of reaction for which exact RD quantum
mechanical scattering calculations are available.13,46,47 The
RD model with the fewest restrictions is the one proposed by
Palma and Clary (in the following, PC):9,10 the only constraint is
that the CZ3 group keeps C3v symmetry. The model and a series
of its versions with additional constraints have been used in
numerous quantum scattering simulations. In order to assess
the performance of the RD models, Vikár et al.31 compared the
results of (quasi)classical trajectory simulations obtained
with the Palma–Clary and the full-dimensional models of the
CH4 + H - CH3 + H2 reaction with various CH4 isotopologs. We
just mention in passing that the PC model was found to give
good results in many cases, but its performance proved to
depend on the quality of the potential energy surface and the
mass combination.31

Starting from the PC model, one can design a hierarchy of
reduced-dimensional models for methane, in each of which the
geometry of the CZ3 moiety is constrained to maintain C3v point
group symmetry and by freezing additional types of motion, its
internal degrees of freedom are reduced from f = 9 to 5, 4 or 3.
Since the three Z atoms are treated as equivalent, such models are
suitable for the description of methane isotopologs CHnD4�n with
n = 0, 1, 3, 4 but not for CH2D2. In Fig. 3 the models with their
reduced sets of internal variables and the attached body-fixed
Cartesian frame are shown.

The latter was defined for all models in the same way: the
origin was placed at the carbon atom and the axes were
determined by the constrained CZ3 moiety: z axis is along the
C3v axis, x axis within the YCZ1 plane, forming an acute angle
with the CZ1 vector, and the y axis is chosen to ensure that the
coordinate system is right-handed.

In the ‘‘full’’ Palma–Clary model9 (Fig. 3a) the only constraint
is that the CZ3 group is restricted to C3v symmetry, resulting in
5 degrees of freedom for CZ3Y; we abbreviate this model as PC-5D.
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In the 4D model (called PC-4D, Fig. 3b) considered here,
the additional constraint is that the C–Z bond length is
frozen at the equilibrium value (req) in CZ3Y as in a frequently
applied restricted variant of the Palma–Clary model.9,11,16 In
the 3D model (Fig. 3c) we study, the motion of the Y atom is
also constrained to one of the symmetry planes (for example
in this case to the y plane) of the CZ3 group. This is identical
to the three-dimensional methane model in the rotating
bond umbrella (RBU) method14,48,49 and will be referred to
as RBU-3D. The coordinates as well as the constraint equations
used in the internal coordinate and Cartesian representations
of the models are shown in Table 1. The common in the
applied constraints is that all are defined by sums of dot
products, which are very practical because their first and
second derivatives have simple analytical forms as shown in
the ESI.†

In the following we report on normal mode analysis and the
time evolution of ensembles of classical states of methane

isotopologs CHnD4�n (n = 0, 1, 3, 4) generated by RD NMS
using the three models, performed on the ZBB3 PES.50 At the Td

equilibrium geometry the C–H bond length is 2.0579 a0.

3.2 Reduced-dimensional normal mode analysis for methane
isotopologs

The frequencies and the nature of normal modes obtained from
harmonic vibrational analysis using the procedure described in
Section 2.5 are shown in Table 2; the corresponding displace-
ment vectors can be seen in Fig. 4. Vibrations of full-dimensional
CH4 and CD4 are characterized by four frequencies, corres-
ponding to one nondegenerate fully symmetric stretch mode
(A1 irreducible representation), a pair of doubly degenerate
deformation (E) modes, a triply degenerate stretch (T2) and a
triply degenerate deformation (T2). Symmetry reduction from Td

to C3v by distinguishing one of the ligand atoms in CZ4 from the
other three, but not changing its mass and the forces it feels,
decomposes each of the T2 modes into a totally symmetric
A1 and a doubly degenerate E symmetry mode (according to
T2 = A1 " E) while leaves their frequencies unchanged. The
arising A1 stretching mode will be an antisymmetric combi-
nation of the C–Y and the symmetric C–Z3 stretching modes,
while the new A1 deformation will be the umbrella mode, which
is the symmetric deformational mode of the CZ3 moiety. The
original totally symmetric A1 stretching mode will preserve its
character and frequency.

When symmetry reduction in CZ4 methane isotopologs (i.e.
Z = Y, top and bottom rows of Table 2) is caused by constraining
the symmetry of the CZ3 group to C3v (leading to the PC-5D
model), the fully symmetric stretch mode (involving all four
C–Z bonds) remains again intact, whereas the A1 modes result-
ing from symmetry reduction (the antisymmetric stretch and
the umbrella bend) together with their frequencies remain
essentially unchanged while the asymmetric CZ3 stretch modes
of E symmetry disappear. The original and the resulting
doubly-degenerate E-symmetry deformational modes will mix
to conform to the constrained C3v symmetry and result in a
doubly-degenerate E-symmetry rocking mode with an inter-
mediate frequency. The two combinations violating the C3v

symmetry disappear. In CZ3Y methane isotopologs (i.e. Z a Y),
whose symmetry is reduced to C3v due to the difference of
isotopes Z and Y, the decomposition of the triply-degenerate
modes is accompanied by frequency changes and mode mixing.
The resulting antisymmetric combination of the local C–Y and
symmetric C–Z3 stretching modes of A1 symmetry will mix with
the totally symmetric stretching mode (present in CZ4) and
gives essentially local A1-symmetry C–Z3 and C–Y stretching
modes with significantly different frequencies. Furthermore,
a pair of doubly-degenerate rocking modes appears due to
mode mixing. When the symmetry of the CZ3 group is con-
strained to C3v in mixed methane isotopologs according to the
PC-5D model, the doubly-degenerate bending and stretching
modes which violate the C3v symmetry disappear. The A1-symme-
try modes (umbrella and two local stretches) remain essentially
intact, while the frequency of the doubly-degenerate rocking mode
changes slightly.

Fig. 3 The reduced-dimensional (a) Palma–Clary 5D (PC-5D) and (b) 4D
(PC-4D) as well as (c) the rotating bond umbrella (RBU-3D) models of
CZ3Y molecule (composed of C, Y and identical Z1, Z2, Z3 atoms) with their
respective rectilinear internal variables printed in blue. Point Z3 denotes the
geometrical center of the three Z atoms. In all the three models the CZ3

moiety is constrained to C3v symmetry. Internal variables in orange show
the additional constraints in the PC-4D and RBU-3D models compared to
the PC-5D model.

Table 1 Properties of three reduced-dimensional models (PC-5D,
PC-4D, RBU-3D) of CZ3Y and the lists of internal coordinates and Cartesian
constraints used for simulating vibrational dynamics. For PC-4D and RBU-
3D models simpler alternatives of the 3rd and 4th constraints are shown in
the brackets. Vector RAB denotes difference vector RB � RA, which points
from atom A to B
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Table 2 The irreducible representation (irrep), degeneracy, type and frequency of vibrational normal modes of four methane isotopologs determined
for the full-dimensional (FD) and the PC-5D, PC-4D and RBU-3D reduced-dimensional (RD) models on the ZBB3 PES

Isotopolog,
sym. group

Irrep : degeneracy Type Harmonic frequency/cm�1

FD 5D 4D 3D FD 5D 4D 3D FD 5D 4D 3D

H3CH T2 : 3 A1 : 1 1 1 Deg. def. Umbrella Umbrella Umbrella 1335.6 1335.6 1336.7 1336.7
FD : Td E : 2 E : 2 2 1 Deg. def. Rocking Rocking Rocking 1547.8 1436.4 1436.3 1436.3
RD : C3v A1 : 1 A1 : 1 — — Sym. stre. Sym. stre. — — 3026.1 3026.2 — —

T2 : 3 A1 : 1 1 1 Deg. stre. Antisym.stre. CH stre. CH stre. 3166.7 3166.8 3129.4 3129.4

D3CH A1 : 1 A1 : 1 1 1 CD3 sym. def. Umbrella Umbrella Umbrella 1018.1 1018.1 1018.1 1018.1
FD : C3v E : 2 — — — CD3 deg. def. — — — 1045.7 — — —
RD : C3v E : 2 E : 2 2 1 CD3 rock. Rocking Rocking Rocking 1305.7 1298.4 1298.3 1298.3

A1 : 1 A1 : 1 — — CD3 sym. stre. CD3 stre. — — 2186.5 2186.5 — —
E : 2 — — — CD3 deg. stre. — — — 2343.2 — — —
A1 : 1 A1 : 1 1 1 CH stre. CH stre. CH stre. CH stre. 3136.1 3136.2 3125.9 3125.9

H3CD E : 2 E : 2 2 1 CH3 rock. Rocking Rocking Rocking 1178.3 1218.1 1218.0 1218.0
FD : C3v A1 : 1 A1 : 1 1 1 CH3 sym. def. Umbrella Umbrella Umbrella 1330.5 1330.5 1331.8 1331.8
RD : C3v E : 2 — — — CH3 deg. def. — — — 1487.9 — — —

A1 : 1 A1 : 1 1 1 CD stre. CD stre. CD stre. CD stre. 2286.7 2286.7 2290.5 2290.5
A1 : 1 A1 : 1 — — CH3 sym. stre. CH3 stre. — — 3067.6 3067.7 — —
E : 2 — — — CH3 deg. stre. — — — 3166.4 — — —

D3CD T2 : 3 A1 : 1 1 1 Deg. def. Umbrella Umbrella Umbrella 1010.3 1010.3 1010.4 1010.4
FD : Td E : 2 E : 2 2 1 Deg. def. Rocking Rocking Rocking 1094.9 1051.8 1051.8 1051.8
RD : C3v A1 : 1 A1 : 1 — — Sym. stre. Sym. stre. — — 2140.6 2140.6 — —

T2 : 3 A1 : 1 1 1 Deg. stre. Antisym.stre. CD stre. CD stre. 2343.1 2343.1 2286.3 2286.3

Fig. 4 Atomic displacements in vibrational normal modes of the CZ3Y molecule with Z = Y = H, determined using the PC-5D, PC-4D and RBU-3D
reduced-dimensional models. The Y atom points upward. The types and the harmonic frequencies of the vibrational modes are also shown.
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Further reduction of dimensionality to four by freezing the
C–Z bond lengths of the CZ3 moiety (in the PC-4D model) in CZ4

isotopologs causes the mixing of the symmetric and antisym-
metric stretches and results in a local C–Z stretch, whereas in
CZ3Y isotopologs removes the C–Z3 stretch, and the frequency
of the remaining modes changes slightly. Confining the motion
of the Y atom into one of the symmetry planes of CZ3 (in the
RBU-3D model) freezes one of the rocking vibrations, without
causing any additional frequency change.

3.3 Evolution of reduced dimensional ensembles of classical
states of methane isotopologs

The reduced-dimensional vibrational Hamiltonian in internal
coordinates and the equations of motion derived in Section 2.7
allow us to monitor the time evolution of two parameters that
proved to be important in the QCT simulations of the abstraction
reaction between methane isotopologs (CZ3Y) and H atoms,21,31

namely, the C–Z and C–Y bond lengths.
A single classical state corresponding to the ground state of the

PC-5D model of the CH4 molecule (Z, Y = H) has been prepared
by normal mode sampling (Section 2.6) and propagated in time.
Fig. 5 shows the two bond lengths as a function of time up to

Fig. 5 Evolution of the C–Z3 (upper panel) and C–Y (lower panel) bond
lengths for a reduced-dimensional model of a single ground-state CH4

molecule obtained by normal-mode sampling. The equations of motion
corresponding to the PC-5D model were integrated using (i) the reduced
set of internal coordinates (continuous grey lines) and (ii) Cartesian
coordinates with constraints (dotted lines).

Fig. 6 Evolution of the ensemble average C–Y (black line) and C–Z3 (red line) bond lengths (equilibrium value: 2.0579a0) for ground-state methane
isotopologs CHnD4�n (n = 0, 1, 3, 4) within the PC-5D, PC-4D and RBU-3D models. The initial states of the 104-member ensembles were generated by
normal mode sampling.
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104t0 (1t0 = atomic time unit E0.0242 fs). The equations of motion
for the PC-5D model have been integrated in two sets of coordi-
nates, internal (continuous lines) and space-fixed Cartesian (dotted
lines, with the constraints being taken into account with the
Lagrange multipliers method), yielding identical trajectories (see
Fig. 5). One can see that the evolution of the two bond lengths is
coupled. At the beginning of this specific trajectory, the amplitude
of the bond length oscillation decreases for the C–Y bond and
increases for the C–Z bond, indicating energy transfer between
them. Later, the coherence of the energy exchange between the two
oscillations is reduced, which indicates that other modes are also
coupled to these key reaction dynamical parameters.

More important is the behavior of an ensemble of classical
states that represents a quantum state. Ensembles of 104

classical states corresponding to the ground state of CH4

molecules were prepared by normal mode sampling as
described in Section 2.6 for all four methane isotopologs and
all three models. No deformation and momentum scaling was
applied to make the ensembles monoenergetic. The evolution
of the ensemble was simulated using the space-fixed Cartesian
frame description with constraints, which were always fulfilled
precisely, and the obtained ensemble average C–Y and C–Z

bond lengths and normal mode quantum numbers are plotted
in Fig. 6 and 7. The oscillations of the average bond length plots
indicate the same kind of coherence in the evolution of the
members of the ensemble as was reported in ref. 21 for the FD
evolution of methane isotopologs. The phenomenon is caused
in both cases by the failure of the normal mode approximation.
In QCT simulations of the CH4 + H - CH3 + H2 reaction and its
isotopologs,21 the temporal oscillation of the average C–Y bond
length of the ensemble of methane molecules prepared with
normal mode sampling was shown to give rise to ‘‘spatial’’
oscillation of the calculated reaction probabilities and cross
sections as a function of initial separation of the reactants.
The conversion of the temporal oscillation to spatial can be
understood by considering that the ensemble evolves during
the initial ‘‘free’’ flight of the reactants as it adapts to the
anharmonic PES.

The relaxation dynamics of the methane ensembles gene-
rated by normal-mode sampling on the anharmonic PES pro-
vides information on the couplings and energy flow between
vibrational modes. The coarse-grained pattern of the evolution
of the two mean bond lengths in the CZ4 isotopologs indicate
initially periodic energy exchange between the two stretching

Fig. 7 Evolution of the ensemble average normal mode quantum numbers for four ground-state methane isotopologs within the PC-5D, PC-4D and
RBU-3D reduced-dimensional models. The initial states of the 104-member ensembles were generated by normal mode sampling.
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modes of the PC-5D model. The other two models also show
beating in their ensemble average bond length oscillation,
which suggest significant energy exchange with the bending
modes. Eventually, the amplitude of the oscillations decreases
as the ensemble adapts to the anharmonic PES and the phases
of stretching vibration of the individual trajectories decohere.

The lower the dimensionality of the model, the slower is the
decay of coherence in the stretching oscillations, which is
consistent with the lower-dimensional, simpler structure of
the phase space and suggests that the chaotic character of the
vibration is reduced. This is also reflected in the coarse-grained
structure of oscillations, which shows regularity and is sym-
metric with respect to a mean value in the case of all investi-
gated models and isotopologs, except for the evolution of CH4

and CD4 in the PC-5D model.
More informative on the intramolecular energy transfer is

the evolution of the ensemble average normal mode quantum
numbers (see Fig. 7), which also represents a stringent test of the
applicability of our method to assigning a vibrational quantum
state to the molecule in motion. For the doubly degenerate
rocking mode present in the PC-5D and PC-4D models, the
sum of the two ensemble averaged quantum numbers was taken,
as the degenerate modes are kinematically strongly coupled,
thus their individual values are not meaningful. Similarly to the
full-dimensional case,21 long-term oscillations can be observed
and the patterns hint at significant mode-to-mode energy trans-
fer. The initial value of each quantum number is zero at the NMS
preparation, which immediately changes when the atoms are
allowed to move.

The pattern of oscillation is in agreement with that of the
C–Z and C–Y bond lengths. In the PC-5D model, the CZ4

isotopologs show strong coupling between the symmetric
stretch and the rocking modes. In the CZ3Y isotopologs stron-
ger coupling emerges between the ‘‘internal’’ modes of the CZ3

group, i.e. the bond stretching and the umbrella mode. It is
obvious, however, that in all cases every mode participates in
the energy exchange. In the PC-4D and RBU-3D models where
the stretching of C–Z bonds is frozen, intense energy exchange
can be observed between the rocking mode(s) and the C–Y
stretch modes for CZ4 isotopologs, which is a consequence of
Coriolis coupling. Furthermore, these two models in the case of
isotopolog CH3D show a very long-period (80–160� 103) beating-
like energy exchange between the C–Y stretch and the umbrella
mode. The quantum numbers obtained with our formalism
show the expected pattern, confirming the applicability of the
formulas.

4. Conclusions

We have presented a formal derivation of the pure vibrational
classical Hamiltonian in a nonredundant, but not necessarily
full set of internal coordinates, which allowed the extension of
the quasiclassical trajectory method to constrained, reduced-
dimensional systems. The formalism allows one to carry out
harmonic vibrational analysis in any reduced set of coordinates,

and generate classical states corresponding to a given quantum
state of the molecule using normal mode sampling (the ‘‘direct
problem’’), to simulate dynamics and to find normal mode
quantum numbers when a classical state is given, for example,
at the end of a QCT simulation (the ‘‘inverse problem’’). For the
implementation of the method, the only system specific formulae
need to be provided are the definition of the internal coordinates
of the chosen model and their connection to a suitable body-fixed
Cartesian frame. Once these are provided, the method works as a
black box, because, instead of deriving analytical formulae, the
inverse mass matrix and the kinetic energy expression of
the vibrational Hamiltonian is constructed numerically. The
formalism is universal in the sense that it can be applied to
both full- and reduced-dimensional models and that the internal
and body-fixed Cartesian coordinate systems can be selected
arbitrarily, so it can take into account any geometric constraint.
The applicability of the method has been demonstrated in a
previous study addressing the comparison of RD and FD models
in classical simulations.31

Semiclassical methods, such as adiabatic switching43,51,52

(AS) and semiclassical initial value representation53–55 (SC-IVR),
based on classically propagated trajectories can also employ the
equations derived here, thus the method can be used for
the quantization of rovibrational levels of constrained systems
with a better computational scaling than quantum mechanical
methods.

Finally, we mention that the RD method can enable one to
perform QCT calculations when computational complications
arise. One such difficulty is that the high computational cost of
electronic structure calculations often does not allow the devel-
opment of a full-dimensional analytic PES, which is required
when long and/or a large number of trajectories need to be
simulated in a QCT study. Development of a reduced-dimen-
sional analytic PES combined with the theory presented here
can provide a means for the dynamical investigation of such
systems. Another computational issue is the undesirable leak-
age of zero-point energy deposited in each vibrational mode to
other modes.
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Appendix
A. Orthogonality of translational and rotational basis vectors

Translational basis vectors utrans,a(x) defined in eqn (14) are
orthogonal to each other as their dot products (i.e. utrans,a,Tutrans,b,
where a = x, y, z and b = x, y, z) give the corresponding (ab)
elements of the unit matrix times the total mass (M).

utrans;a;Tutrans;b ¼
XN
i¼1

mi

X
g¼x;y;z

dagdbg ¼Mdab (A1)

The mi is the mass of atom i, where i = 1,. . .,N. dag is the
Kronecker symbol. If a = b the product gives the squared norm.
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Rotational basis vectors urot,a(x) (see eqn (15)) are orthogonal
to each other as their dot products give the corresponding
elements of the moment of inertia tensor (Yaa) defined in the
principal axis (PA) frame, which is by definition a diagonal
matrix:

urot;a;Turot;b ¼
XN
i¼1

X
g¼x;y;z

urot;aig urot;big

¼
XN
i¼1

mi

X
s¼x;y;z

X
t¼x;y;z

X
s0¼x;y;z

X
t0¼x;y;z

ePAas e
PA
bs0ritrit0

X
g¼x;y;z

egstegs0t0

¼
XN
i¼1

mi

X
s¼x;y;z

X
t¼x;y;z

X
s0¼x;y;z

X
t0¼x;y;z

ePAas e
PA
bs0ritrit0 dss0dtt0�dst0dts0ð Þ

¼
XN
i¼1

mi

X
s¼x;y;z

ePAas e
PA
bs

X
t¼x;y;z

rit
2�

X
s¼x;y;z

ePAas ris
X

t¼x;y;z
ePAbt rit

 !

¼
XN
i¼1

mi dabqi
2�rPAia rPAib

� �
¼ Yab ¼

"
due to PA
frame

dab
XN
i¼1

mi qi
2�rPA2

ia

� �

(A2)

In eqn (A2) vectors ePA
a are the orthonormal unit vectors along

the principal axis a (a = 1, 2, 3) expressed in the body-fixed
Cartesian frame and qi := ri � rCM are the instantaneous
position vector of atom i (i = 1,. . .,N) relative to the center of
mass of the molecule, rCM. Vector component rPA

ia denotes the a
component of the coordinate vector of atom i from the center of
mass in PA Cartesian frame. egst is the Levi-Civita symbol. It is
assumed that the three orthogonal ePA

a (a = 1, 2, 3) vectors form

a right-handed system ePAi � ePAj ¼
P3
k¼1

eijkePAk

� 	
. In the trans-

formations, it was exploited that:X
g¼x;y;z

egstegs0t0 ¼ dss0dtt0 � dst0dts0 : (A3)

Rotational basis vectors are orthogonal to translational basis
vectors regardless of the definition of vectors ePA

a , because their
product is a sum of terms that are proportional to the compo-
nents of the center of mass position vector.

urot;a;Tutrans;b ¼
XN
i¼1

mi

X
s¼x;y;z

X
t¼x;y;z

ePAas rit
X

g¼x;y;z
egstdbg

¼
X

s¼x;y;z

X
t¼x;y;z

ePAas ebst
XN
i¼1

mirit|fflfflfflfflffl{zfflfflfflfflffl}
0

¼ 0

(A4)
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