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Conventional models for predicting thermal conductivity of alloys
usually assume a pure kinetic regime as alloy scattering dominates
normal processes. However, some discrepancies between these
models and experiments at very small alloy concentrations have
been reported. In this work, we use the full first principles kinetic
collective model (KCM) to calculate the thermal conductivity of
Si;_xGey and In,Ga; _,As alloys. The calculated thermal conductivities
match well with the experimental data for all alloy concentrations.
The model shows that the collective contribution must be taken into
account at very low impurity concentrations. For higher concentrations,
the collective contribution is suppressed, but normal collisions have the
effect of significantly reducing the kinetic contribution. The study thus
shows the importance of the proper inclusion of normal processes even
for alloys for accurate modeling of thermal transport. Furthermore, the
phonon spectral distribution of the thermal conductivity is studied in the
framework of KCM, providing insights to interpret the superdiffusive
regime introduced in the truncated Lévy flight framework.

Over the past years, thermal conductivity of a large number
of bulk materials has been accurately calculated using
phenomenological'” and ab initio®>™° techniques. Proper inclusion
of normal (N) processes (ie. momentum conserving phonon
collisions) in the calculations has played a key role. This procedure
has allowed probing new transport regimes like hydrodynamic
heat flow or collective behavior in samples where N processes are
important.”®

Despite of the level of accuracy achieved, there are still some
open questions. On one hand, although it is well known that
size effects reduce the thermal conductivity, this reduction can
not be fully explained from pure kinetic models, which only
account for the resisitve scattering mechanisms (Umklapp (U),
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boundary, mass defect), without the introduction of new fitting
parameters. Current models require modifying the relaxation
times expressions typically used for the bulk material or
including new scattering mechanisms.”*® On the other hand,
it is widely known that alloying is also a successful strategy for
thermal conductivity reduction. However, precise calculations
of thermal transport at small alloy concentrations remain
unexplored. All this hinders the interpretation of spectral
information in terms of characteristic lengths and times
resolved in ultrafast heating phenomena observed in experi-
ments such as Time Domain and Frequency Domain Thermo-
reflectance (TDTR/FDTR)."

The Kinetic Collective Model (KCM)"? offers a natural
framework to understand the role of N processes in thermal
transport. In this model, a collective mechanism is introduced
as a result of the N scattering processes, where all the phonons
share a unique value for the resistive relaxation time.">® Unlike
Relaxation Time Approximation (RTA) models, KCM does not
treat the N processes as resistive (R) processes. Instead, KCM
uses N processes to calculate the relative weight between
collective and kinetic contributions. This approach is in accordance
with Peierls’ initial work where the non-resistive nature of N
scattering was demonstrated.’> While other recently developed
methods, such as full-BTE solutions (iterative method,® the relaxon
solution'* and the direct solution'®), also capture the effects of
collective contributions, obtaining physical insight from the com-
puted results is harder due to the heavy numerical character of these
approaches. In addition, it is hard for these methods to go from
bulk to the nanoscale.® On the other hand, the formalism
underlying KCM makes it easier to develop more accurate
predictions of the thermal conductivity and how it is enhanced
or reduced at small scales or lower dimensions.

In the present work, we focus on the role played by N scattering
on alloys. On the one hand, we show that some difficulties in
predicting pure and alloy experimental thermal conductivities with
the same model are explained by the reduction of the collective
contribution as impurity increases due to the enhancement of
resistive effects caused by alloying. In these cases, trying to fit
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the thermal conductivity with RTA for high alloy concentrations,
the value for pure materials is underestimated, 16 35 the collective
contribution is neglected. On the other hand, even when the
collective contribution is negligible and thermal transport is
dominated by resistive collisions, N scattering is shown to
significantly slow down kinetic transport. We also propose that
the presence of a collective regime could offer a basis to explain
the significant differences in the frequency behaviour between
alloy and pure materials in frequency domain termoreflectance
(FDTR) experiments.™

We study two well-known and extensively used thermoelectric
and optoelectronic alloys, Si; ,Ge, and In,Ga, _,As. Such materials
have a diamond/zincblende-like structure, with a Si;_,Ge, and
In,Ga;_, atom in the (0,0,0) position and Si; ,Ge, and As at
(1/2,1/2,1/2) respectively. First principles KCM calculations at
several germanium and indium concentrations x are performed
in each case.

The total lattice thermal conductivity xr is formulated in
KCM model as the sum of the kinetic x; and the collective k.
terms (iop = Ky + K): %18

ke = (1 — Z)Jvazrdea) (1)

Ke=2X- FJCszrchw, (2)

where C,(w) and v(w) are the mode heat capacity and velocity
respectively, Ti(Les,w,T) and 1.(7) denote the kinetic and collective
mean free times (MFT) and D(w) the density of states (DOS) for
each mode. Details of how 1, and 7. are calculated can be found
elsewhere.">® L. is the effective width of the sample, which
depends on its geometry. The X(L,T) factor, determined by the
distribution averaged values of normal and kinetic scattering
MFT, (tn)(T) and () (T):
1
= T o/ <Y @

weighs the contribution of the kinetic and collective terms to
thermal transport. The form factor F(L.s,T) takes into account
hydrodynamic reduction of heat flux due to collective boundary
scattering, similar to the Poiseuille flow. Detailed expressions
for all these terms are given elsewhere."”*® It is important to
notice that the kinetic contribution ;. of eqn (1) is not the pure
kinetic value l%k = ijvzrdew, since it is corrected through
the (1 — ) factor as a consequence of normal collisions, ie.
b= (1 — Dk

In order to compute the properties of the alloys, the phonon
dispersion relations and the relaxation times are needed.
To obtain the dispersion relations for a stoichiometry x, we
perform lattice dynamics calculations within the Virtual Crystal
Approximation (VCA) in a first principles framework." Calculations
were done with the Quantum ESPRESSO package,®® under the
Density Functional Theory (DFT),>"** and the Local Density Approxi-
mation (LDA) in the parameterization of Perdew and Zunger.”®
Plane waves from norm-conserving pseudopotentials of the von
Barth-Car type**?® were cut off at an energy of 60 Rydberg.
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Born effective charges have been considered for the polar
compounds. At each composition x, the lattice parameter was
adjusted until the pressure was less than 0.1 kbar. Solution of
the ensuing dynamical matrix provides the dispersion relations
and transport parameters. As the shape of the dispersion relations
depends on the crystal structure and atomic masses, their shape will
be very similar to that of their constituent materials.***”

For the above materials, four different relaxation times should
be considered. The resisitve scattering terms, which contribute to
the total resistivity, are arranged in the kinetic MFP using the
Mathiessen’s rule

1 1 1 1

—=—t—+— (4)

Tk T1 B TU
where 1g(Ler,0) is the boundary term, ty(w,T) the umklapp
relaxation time and 1y(w) the impurity term. The fourth element
is the N scattering term 1y, that is included just in the X factor.
All these terms depend on the alloy fraction x. For boundary
scattering in the kinetic term we use Casimir’s expression®?

g = Leff/v y (5)

where Legs = dyire is the diameter for wires, Leg = 2.25A for films,
where 7 is the thickness, and Leg = 1.12v/111; for rods, where [
and I, are the rod thickness and width."

Umklapp and normal scattering rates are computed from
first principles calculations for natural silicon and gallium
arsenide. For Si;_,Ge, alloys, such calculations have been carried
in the VCA for x = 0.0025, 0.004, 0.01, 0.04, 0.1, 0.18, 0.2, 0.4, 0.5
0.82 and for In,Ga, _,As at x = 0.01, 0.15, 0.3, 0.53 compositions.
Interpolation has been used in the latter case for smaller and
intermediate concentrations.

Regarding impurity scattering, the mass defect term describes
the variability in isotopic abundance for single-species crystals, but
in alloys it should also account for the variability in the force and
lattice constants. Thus, including these three factors, the total alloy
relaxation time can be expressed as:**

ol = ngzwzzx (6)
where as done by Capinski et al,** instead of the Debye approxi-

mation, we use the DOS obtained from the full dispersion relations
at stoichiometry x. The variance term S is:

2
1 1 2
2 _ 2 — 4120y
Sl ]2FM + <\/6F172 \/;Q’}FR> (7)

for each impurity, where I', is the coefficient of variance of (M)
mass, (v*) squared velocity or (R) impurity radius. Q = 4.2 is a factor
depending on the geometry of the impurity (substitution in this
case) and y is the Griineisen parameter calculated from first
principles. As expected, the second and third terms reduce to zero
for pure materials.

Fig. 1 shows the KCM prediction of the thermal conductivity
and the weighting factor X for Si; ,Ge, and In,Ga; ,As rods at
300 K. One observes that theoretical predictions (black lines)
agree with experimental data for Si;_,Ge,. For In,Ga;_,As we
note inconsistencies between old published bulk experimental

This journal is © the Owner Societies 2018
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Fig. 1 Thermal conductivity of Leg = 7 mm rods in terms of alloy concentration x at 300 K for (a) Si;_,Ge, and (b) In,Ga;_,As. Green and red filled zones
denote the kinetic and collective contributions to the thermal conductivity respectively. Black solid lines denote the total thermal conductivity. Insets represent
magnifications at low impurity concentrations. (c) Switching factor X corresponding to (a) and (b) showing the transition to a kinetic-dominant regime as impurity
increases. Experimental data for Si; ,Ge, are from ref. 28—30. GaAs experimental datum is taken from ref. 17 and for Ings3Gag 47A from ref. 31

data,*®* reporting values smaller than 5 W m™* K™, and
recent 1.6 um thin films measurements of 5.5 W m * K™ * for
Ing 53Gag.47As at 300 K.*® Therefore bulk values are expected to
be higher than 5.5 W m™" K™'. Note that collective thermal
transport (red region) is only important for very pure materials
close to x = 0, being mostly destroyed with impurity fractions as
low as 0.4% and 4% for Si,_,Ge, and In,Ga, _,As respectively.

From the insets it can be appreciated that although the
kinetic contribution can describe most of the concentration
range, it is not able to explain the conductivity near the pure
region x ~ 0, where the collective term contributes up to a 10%
of the thermal conductivity.'® It is the correct treatment of N
processes, as done by KCM or iterative and full solution
methods, that provides good predictions at all concentrations.
These results show that a proper description of the collective
contribution is necessary to understand the large drop in
thermal conductivity at small impurity concentrations. In
the case of In,Ga,_,As, it is visible that the reduction of the
collective contribution when the alloy concentration is increased is
not as sharp as that found in Si; ,Ge,. This is a consequence of
the difference of the strength of the alloy scattering in each
sample: the isotopic mass variation term in Si; ,Ge, alloys is
several times larger than in In,Ga;_,As alloys. A magnitude that
quantifies these differences is the X factor (Fig. 1c). For pure
materials like Si and GaAs we found values of Xg ~ 0.5 and
ZGaas ~ 0.4. When the alloy concentration is increased this value
goes fast below 0.1 for Si;_,Ge,, with a minimum of ~0.04
around Siy;Geys. In contrast, in the case of In,Ga; ,As the
reduction of X is smoother, decreasing from 0.4 — 0.15 for In
concentrations going from x =0 — x = 0.3. Since the larger X the
larger the collective contribution, the sharper change of 2 in
Si;_,Ge, alloys as impurity increases translates into a sharper
drop in conductivity, as displayed in Fig. 1.

A second issue to be pointed out, is that as consequence of
N scattering, not only a collective contribution to thermal
conductivity does appear, but it also causes the slowdown of
kinetic modes. The pure kinetic term ki is thus reduced by a
factor (1 — 2). Since the minimum values of X displayed in

This journal is © the Owner Societies 2018

Fig. 1c are 0.04 for Si; ,Ge, and 0.15 for In,Ga; ,As, this
correction amounts at least a 4% and a 15%, respectively. In general
it will be more important in In,Ga,; ,As than in Si; ,Ge,.
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Fig.2 (a) Thermal conductivity accumulation function (TCAF) for

Sio.00Geg o1 (left) and Ing 01Gag.goAs (right) for 7 mm rods at T = 300 K.
(b) Thermal conductivity spectral distribution (TCSD) and TCAF in terms of
frequency for Sig.g2Geg 1g (top) and Ing 53Gag 47As (bottom) for 7 mm rods
at T = 300 K.

Fig. 2a displays the thermal conductivity accumulation
function (TCAF) for the two alloys at x = 0.01, showing a
significant slowing down of kinetic transport. This reduction
of the kinetic heat transport due to N collisions is modelled in
the classical RTA approach through the inclusion of N scattering
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as a resistive mechanism in the Mattiessen rule. The present
model thus helps to understand why, when 2 is small, the RTA
is expected to work. Notice that KCM offers a more general
framework for accounting the effects of N scattering, namely,
the reduction of kinetic transport, and the existence of a
collective heat transport.

From a microscopic point of view, collective and kinetic
contributions should have very different transient behaviour.
This can be shown by noticing that while each mode has a
different MFP in the kinetic regime, the collective MFP is the
same for all of them. In Fig. 2b the phonon spectral distribution of
the thermal conductivity of the two common alloy concentrations
Sip.82Geg1s (top) and Ings3GagqsAs (bottom) at 300 K and
L.t = 7 mm are shown. The green region represents the kinetic
and the red the collective contribution. Notice that, differently
to a pure kinetic approach, all the contribution for the collective
regime that spans the whole frequency spectrum is to be
assigned to a single collective mean free path vr..° In pure
materials like GaAs, C, Ge or Si, the collective contribution is
larger than in alloys.® This could offer an explanation of why the
reduction of thermal conductivity in FDTR experiments in pure
samples occurs at higher frequencies.
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Fig. 3 Fractal diffusivity defined from (£)/&% for IngssGagasAs and
Sio.s2Geo 18. Sio.s2Geo 15 CUrve is upscaled to ease the visualization.®! Three
scaling regions with different exponents may be identified.

The transient behaviour can be explained in more detail
if we combine KCM with the Truncated Lévy-flights (TL)
formalism.?™*” This provides a unified description of the
transition from diffusive to ballistic thermal transport in pure and
alloy semiconductors. In the time domain, this transition from short
to long time scales can be described by the Maxwell-Cattaneo
equation:*®

2
I%gl+%§::xva, (8)
where 7 is the mean characteristic time of phonon distribution
and y is the thermal diffusivity of the sample. When the inertial

PT _oT
term is negligible (TW < E) the diffusion equation is
T
recovered, and in the opposite case (TW > E) we obtain the
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wave equation. Despite of this clear distinction, dynamics of
energy transport in actual semiconductors is more complex.
Eqn (8) is valid only when a single characteristic time t can be
defined from the phonon distribution. This is only possible in
the collective regime, as all the modes share the same MFT.
However, in the kinetic-dominated regime this is not possible as
the MFT of the different phonons can span several orders of
magnitude and the diffusive to ballistic transition has a different
time scale for each phonon mode. TL is the generalization of the
kinetic transport taking into account the broad distribution of
mean free times giving rise to a fractal random walk behavior. This
approach properly distinguishes interfacial dynamics from nearby
quasiballistic heat flow suppression. In this framework, the effect
of different time scales is captured by using the fractal exponent (o)
that relates the scaling of the mean-square displacement (MSD) of
thermal energy with time.*® Considering steady state, the fractal
diffusivity y,, in the TL model is expressed as:*'

5 Crae

TSy
wo =TI o)

Z—
q 1_;’_62/12

where /(£)/€> represents the spacial evolution of the fractal diffu-
SIVIty %y

Fig. 3 represents the spatial transient thermal response for
Si, Ing.53Ga, 4-As and Sig g,Ge, 15 obtained from a TL model.>*3”
It can be seen that the region with a superdiffusive behaviour
with fractional exponent spans 4 orders of magnitude in time
for SiggxGeg.15 and 3 orders for Ing 53Gag 47As. Although for Si
the spatial evolution has not been reported, in the time space
the transition from pure ballistic to diffusive regime seems to
be gradual without a dominant fractal exponent.*" This behavior
may be explained in terms of the different weight of the collective
contribution X shown in Fig. 1c. The reasoning is the following.
The fractal behavior is a kinetic phenomenon and, as the
collective contribution increases, the superdiffusive transition
decreases until a single scale appears in the pure collective
regime. The spatial/temporal window where superdiffusive
transport is observable seems to be directly related to the
dominant scattering mechanisms.
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£
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Fig. 4 Fractal thermal conductivity reproduced in the KCM framework for
silicon at 300 K.
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The effect of the Lévy flights reproduced from the KCM
framework is represented in Fig. 4. As can be observed, while
the pure kinetic regime (top green line) shows a clear super-
diffusive region, in the collective regime there is a single
transition scale. When the collective contribution increases
(i.e. 2 increases) the fractal slope becomes smoother until it
disappears for 2 = 1. Notice that the value of ~ = 0.5 corre-
sponds approximately to silicon.

Using KCM in combination with TL to obtain the phonon
MFP spectral distribution from experiments should include
the collective effect in the functions used to convolute with
experimental results, usually called suppression functions. The
obtained function should present in this case an step function
at its corresponding scale. In Fig. 5 the predicted MFP accumulation
functions by KCM for Si, Ing 53Gag 47As, and Si, g,Geg 15 are shown.
The jump in cumulative thermal conductivity can be seen clearly for
silicon at the MFP of ~20 nm. In contrast, the contribution of the
collective regime to thermal conductivity in the alloys is almost
negligible. Accordingly, a definite slope can be observed in the
thermal conductivity accumulation function (TCAF). Notice that
this does not mean that N scattering is not important as kinetic
slowdown is still present.

1t — 2N
Non-definite slope
=)
(5]
N Max MFP
© contribution
£
=
2
=04 k ]
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¥m "
Si ——
Ing 53Gag 47AS v
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contribution Sio g2G€0.18

100 1 10 10 10°  10¢
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Fig. 5 Thermal conductivity accumulation function (TCAF) of natural Si,
Sio.g2Geg.1g and INg 53Gag 47As at 300 K with Legs = 7 mm.

As noticed by Vermeersch et al.,*" the slope of the accumulation
function can be related to the exponent of the dominant scattering
mechanism. To see this relation, Fig. 6 shows the U and impurity/
alloy relaxation times for Si, Ing 53Gag 47AS, and Sip g,Ge 1. It can
be observed that U scattering is dominant for silicon, which has a
trend that goes from t oc @ > tot oc @™ ? according to the first
principles calculations and in agreement with Han’s expressions.*’
For Sipg,Geg1s and Ing 53Gag 47As the dominant scattering is the
alloywith t oc w™*, although is stronger in Sij g,Ge, 15. This shows
why both have also the same exponent in the accumulation
function but with different extents of the superdiffusive region.

In addition, from Fig. 6 it can be obtained an explanation of
why the superdiffusive window is narrower for Ing s53Gag 47AS
than for Sig g,Geg 1. According to Vermeersch et al.** the fractal
exponent can be defined only when the dominant relaxation
time has an exponent n > 3. Having a look at the dominant
relaxation times, the narrowest window will correspond to

This journal is © the Owner Societies 2018
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Fig. 6 Umklapp and impurity/alloy first principles relaxation times for Si,
|n0>53Gao_47AS and SiolngEO_lg at 300 K.

silicon, where only the central part of the spectrum has n = 3.
Comparing between the two alloys, it can be observed that for
Iny 535Gag 47As at the left side of the plot around 0.5 THz the
relaxation time with t oc @~ starts to be important in front of
7 oc w *, while for Sigg,Geg 15 is not yet relevant. Therefore
when t occ w™? a fractal dimension is not defined. Notice that
this effect can be only clarified if the low frequency relaxation
times are well interpreted, as done in the present work by using
Han’s expressions,*® and are examined independently without
considering N scattering as resistive. The effect of N scattering
does not change the superdiffusive window but only its slope
trough 2 as shown in Fig. 4.

In conclusion, we have analyzed the collective contribution
to thermal transport in alloys, which is a consequence of the
role of normal phonon scattering. First, thermal conductivity
values derived from the Kinetic Collective Model for Si;_,Ge,
and In,Ga; _,As alloys show good agreement with experimental
data and previous calculations. Without introducing any fitting
parameters, we have shown that the proper combination of
kinetic and collective transport due to the normal processes can
accurately predict thermal conductivity at low alloy concentrations.
Impurity concentrations as little as 0.4% almost eliminate the
collective contribution in Si, ,Ge,, while in In,Ga;_,As, the
collective contribution is strongly reduced, but not completely
removed, at 4% concentrations. This insight could be useful
when addressing phenomena such as phonon drag or dopant
effects in semiconductor thermoelectrics. Secondly, while the
impact of collective transport on steady-state thermal conductivity
of bulk alloys is negligible at most concentrations, the role of
normal scattering is always important by slowing down the kinetic
transport, thus reducing thermal conductivity by 4-15% at room
temperature. The latter can have a big impact on the analysis of
ultrafast thermal transport at small length scales. Finally, from the
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phonon spectral analysis, it is shown that the collective regime,
where phonons share the same mean free path, narrows the time
window of superdiffusive heat transport. This reduction is visible
in highly pure samples such as silicon. In addition, the slope of the
accumulation function can been correlated to the dominant
scattering mechanism in both kinetic and collective regimes.
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